Experimental Study of White Light Interferometry in Mach–Zehnder Interferometers Based on Standard Single Mode Fiber
Abstract
:1. Introduction
2. Design and Fabrication of Mach–Zehnder Interferometer
2.1. Design and Fabrication of Taper MZI
2.2. Design and Fabrication of Core-Offset MZI
3. Results
3.1. Analysis of Tapered MZI
3.2. Analysis of Core-Offset MZI
4. Discussion
Sensing Application
Configuration | Range of Temperature | Sensitivity | Sensitivity Every 1 °C | Ref. |
---|---|---|---|---|
Infrared region | ||||
Air cavities with capillary fiber between 2 SMFs | 50 to 400 °C | 0.8 pm/°C | - | [24] |
SMF + hollow-core photonic crystal fiber (PCF) | 17 to 900 °C | 0.94 pm/°C | - | [25] |
SMF + Hollow core tube + SMF | 50 to 450 °C | 0.902 pm/°C | - | [26] |
SMF + NCF | 100 to 700 °C | 6.8 pm/°C | - | [27] |
SMF + NCF (with a gold film) + SMF | 20 to 80 °C | 37.9 pm/°C | - | [31] |
Visible region | ||||
OF + polymer | 25 to 35 °C | - | 3.5%, 3% and 1% | [28] |
Core-offset (SMF) | 50 to 300 °C | - | 1% | This work |
Core-offset (SMF) | 50 to 150 °C | 20.3 pm/°C | - | This work |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hariharan, P. Basics of Interferometry; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Hao, X.; Tong, Z.; Zhang, W.; Cao, Y. A fiber laser temperature sensor based on SMF core-offset structure. Opt. Commun. 2015, 335, 78–81. [Google Scholar] [CrossRef]
- Mao, L.; Lu, P.; Lao, Z.; Liu, D.; Zhang, J. Highly sensitive curvature sensor based on single-mode fiber using core-offset splicing. Opt. Laser Technol. 2014, 57, 39–43. [Google Scholar] [CrossRef]
- Yu, F.; Xue, P.; Zheng, J. Study of a large lateral core-offset in-line fiber modal interferometer for refractive index sensing. Opt. Fiber Technol. 2019, 47, 107–112. [Google Scholar] [CrossRef]
- Pacheco-Chacon, E.; Sierra-Hernandez, J.; Gallegos-Arellano, E.; Avila-Garcia, M.; Bianchetti, M.; Hernandez-Romano, I.; Lopez-Dieguez, Y.; Herrera-Piad, L.; Rojas-Laguna, R. An aluminum-coated asymmetric core-offset Mach-Zehnder interferometer temperature sensor. Opt. Fiber Technol. 2021, 65, 102591. [Google Scholar] [CrossRef]
- Jauregui-Vazquez, D.; Haus, J.W.; Negari, A.B.H.; Sierra-Hernandez, J.M.; Hansen, K. Bitapered fiber sensor: Signal analysis. Sens. Actuators B Chem. 2015, 218, 105–110. [Google Scholar] [CrossRef]
- Yadav, T.K.; Narayanaswamy, R.; Abu Bakar, M.H.; Kamil, Y.M.; Mahdi, M.A. Single mode tapered fiber-optic interferometer based refractive index sensor and its application to protein sensing. Opt. Express 2014, 22, 22802–22807. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Xue, P.; Zhao, X.; Zheng, J. Investigation of an in-line fiber Mach–Zehnder interferometer based on peanut-shape structure for refractive index sensing. Opt. Commun. 2019, 435, 173–177. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, C.; Huang, T.; Shu, X. Multimode interferometer based on a core-offset singlemode-multimode-singlemode fiber structure. In Proceedings of the OSA Advanced Photonics Congress (AP) 2020 (IPR, NP, NOMA, Networks, PVLED, PSC, SPPCom, SOF), Washington, DC, USA, 13–16 July 2020; Optica Publishing Group: Washington, DC, USA, 2020; p. JTu3F.11. [Google Scholar] [CrossRef]
- Shao, M.; Qiao, X.; Fu, H.; Li, H.; Zhao, J.; Li, Y. A Mach–Zehnder interferometric humidity sensor based on waist-enlarged tapers. Opt. Lasers Eng. 2014, 52, 86–90. [Google Scholar] [CrossRef]
- Tian, K.; Zhang, M.; Farrell, G.; Wang, R.; Lewis, E.; Wang, P. Highly sensitive strain sensor based on composite interference established within S-tapered multimode fiber structure. Opt. Express 2018, 26, 33982–33992. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Luo, B.-B.; Wu, D.; Fan, J.; Gu, H.; Guo, Y.; Zhao, M. Highly sensitive curvature sensor based on a sandwich multimode fiber Mach–Zehnder interferometer. Opt. Express 2022, 30, 40251–40264. [Google Scholar] [CrossRef]
- Dong, X.; Du, H.; Luo, Z.; Yin, K.; Duan, J. Highly sensitive refractive index sensor based on novel Mach–Zehnder interferometer with multimode fiber–thin core fiber–multimode fiber structure. Jpn. J. Appl. Phys. 2018, 57, 092501. [Google Scholar] [CrossRef]
- Sun, H.; Yang, S.; Zhang, J.; Rong, Q.; Liang, L.; Xu, Q.; Xiang, G.; Feng, D.; Du, Y.; Feng, Z.; et al. Temperature and refractive index sensing characteristics of an MZI-based multimode fiber–dispersion compensation fiber–multimode fiber structure. Opt. Fiber Technol. 2012, 18, 425–429. [Google Scholar] [CrossRef]
- Zheng, J.; Yan, P.; Yu, Y.; Ou, Z.; Wang, J.; Chen, X.; Du, C. Temperature and index insensitive strain sensor based on a photonic crystal fiber in line Mach–Zehnder interferometer. Opt. Commun. 2013, 297, 7–11. [Google Scholar] [CrossRef]
- Yang, R.; Zhu, L.; Li, J.; Xu, T.; Sun, G. High fringe visibility Mach-Zehnder interferometric sensor based on a Four-Core fiber. Instrum. Sci. Technol. 2020, 48, 326–337. [Google Scholar] [CrossRef]
- Nazeri, K.; Ahmed, F.; Ahsani, V.; Joe, H.-E.; Bradley, C.; Toyserkani, E.; Jun, M.B.G. Hollow-Core Photonic Crystal Fiber Mach–Zehnder Interferometer for Gas Sensing. Sensors 2020, 20, 2807. [Google Scholar] [CrossRef]
- Gutiérrez, J.G.; Sierra-Hernández, J.; Vargas-Treviño, M.; López-Apreza, E.; Romero-Salazar, C.; Hernández-Flores, O.; Estudillo-Ayala, J.; Rojas-Laguna, R. A curvature sensing setup based on an asymmetric concatenated tapered Mach-Zehnder interferometer. Opt. Laser Technol. 2020, 132, 106490. [Google Scholar] [CrossRef]
- Lin, W.; Shao, L.-Y.; I Vai, M.; Shum, P.P.; Liu, S.; Liu, Y.; Zhao, F.; Xiao, D.; Liu, Y.; Tan, Y.; et al. In-Fiber Mach–Zehnder Interferometer Sensor Based on Er Doped Fiber Peanut Structure in Fiber Ring Laser. J. Light. Technol. 2021, 39, 3350–3357. [Google Scholar] [CrossRef]
- Eftimov, T.A.; Janik, M.; Bock, W.J. Microcavity In-Line Mach–Zehnder Interferometers Fabricated in Single-Mode Fibers and Fiber Tapers for Visible (VIS) and Near-Infrared (NIR) Operation. J. Light. Technol. 2019, 37, 3351–3356. [Google Scholar] [CrossRef]
- Eftimov, T.; Arapova, A.; Janik, M.; Bock, W. Broad range bimodal microcavity in-line Mach-Zehnder interferometers. Opt. Laser Technol. 2022, 145, 107503. [Google Scholar] [CrossRef]
- Li, Y.; Tong, L. Mach-Zehnder interferometers assembled with optical microfibers or nanofibers. Opt. Lett. 2008, 33, 303–305. [Google Scholar] [CrossRef]
- Bonilla, J.T.G.; Bonilla, A.G.; Zamora, A.C.; Bonilla, H.G.; Betancourtt, V.M.R.; Ortiz, L.G. The fringe visibility measurements on the complex s-plane: A novel method for the fringe visibility measurement. Results Phys. 2022, 38, 105586. [Google Scholar] [CrossRef]
- Costa, G.K.B.; Gouvêa, P.M.P.; Soares, L.M.B.; Pereira, J.M.B.; Favero, F.; Braga, A.M.B.; Palffy-Muhoray, P.; Bruno, A.C.; Carvalho, I.C.S. In-fiber Fabry-Perot interferometer for strain and magnetic field sensing. Opt. Express 2016, 24, 14690–14696. [Google Scholar] [CrossRef]
- Liu, H.; Yang, H.Z.; Qiao, X.; Hu, M.; Feng, Z.; Wang, R.; Rong, Q.; Gunawardena, D.S.; Lim, K.-S.; Ahmad, H. Strain measurement at high temperature environment based on Fabry-Perot interferometer cascaded fiber regeneration grating. Sens. Actuators A Phys. 2016, 248, 199–205. [Google Scholar] [CrossRef]
- Tian, J.; Jiao, Y.; Ji, S.; Dong, X.; Yao, Y. Cascaded-cavity Fabry–Perot interferometer for simultaneous measurement of temperature and strain with cross-sensitivity compensation. Opt. Commun. 2018, 412, 121–126. [Google Scholar] [CrossRef]
- Novais, S.; Ferreira, C.I.A.; Ferreira, M.S.; Pinto, J.L. Optical Fiber Tip Sensor for the Measurement of Glucose Aqueous Solutions. IEEE Photon J. 2018, 10, 6803609. [Google Scholar] [CrossRef]
- Ahmed, I.; Ali, M.; Elsherif, M.; Butt, H. UV polymerization fabrication method for polymer composite based optical fiber sensors. Sci. Rep. 2023, 13, 10823. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Q.; Zhu, W.; Yang, M.; Lewis, E. Novel optical fiber SPR temperature sensor based on MMF-PCF-MMF structure and gold-PDMS film. Opt. Express 2018, 26, 1910–1917. [Google Scholar] [CrossRef]
- Dong, X.; Xie, Z.; Zhou, C.; Yin, K.; Luo, Z.; Duan, J. Temperature sensitivity enhancement of platinum-nanoparticle-coated long period fiber gratings fabricated by femtosecond laser. Appl. Opt. 2017, 56, 6549–6553. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, M.; Zhang, Y.; Liu, Z.; Yang, X.; Zhang, J.; Yang, J.; Yuan, L. Simultaneous measurement of temperature and refractive index based on a hybrid surface plasmon resonance multimode interference fiber sensor. Appl. Opt. 2020, 59, 1225–1229. [Google Scholar] [CrossRef]
#MZI | Taper 1 (T1) | Taper 2 (T2) | ||||
---|---|---|---|---|---|---|
Waist Diameter Relation | Waist Length [mm] | Waist Diameter | Length [mm] | Waist Length [mm] | Waist Diameter | Length [mm] |
#[T1-T2] | L1 | W1 | D1 | L2 | W2 | D2 |
1 [10-20] | 5.05 | 10 | 2.52 | 7.33 | 20 | 3.66 |
2 [45-45] | 6.13 | 45 | 3.06 | 6.13 | 45 | 3.06 |
3 [10-10] | 5.05 | 10 | 2.52 | 5.05 | 10 | 2.52 |
4 [50-60] | 1.83 | 50 | 0.91 | 29.35 | 60 | 14.67 |
5 [15-10] | 8.48 | 15 | 4.24 | 5.05 | 10 | 2.52 |
#MZI | Length L [cm] | First Splice Displacement | Second Splice Displacement |
---|---|---|---|
1 | 2.5 | [−4.6, 0.0] | [+4.6, 0.0] |
2 | 4 | [−3.0, 0.0] | [+3.0, 0.0] |
3 | 4 | [−3.0, 0.0] | [+4.0, 0.0] |
4 | 4 | [−4.0, 0.0] | [+4.0, 0.0] |
5 | 4 | [−4.6, 0.0] | [+4.6, 0.0] |
6 | 4 | [−5.0, 0.0] | [+4.0, 0.0] |
7 | 4 | [−5.0, 0.0] | [+4.5, 0.0] |
8 | 4 | [−6.0, 0.0] | [+5.0, 0.0] |
9 | 4 | [−6.0, 0.0] | [+6.0, 0.0] |
10 | 5 | [−4.6, 0.0] | [+4.6, 0.0] |
Interferometer Structure and Operation Region |
Core-Offset | Interferometer Length (cm) | FSR (nm) | Visibility | Ref. |
---|---|---|---|---|---|
Infrared region | |||||
Core-offset MZI (SMF) | 5 | 4 | 12 | 0.1 | [2] |
Core-Offset MZI (SMF) | 6 to 40 | 3 | 15 | 0.2 | [3] |
Core-offset (SMF-Al coated) | 30 | 2 | 16 | 0.7 | [4] |
Taper MZI (SMF) | - | 2 | 19 | 0.2 | [6] |
Taper MZI (EDF) | - | 4.5 | 12 | 0.25 | [13] |
Visible region | |||||
Microcavity MZI (SMF-800) | - | - | 50 | 0.5 | [15] |
Microcavity (MNF-SMF) | - | - | 8 | 0.09 | [17] |
Core-offset (SMF) | 4.6 | 2.5 | 23 | 0.3 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cano-Perez, J.L.; Gutiérrez-Gutiérrez, J.; Perezcampos-Mayoral, C.; Pérez-Campos, E.L.; Pina-Canseco, M.d.S.; Tepech-Carrillo, L.; Vargas-Treviño, M.; Guerra-Hernández, E.I.; Martínez-Helmes, A.; Estudillo-Ayala, J.M.; et al. Experimental Study of White Light Interferometry in Mach–Zehnder Interferometers Based on Standard Single Mode Fiber. Sensors 2024, 24, 3026. https://doi.org/10.3390/s24103026
Cano-Perez JL, Gutiérrez-Gutiérrez J, Perezcampos-Mayoral C, Pérez-Campos EL, Pina-Canseco MdS, Tepech-Carrillo L, Vargas-Treviño M, Guerra-Hernández EI, Martínez-Helmes A, Estudillo-Ayala JM, et al. Experimental Study of White Light Interferometry in Mach–Zehnder Interferometers Based on Standard Single Mode Fiber. Sensors. 2024; 24(10):3026. https://doi.org/10.3390/s24103026
Chicago/Turabian StyleCano-Perez, José Luis, Jaime Gutiérrez-Gutiérrez, Christian Perezcampos-Mayoral, Eduardo L. Pérez-Campos, María del Socorro Pina-Canseco, Lorenzo Tepech-Carrillo, Marciano Vargas-Treviño, Erick Israel Guerra-Hernández, Abraham Martínez-Helmes, Julián Moisés Estudillo-Ayala, and et al. 2024. "Experimental Study of White Light Interferometry in Mach–Zehnder Interferometers Based on Standard Single Mode Fiber" Sensors 24, no. 10: 3026. https://doi.org/10.3390/s24103026
APA StyleCano-Perez, J. L., Gutiérrez-Gutiérrez, J., Perezcampos-Mayoral, C., Pérez-Campos, E. L., Pina-Canseco, M. d. S., Tepech-Carrillo, L., Vargas-Treviño, M., Guerra-Hernández, E. I., Martínez-Helmes, A., Estudillo-Ayala, J. M., Sierra-Hernández, J. M., & Rojas-Laguna, R. (2024). Experimental Study of White Light Interferometry in Mach–Zehnder Interferometers Based on Standard Single Mode Fiber. Sensors, 24(10), 3026. https://doi.org/10.3390/s24103026