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Abstract: The main purpose of the paper is to show how a magnetoresistive (MR) element can
work as a current sensor instead of using a Wheatstone bridge composed by four MR elements,
defining the concept of a magnetoresistive shunt (MR-shunt). This concept is reached by considering
that once the MR element is biased at a constant current, the voltage drop between its terminals
offers information, by the MR effect, of the current to be measured, as happens in a conventional
shunt resistor. However, an MR-shunt has the advantage of being a non-dissipative shunt since the
current of interest does not circulate through the material, preventing its self-heating. Moreover,
it provides galvanic isolation. First, we propose an electronic circuitry enabling the utilization
of the available MR sensors integrated into a Wheatstone bridge as sensing elements (MR-shunt).
This circuitry allows independent characterization of each of the four elements of the bridge. An
independently implemented MR element is also analyzed. Secondly, we propose an electronic
conditioning circuit for the MR-shunt, which allows both the bridge-integrated element and the
single element to function as current sensors in a similar way to the sensing bridge. Third, the
thermal variation in the sensitivity of the MR-shunt, and its temperature coefficient, are obtained.
An electronic interface is proposed and analyzed for thermal drift compensation of the MR-shunt
current sensitivity. With this hardware compensation, temperature coefficients are experimentally
reduced from 0.348%/◦C without compensation to −0.008%/◦C with compensation for an element
integrated in a sensor bridge and from 0.474%/◦C to −0.0007%/◦C for the single element.

Keywords: magnetoresistive shunt; current sensor; magnetoresistance; shunt; temperature compen-
sation

1. Introduction

Current sensing is required in many power electronic applications for control, power
management, overcurrent protection, or monitoring tasks [1,2]. Techniques used in measur-
ing electric current include, mainly: shunt resistors, current transformers, Rogowski coils,
Hall effect sensors, and magnetoresistive (MR) sensors [3]. Shunt resistor-based techniques
use an external resistor to measure current, which is dissipative and does not provide
galvanic isolation [1,4]. Current transformers use a magnetic core with a large number of
secondary turns, the primary being winding the conductor through which the current to be
measured circulates. This solution inherently provides galvanic isolation, but it requires
large cores for low-frequency currents and precludes the measurement of DC currents [4,5].
The Rogowski probe is a flexible coil, without a magnetic core, used to measure AC cur-
rents in high-power systems, providing accurate readings without introducing a significant
impedance. These sensors have galvanic isolation and a wide frequency response; however,
they do not allow the measurement of DC currents [3,4,6]. Hall effect sensors used for
current measurement consist in semiconductor materials that generate a voltage propor-
tional to the current passing through a conductor when exposed to a magnetic field [7].
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Hall sensors offer non-contact current sensing, galvanic isolation, wide dynamic range,
compact size, low power consumption, and fast response time, but they have limitations in
accurately measuring high-frequency currents, have low sensitivity, and their sensitivity is
affected by changes in temperature [8]. MR sensors, used in this work, vary their resistance
depending on the applied magnetic field and, therefore, depending on the current to be
measured. Although Hall effect sensors are the most used in power electronics applications,
MR sensors offer advantages in terms of sensitivity and compact size [2].

Three different technologies of magnetoresistances have been applied in current
sensing: anisotropic magnetoresistance (AMR) [9], giant magnetoresistance (GMR) [10],
and tunnel magnetoresistance (TMR) [2,11]. The TMRs are better in terms of temperature
stability, power consumption, and size [2].

MR sensors are generally integrated into a Wheatstone bridge (WB) structure made
up of four out-of-phase sensing elements [12–15]. Traditionally, this configuration has been
used in order to reduce the offset term and thus be able to amplify the obtained signal with
an instrumentation amplifier with enough gain, while achieving linearity, noise reduction,
and reduced temperature coefficient (TC) of sensitivity [15]. However, ensuring symmet-
rical resistance variation between the branches of the bridge in the implementation adds
complexity to the manufacturing process, increasing production costs [13]. Furthermore,
MR sensors have sensitivity thermal dependence, which requires some type of thermal
compensation (hardware or software). Thermal compensation strategies for MR sensors
integrated in a WB structure can be found in [16–19].

In the literature, there have been efforts to reduce the number of active elements in the
magnetoresistive bridge to cut down production costs [13,15,20,21]. However, the combined
integration of passive and active elements introduces discrepancies and inhomogeneities
that reduce the Wheatstone bridge performance [13].

Using a single active element would be a viable solution for reducing production costs
and layout complexities while avoiding the discrepancies that appear when active and
passive elements are combined in a WB. In [22], a single active element is used instead of a
WB for piezoresistive sensors applied in cardiac catheters with the purpose of reducing
sensor area, demonstrating a good performance in terms of sensitivity. A single element
for piezoresistive sensors is also proposed in [23], where a temperature analysis is also
included. In this work, the voltage–pressure curves, measured at different temperature
conditions, exhibit discernible voltage gaps between them.

For MR sensors, papers [12,15,20,21,24] explore the potential use of a single active
element, but there is a lack of experimental studies regarding their characterization and
thermal dependence. Additionally, no efforts have been made to propose electronic condi-
tioning or temperature compensation strategies.

This paper explores the feasibility of using an MR element as a current sensor. When
the MR element is biased at a constant current, the voltage drop across its terminals
provides information, by the MR effect, of the current to be measured, in a similar way to a
conventional shunt resistor. However, the MR-shunt offers the advantage of being a non-
dissipative shunt, as the current of interest does not circulate through the material, avoiding
self-heating. Moreover, it provides galvanic isolation and enables the measurement of both
AC and DC currents. The operational similarities of the proposal with the shunt resistor
allow us to introduce the concept of a magnetoresistive shunt (MR-shunt). Furthermore,
in this paper, the authors carry out a thermal characterization of the sensitivity of the
elements and propose an electronic interface which includes the hardware circuitry for
thermal compensation of their sensitivity. An appreciable reduction inf the temperature
coefficient for different elements is obtained, showing the validity of the MR-shunt as a
current sensor.

This paper is organized as follows. Section 2 presents the two MR elements analyzed,
one embedded into a Wheatstone bridge and another independently implemented. In
this section, an electronic circuitry enabling the utilization of the available MR sensors
embedded into a Wheatstone bridge as sensing independent elements is also introduced.
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In Section 2.1, the proposed conditioning circuit enabling the MR element to function as
a current sensor is analyzed. The proposed thermal compensation method is explained
in Section 2.2. Section 3 outlines the experimental results, including the validation of
the electronic interface, measurements of the sensitivity temperature coefficient without
compensation, and the outcomes when the proposed compensation is implemented. In
Section 4, a brief discussion takes place, while in Section 5, conclusions are drawn.

2. MR-Shunt Definition and Thermal Characterization

In this paper, tunnel magnetoresistance (TMR) effect-based sensing elements, both
arranged in a Wheatstone bridge configuration and single element, were used. Sensors
micro-fabrication was carried out at the INESC-MN facilities in Lisbon. In the case of
the magnetoresistive bridge, named TMR46, each element was made up of the following
layers (thicknesses in nm): Si/100 SiO2/5 Ta/15 Ru/5 Ta/15 Ru/5 Ta/5 Ru/20 IrMn/2
CoFe30/0.85 Ru/2.6 CoFe40B20/1.8 MgO/2 CoFe40B20/0.21 Ta/4 NiFe/0.20 Ru/6 IrMn/2
Ru/5 Ta/10 Ru. The stand-alone MR element, named LCEL1, has the structure: (5 Ta/10
Ru)x3/5 Ta/5 Ru/20 MnPt/2.2 Co80Fe20/0.7 Ru/1.8 CoFeB/1.8 MgO/3 CoFeB/0.2 Ru/6
NiFe/6 MnIr/5 NiFe/5 Ru/5 Ta/10 Ru.

Figure 1 shows the layout of the tracks and their implementation for the single element
(LCEL1). In the case of the magnetoresistive bridge, the current passes through a U-shaped
copper bar located at the bottom of the PCB, while in the case of the single element, a
properly designed single track on the PCB was used.
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Figure 1. Practical implementation of an MR-shunt.

In order to be able to use the TMR sensors configured in a Wheatstone bridge as an
MR-shunt, a circuit was devised that allows the rest of the elements to be cancelled. The
circuit is shown in Figure 2a, where sensor elements R2, R3, and R4 are eliminated (in this
particular case), leaving only element R1 as the active element. By action of operational
amplifiers OA1 and OA2, current through R2 and R3 elements is zero and, therefore, also
zero through R4. As a consequence, only element R1 of the WB is active and constant
current biased by Iref. The equivalent circuit is shown in Figure 2b, where the active element
is named, in a general case, Rs (s = 1 in this particular case).
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2.1. MR-Shunt Definition and Its Electronic Interface

In Figure 2b, the action of an external magnetic field H, generated by the current i to
be measured, according to the MR effect [25–27], results in a magnetic resistance change
(∆Rs) proportional to the applied magnetic field within its linear range and, therefore,
proportional to the current to be measured:

∆Rs = Rs − Ros = SΩ · i (1)

with SΩ (in Ω/A) being the resistive sensitivity of the MR-shunt and Ros the sensor resis-
tance at zero input current.

To convert the change of resistance into voltage, the MR-shunt Rs in Figure 2b is biased
at a constant current Iref and the voltage v measured:

v = Ire f · (Ros + ∆Rs) = Ire f · [Ros + SΩ · i] = S · i + Vo f f (2)

with S being the sensor voltage sensitivity (in V/A), which depends on the sensor type and
the supplied current Iref,

S = Iref·SΩ (3)

and Voff the voltage at zero input current,

Vo f f = Ire f · Ros. (4)

The conditioning circuit used for the MR-shunt is shown in Figure 3. It is based on
a voltage-to-current converter (OA3 and OA4) that provides the reference current Iref and
a current mirror (REF200 from Texas Instruments, Dallas, TX, USA) that replicates this
current in the MR-shunt. The current Iref is set by the voltage reference Z1 (2.5 V) and P1
that adjusts it to the desired value (e.g., 1 mA). The differential voltage vd in Figure 3, by
considering Rs of (1), is:

vd = Ire f · (Ros + ∆Rs − P2). (5)
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For zero current i (i.e., ∆Rs = 0), P2 allows adjusting the voltage Vp = −Ire f · P2 in
Figure 3 to the offset voltage (Voff) of Equation (4), in such a way that vd is equal to zero.
Therefore, after offset adjustment:

vd = Ire f · ∆Rs = S · i. (6)

Next, the differential voltage vd is Radio Frequency Interference (RFI)-filtered using
the R6-R7-C1-C2-C3 network. This prevents any RFI content from contributing to an offset
voltage at the output of the instrumentation amplifier that will not be eliminated by
subsequent low-pass filtering [28]. In this design, there is a cutoff frequency for the
differential mode of 2 kHz ( fc,dm = 1

2π(2C1+C3)R6
) and for the common mode of 50 kHz

( fc,cm = 1
2πR6C3

). The resulting signal is then conditioned by an instrumentation amplifier
(IA), with gain G, and a non-inverter amplifier (OA5) to obtain the output voltage vo.

2.2. MR-Shunt Compensation Method

The compensation method described below is based on imposing a zero-temperature
coefficient to the variable to compensate, which gives a design condition for the compensa-
tion circuit. This technique has been successfully applied in force, pressure, or magnetic
field sensor bridges, as well as in the design of precision voltage references [29–31].

If a thermal dependence of the sensitivity S is considered in the form:

S = So · [1 + TCS · (T − To)] (7)

where So and TCS are, respectively, the sensor sensitivity and its temperature coefficient at
temperature To, then Equation (6) can be written as:

vd = So · [1 + TCS · (T − To)] · i (8)

so that the temperature coefficient of vd at T = To is:

TCvd = TCS. (9)
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To compensate for the vd variation in temperature, a temperature-variable resistor RT
is added in the gain of the non-inverting amplifier (Figure 3). In this way, its output voltage
vo will be given by:

vo = Gn,inv · G · vd (10)

where:
Gn,inv(T) = 1 +

R9

RT(T)
. (11)

By applying natural logarithms in Equation (10) and then differentiating, it is possible
to obtain the expression:

dvo

vo
=

dGn,inv

Gn,inv
+

dvd
vd

(12)

with G being constant with temperature.
If derivatives are now calculated with respect to temperature, to achieve a TCvo = 0 at

temperature To, the following condition must be met:

TCGn,inv = −TCvd = −TCS. (13)

From Equation (11), it is possible to obtain, for TCGn,inv:

TCGn,inv =

dGn,inv/
dT

Gn,inv
= − R9

R9 + RT(To)
·TCRT(T). (14)

Thus, from Equation (13), a specific value for resistance R9 is obtained at a given
compensation temperature:

R9 =
RT(To)

TCRT(T)
TCS − 1

. (15)

To obtain a physically feasible value of R9, it will be necessary that TCRT > TCS.

3. Experimental Results

To validate the proposed electronic interface and the effectiveness of the compensation
method, two MR-shunt elements were subjected to an i current sweep. The first one was
integrated into a WB with the connections indicated in Figure 2a and the second element
implemented autonomously.

3.1. Electronic Interface Validation

The MR-shunt element was biased at a constant current value of Iref = 1 mA with
a +2.5 V reference voltage (LM4040DIZ from Texas Instruments, Dallas, TX, USA) and
adjusting potentiometer P1. By means of a transconductance amplifier (PCS-2B from Krohn-
Hite Corporation, Brockton, MA, USA), a current sweep from −10 A to +10 A was generated
in a PC-controlled manner and the MR-shunt voltage vd was acquired using a controlled
multimeter (K2000 from Keithley, Solon, OH, USA). Potentiometer P2 was adjusted to
achieve zero vd output at zero current i. Figure 4 shows the experimental responses of the
vd voltage corresponding to the MR-shunt element embedded in the Wheatstone bridge
(Figure 4a) and the single element (Figure 4b) at a temperature T = 20 ◦C.
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In Figure 4, a high degree of linearity is obtained in both the MR-shunt element
embedded in the Wheatstone bridge (TMR46) and the single element (LCEL1). However,
the linearity is slightly higher in the LCEL1 element than in the TMR46, probably due
to a residual influence of the other three MR elements present in the Wheatstone bridge
configuration. In a potential application, the practical linear range of the embedded element
should be reduced and the use of the isolated MR element would be even more advisable.
Moreover, a higher sensitivity for the LCEL1 element was also observed than that for the
TMR46 due to its particular manufacturing structures.

3.2. Sensitivity Temperature Coefficients without Compensation

Similar to the methodology employed in the previous section, voltage vd was measured
in response to the i current sweep at different temperatures by placing the MR element
within a climatic chamber (CH600 VT from Angelantoni, Massa Martana, Italy). Thermal
analysis was performed in the temperature range of −20 to 60 ◦C. The current sensitivity S
for voltage vd at each temperature was subsequently analyzed through linear regression,
similar to the way as shown in Figure 4. The change in S with temperature is shown in
Figure 5.

Sensors 2024, 24, x FOR PEER REVIEW 7 of 12 
 

 

In Figure 4, a high degree of linearity is obtained in both the MR-shunt element em-

bedded in the Wheatstone bridge (TMR46) and the single element (LCEL1). However, the 

linearity is slightly higher in the LCEL1 element than in the TMR46, probably due to a 

residual influence of the other three MR elements present in the Wheatstone bridge con-

figuration. In a potential application, the practical linear range of the embedded element 

should be reduced and the use of the isolated MR element would be even more advisable. 

Moreover, a higher sensitivity for the LCEL1 element was also observed than that for the 

TMR46 due to its particular manufacturing structures. 

3.2. Sensitivity Temperature Coefficients without Compensation 

Similar to the methodology employed in the previous section, voltage vd was meas-

ured in response to the i current sweep at different temperatures by placing the MR ele-

ment within a climatic chamber (CH600 VT from Angelantoni, Massa Martana, Italy). 

Thermal analysis was performed in the temperature range of −20 to 60 °C. The current 

sensitivity S for voltage vd at each temperature was subsequently analyzed through linear 

regression, similar to the way as shown in Figure 4. The change in S with temperature is 

shown in Figure 5. 

Temperature dependence of the current sensitivity S shows a good linearity with a 

slope m of 0.0082 mV/A°C for the TMR46 and 0.0333 mV/A°C for the LCEL1, which is 

equivalent at To = 20 °C to a TCS of 0.3482%/°C and 0.4743%/°C, respectively. Moreover, a 

higher temperature dependence and degree of linearity are shown for the single element 

LCEL1, according to its greater sensitivity and better linearity (see Figure 4b). 

 

Figure 5. Temperature dependence of the current sensitivity S corresponding to: (a) MR element 

embedded in a Wheatstone bridge (TMR46) and (b) single element (LCEL1). 

3.3. Sensitivity Temperature Coefficients with Compensation 

Once thermal characterization of the two MR elements had been carried out, the aim 

was to minimize the thermal dependence of their electronic interface (voltage vo in Figure 

3). The objective was to decrease the gain of the non-inverting stage as the temperature 

rises, thus compensating for the temperature-induced increase in sensitivity of the MR 

sensor. In this way, resistance RT must be a temperature sensor with positive TC, and the 

value of R9 will be determined by Equation (15) obtained in the compensation method 

(Section 2.2). 

For RT, four possible temperature sensors were considered and thermally character-

ized. Three of them were resistive temperature detectors (RTDs), two platinum-based 

(Pt100 and Pt1k), and one Ruthenium-based (Ru), while the fourth was a silicon-based 

temperature sensor (the KTY81-122 model [32,33] from NXP Semiconductors, Eindhoven, 

Figure 5. Temperature dependence of the current sensitivity S corresponding to: (a) MR element
embedded in a Wheatstone bridge (TMR46) and (b) single element (LCEL1).



Sensors 2024, 24, 3047 8 of 12

Temperature dependence of the current sensitivity S shows a good linearity with a
slope m of 0.0082 mV/A◦C for the TMR46 and 0.0333 mV/A◦C for the LCEL1, which is
equivalent at To = 20 ◦C to a TCS of 0.3482%/◦C and 0.4743%/◦C, respectively. Moreover,
a higher temperature dependence and degree of linearity are shown for the single element
LCEL1, according to its greater sensitivity and better linearity (see Figure 4b).

3.3. Sensitivity Temperature Coefficients with Compensation

Once thermal characterization of the two MR elements had been carried out, the aim
was to minimize the thermal dependence of their electronic interface (voltage vo in Figure 3).
The objective was to decrease the gain of the non-inverting stage as the temperature rises,
thus compensating for the temperature-induced increase in sensitivity of the MR sensor. In
this way, resistance RT must be a temperature sensor with positive TC, and the value of R9
will be determined by Equation (15) obtained in the compensation method (Section 2.2).

For RT, four possible temperature sensors were considered and thermally character-
ized. Three of them were resistive temperature detectors (RTDs), two platinum-based
(Pt100 and Pt1k), and one Ruthenium-based (Ru), while the fourth was a silicon-based
temperature sensor (the KTY81-122 model [32,33] from NXP Semiconductors, Eindhoven,
The Netherlands). Experimental measurements for each sensor provided the temperature
coefficients outlined in Table 1.

Table 1. Temperature coefficients in %/◦C of the three temperature sensors used for compensation.

Temperature Sensor TC (%/◦C)
(To = 20 ◦C)

RTD-Pt100 0.342
RTD-Pt1k 0.353

Ru 0.188
KTY81-122 0.758

According to Equation (15), suitable resistance values for R9 were obtained using the
Pt1k and KTY81-122 sensors for the embedded element TMR46 and the KTY81-122 sensor
for the single element LCEL1.

In a similar way to measurement of the sensing elements, the voltage vo measurements
were carried out at the temperatures outlined in Section 3.2, performing the current sweep
detailed in Section 3.1.

Figures 6 and 7 show the values of the current sensitivity Svo of the voltage vo at
the output of the electronic interface at different temperatures for the TMR46 and the
LCEL1 MR-shunts, respectively, after temperature compensation. The main results are
summarized in Table 2, where TCwnc denotes the temperature coefficients obtained without
compensation (Section 3.2) and TCwc with compensation (Table 2).

Table 2. Temperature coefficients in %/◦C without and with compensation, and the percentage of
reduction R (%).

MR-Shunt TCwnc (%/◦C)
TCwc (%/◦C) R (%)

Pt1k KTY Pt1k KTY

TMR46 0.3482 0.0192 −0.0086 94.5 97.5
LCEL1 0.4743 - −0.0071 - 98.5

A figure of merit that reflects the effectiveness of the thermal compensation performed
is the percentage in reduction R experienced in the temperature coefficient before and after
compensation, defined as:

R(%) =

(
1 −

∣∣∣∣ TCwc

TCwnc

∣∣∣∣)·100 (16)
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As summarized in Table 2, it was possible to reduce the initial temperature coefficients
of the MR-shunt elements, achieving high reduction coefficients in all the cases tested,
especially when the silicon-based temperature sensor was used.
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4. Discussion

The temperature coefficient of MR-shunt elements can be hardware-compensated by
the use of a suitable conditioning circuit (Figure 3) and a specific temperature sensor (com-
pensator). The proposed compensation method is based on the variation of voltage gain
with temperature and obtains a resistance whose realizability depends on the relationship
between temperature coefficients of the compensator and the MR-shunt element (Equation
(15)). Therefore, it is convenient to use compensators with high temperature coefficients,
like those implemented from silicon, such as the one described in the work [32] (0.790%/◦C)
or the type of RTDs based on Pt (0.353%/◦C). Regarding these two compensators, Figures 6
and 7 show a more optimal thermal compensation when using the silicon-based compen-
sator. Higher TCRT values result in a resistance R9 that is less sensitive to changes in the
temperature coefficient of the compensator, particularly away from negative values and
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the point of indetermination, thus achieving better compensation. RTDs based on Ni with
TC values around 0.618%/◦C [34,35] or linear thermistors [36] would also be suitable but
have not been tested in this work.

In the case of the MR-element embedded in the Wheatstone bridge, the other three MR
elements present in it affect the results. The magnetic behavior of an MR element is not the
same when it is joined to the other three by means of a Wheatstone bridge connection than
when it is alone. In Figure 2, as was previously explained, the operational amplifiers OA1
and OA2 establish a zero-voltage difference in the adjacent elements R2 and R3, blocking
the current Iref through them, and thus preventing their polarization. However, in real
operational amplifiers, an offset voltage exists that gives a non-zero voltage difference
between their input terminals. Consequently, the voltage difference in R2 and R3 differs
from zero in this offset voltage, thus allowing a residual polarization in these components.
This residual polarization is probably the cause of less linearity of this configuration, as
evidenced by the experimental data presented in Figures 4a and 5a. In the present work,
ultralow offset voltage operational amplifiers OA1 and OA2 were selected to minimize the
residual polarization of R2 and R3 elements to a level less than 0.1 µA. Figures 4a and 5a
depict how residual polarization impacts the linear behavior of the embedded MR element
and its temperature sensitivity. The use of a single MR element enhances the linearity of its
behavior, as evidenced by the results presented in Figures 4b and 5b.

Compensations of current sensors in Wheatstone bridge configuration based on spin-
valve technology were presented in [37–39]. For these cases, a compensator based on
an Ru RTD sensor was integrated into the same substrate as the sensor bridge. In that
situation, the bridge supply current varied with temperature. In the design presented, it is
the gain of a voltage amplifier that changes with temperature and the TC of an Ru-based
compensator was not sufficient to satisfy Equation (15). It would be highly desirable
to have MR-shunt elements and Ru-based compensators sharing the same substrate to
enhance thermal coupling between them, thereby enabling better thermal compensation
using methods as described in [37–39].

5. Conclusions

A magnetoresistance-based current sensor has been presented that, on a practical level,
offers the simplicity of a shunt resistor, while avoiding drawbacks such as galvanic isolation
and self-heating issues. In this way, the concept of a magnetoresistive shunt (MR-shunt)
is presented. The design replaces the conventional Wheatstone bridge structure used in
magnetoresistive sensors with just a single MR element. This not only simplifies the micro-
electronic processes but also reduces the layout complexity of connections. Furthermore,
the proposed electronic system includes compensation for the sensitivity thermal drift
commonly associated with these sensors.

For the analyzed sensors, linear response behavior was obtained in the measurement
range for currents between −10 and 10 A. Furthermore, by adding an external resistive
temperature sensor (Pt1k or KTY) and with the proposed circuitry, a strong reduction in
thermal dependence of the sensitivity was achieved (R > 94%, Table 2).
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