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Abstract: As the imbalance between power demand and load capacity in electrical systems becomes
increasingly severe, investigating the temperature variations in transformers under different load
stresses is crucial for ensuring their safe operation. The thermal analysis of converter transformers
poses challenges due to the complexity of model construction. This paper develops a full-scale model
of a converter transformer using a multi-core high-performance computer and explores its thermal
state at 80%, 100%, and 120% loading ratios using the COUPLED iteration method. Additionally,
to validate the simulation model, 24 FBGs are installed in the experimental transformer to record
the temperature data. The results indicate a general upward trend in winding the temperature from
bottom to top. However, an internal temperature rise followed by a decrease is observed within
certain sections. Moreover, as the loading ratio increases, both the peak temperature and temperature
differential of the transformer windings rise, reaching a peak temperature of 107.9 ◦C at a 120%
loading ratio. The maximum discrepancy between the simulation and experimental results does not
exceed 3.5%, providing effective guidance for the transformer design and operational maintenance.
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1. Introduction

As a pivotal component in power transmission, the converter transformer plays an
immensely crucial role, representing one of the most expensive and vital assets within the
electrical power system [1]. The operational stability and reliability of a transformer are
directly connected to the overall health of the power grid [2]. The hotspot temperature
within the windings is a key factor affecting the transformer’s load capacity and service
life. Excessively high temperatures can lead to insulation aging and winding deformation,
subsequently causing broader faults [3]. With the rapid growth in electrical grid load, the
construction of transmission and distribution systems cannot always meet the demand
promptly, necessitating that transformers inevitably endure varying degrees of loading
stress [4]. Therefore, investigating the temperature characteristics of transformers under
different loads is of paramount necessity.

The issue of the temperature rise in transformers is primarily governed by the dynamic
equilibrium between heating and cooling. Electromagnetic losses constitute the main source
of heat [5], while eddy current losses and additional stray losses exacerbate this condition [6].
During normal operation, the maximum temperature in the windings can exceed 80 ◦C [7],
with temperature rises surpassing 40 ◦C, and a bidirectional coupling relationship exists
between electromagnetic losses and temperature [8]. Transformer oil facilitates cooling
through continuous circulation, with the cooling effectiveness significantly influenced by
the oil flow rate [9], as well as the size and structure of the oil channels [10], which directly
relate to the hotspot temperature and its distribution within the transformer. Moreover, the
operational environment and the loading ratio [11] of the transformer also exert substantial
impacts on the hotspot temperature.
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Current research on transformer hotspot temperatures primarily focuses on compu-
tational methodologies. On the one hand, 2D or simpler 3D models [12–14], along with
tools like Simulink, are utilized to establish the electrothermal equivalent models [15] for
calculating hotspot temperature. Comparisons between 2D and 3D modeling approaches
have revealed significant inaccuracies associated with 2D models [16]. On the other hand,
the most prevalent Computational Fluid Dynamics (CFD) techniques and various hybrid
finite element methods [17–19] are employed to analyze and predict transformer hotspot
temperatures and diagnose faults. However, these approaches require considerable time for
modeling and mesh division, heavily depend on hardware capabilities, take long to solve,
and consume substantial operational memory. To address this issue, some researchers
have adopted combined 1D–3D modeling [20] techniques or have simplified the modeling
analysis by focusing only on certain structures [21]. Additionally, neural networks [22],
IoT sensor data [23], and thermal lattice network modeling [24] are alternatives for ana-
lyzing hotspot temperatures. Nonetheless, these methodologies cannot comprehensively
represent the thermal characteristics of transformers.

Current studies on transformer hotspot temperatures mainly utilize PT100 temper-
ature sensors and Fiber Optic sensors (FOS) [25–28], likely due to cost considerations.
Fiber Bragg Grating sensors (FBGs), although more expensive, offer higher accuracy, better
electrical insulation, and stronger resistance to interference [29–31]. Ruan et al. employed
six FOS to measure the hotspot temperatures of a 10 kV transformer. However, due to the
limited number of sensors, the results were not able to fully reflect the characteristics of the
temperature distribution [32]. Raza et al. utilized FOS to analyze the temperature rise con-
ditions under various loads for an 11 kV ONAN distribution transformer, obtaining trends
of temperature changes under different loads. Nevertheless, their loading durations were
short and might not fully represent the actual operating conditions of the transformer [25].

In summary, existing research has provided valuable insights into the temperature
distribution in electrical transformers. However, most studies are based on 2D or simplified
3D models, which require enhanced accuracy, and there is a lack of comprehensive research on
the hotspot temperatures in converter transformers under various loading ratios using FBGs.
To address the aforementioned issues, this article initially employs a fully implicit, bidirectional,
pressure-based COUPLED method to investigate the dynamic coupling relationship between
thermal and flow aspects in transformers. Subsequently, leveraging real data from a 35 kV
oil-immersed scaled-down converter transformer, it establishes an accurate 1:1 3D full-scale
model to simulate temperature distribution under various loads. Finally, a transformer testing
platform is constructed, and a complete temperature rise test is conducted. Data recorded by
24 FBG units validate the simulation results. The findings offer valuable references for hotspot
temperature analysis and prediction in converter transformers under different operational
conditions and serve as a guide for improving transformer insulation design methodologies.

The organization of this paper is as follows: Section 2 describes the multiphysics
coupled model. Section 3 presents the simulation results of the highest temperatures
under three different loading ratios using the 3D model. Section 4 details the construction
of the experimental platform for a 35 kV scaled-down converter transformer and the
arrangement of FBGs, providing a thorough comparison between the simulation outcomes
and experimental results. Finally, Section 5 summarizes the work presented in this paper.

2. Methodology

During the operation of a transformer, the rated current passing through the windings
generates a magnetic field that induces electromagnetic losses in the windings and struc-
tural components, constituting a primary heat source for the transformer [33]. The Ohmic
losses produced by the windings lead to a temperature increase, which, in turn, is further
constrained by the generated heat, directly affecting the winding losses.

PΩ =
N

∑
e=1

N2 I2

S2σ
Se (1)
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where PΩ is the ohmic loss; e is each mesh unit after finite element analysis; N is the number
of winding turns; I is the current; S is the winding area in the model; Se is the unit area, and
σ is the temperature-dependent electrical conductivity of the winding (S/m), expressed as
σ = 108–24,545 T.

Heat dissipation primarily occurs through natural convection, enabled by the oil’s
thermal buoyancy, creating diverse temperature zones within the converter transformer. As
the Mach number of the insulating oil is minimal, the oil is characterized as incompressible.
Under steady-state conditions, the fundamental equations that describe the conservation of
mass, momentum, and energy are outlined below.

Mass Conservation Equation:

∂ρ

∂t
+

∂(ρu)
∂x

+
∂(ρν)

∂y
+

∂(ρw)

∂z
= 0 (2)

Momentum Conservation Equation:

∂(ρu)
∂t

+ div(ρuu) = − ∂ρ

∂x
+

∂τxx

∂x
+

∂τyx

∂y
+

∂τzx

∂z
+ Fx (3)

∂(ρν)

∂t
+ div(ρνu) = −∂ρ

∂y
+

∂τxy

∂x
+

∂τyy

∂y
+

∂τzy

∂z
+ Fy (4)

∂(ρw)

∂t
+ div(ρwu) = −∂ρ

∂z
+

∂τxz

∂x
+

∂τyz

∂y
+

∂τzz

∂z
+ Fz (5)

Energy Conservation Equation:

∂(ρT)
∂t

+ div(ρuT) = div(λgradT) + ST (6)

where x, y, z are the coordinates; u is the x-speed; v is the y-speed; w is the z-speed; ρ is the
fluid density; Fx is the x-force density; Fy is the y-force density; Fz is the z-force density; µ is
the dynamic viscosity; Cp is the specific heat capacity at constant pressure; λ is the thermal
conductivity; T is the temperature; ST is the heat source (iron losses and winding losses).

The pressure-based, fully implicit COUPLED algorithm enables the simultaneous
solution of continuity equations for both momentum and pressure. This is achieved
through implicit discretization of the pressure gradient and mass flux across surfaces
within the momentum equations. Compared to the segregated algorithm, which employs a
semi-implicit approach for separate solutions, the COUPLED algorithm exhibits enhanced
performance, achieving faster convergence and higher precision. All physical fields are
solved using transient solvers, with the field-dependent material properties updated every
time in advance.

3. Model Description
3.1. Full-Scale Model

The research subject of this paper is a 35 kV (800/35-10.5) oil-immersed single-phase
scaled-down converter transformer (China XD Group Co., Ltd. Xi’an, China. The version of
software: Ansys 17.0). Figure 1 illustrates its full-scale 3D model, which includes the core,
windings, insulating cardboard, structural components, and the oil tank. The insulating
cardboard encompasses end corner rings, coil insulation, support bars, and oil duct barriers.
The oil tank dimensions are 1.6 m (x) × 0.7 m (y) × 1.1 m (z), with the HV winding standing
396 mm tall and the LV winding at 442 mm. The tank wall has a thickness of 10 mm. There
are four outlets and inlets at the top and bottom of the oil tank, respectively. The materials
used for the core, windings, KI50X transformer oil, and T4 insulating cardboard in this
platform are the same as those used in the ±800 kV converter transformers. To ensure
similar electrical characteristics, the design utilized scaling formulas from reference [34].
Table 1 lists some parameters of the transformer.
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Figure 1. Model configuration.

Table 1. Detailed information of the transformer.

Parameter Value Parameter Value

Capacity (kVA) 800 Core diameter (mm) 210
Frequency (Hz) 50 Core window height (mm) 640
Cooling method ONAN HV winding turns 2 × 440

Voltage level (kV) 35/10.5 LV winding turns 2933
HV rated current (A) 11.43 LV rated current (A) 76.2
HV connection mode Parallel LV connection mode Series

3.2. Fundamental Parameters and Boundary Conditions

The transformer employs an ONAN (Oil Natural Air Natural) cooling method, indi-
cating that the transformer oil circulates via the principle of density differences without
external force assistance. Specifically, the heat dissipated by the windings causes the oil
temperature to rise and its density to decrease, prompting the oil to flow upward gradually.
After cooling in the radiator from the tank’s outlet, the oil re-enters the tank through the
bottom inlet to recommence the cycle. Consequently, considering the transformer oil’s
nonlinear material properties as they vary with temperature is essential. Table 2 lists some
material parameters, taking into account their nonlinear variation.

Table 2. Fundamental parameters.

Material Parameter Values

Insulation oil

Density ρ (kg/m3) 1098.72–0.712 T
Coefficient of thermal conductivity λ (W/m·K) 0.1509–7.01 × 10−5 T

Heat capacity at unwavering pressure cp (J/kg·K) 1745 + 4.2 T
Dynamic viscosity µ (Pa·s) 0.085–4 × 10−4 T + 5 × 10−7 T2

Iron core
Density ρ (kg/m3) 7650

Coefficient of thermal conductivity λ (W/m·K) 0.1306
Heat capacity at unwavering pressure cp (J/kg·K) 1890

Windings

Heat capacity at unwavering pressure (J/kg·K) 376.98–3.2 × 10−4 T2 + 0.221 T
Coefficient of thermal conductivity (W/m·K) 404.18 + 8.64 × 10−5 T2–0.104 T

Density ρ (kg/m3) 8900
Coefficient of thermal conductivity λ (W/m·K) 338

Heat capacity at unwavering pressure cp (J/kg·K) 390

Insulation paperboards
Density ρ (kg/m3) 1200

Coefficient of thermal conductivity λ (W/m·K) 0.03
Heat capacity at unwavering pressure cp (J/kg·K) 2000

To mimic the thermal state, the transformer windings are evenly divided into multiple
sections, and it utilizes coil spacers and oil duct barriers to generate directed passes.
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Specifically, the HV winding is divided into four passes, while the LV winding is divided
into five passes. This is because the LV side experiences higher currents and temperatures,
necessitating more directed sections for effective heat dissipation.

The ambient temperature is set at 17 ◦C, and a defined heat transfer coefficient is
applied to the oil tank to simulate the heat convection of air. The inlet oil velocity is kept
constant, and an average pressure condition is established at the domain outlet with no
additional pressure applied. Additionally, all solid surfaces are configured with a no-slip
condition when in contact with the fluid, as shown in Figure 2.

Sensors 2024, 24, x FOR PEER REVIEW 5 of 19 
 

 

Table 2. Fundamental parameters. 

Material Parameter Values 

Insulation oil 

Density ρ (kg/m3) 1098.72–0.712 T 
Coefficient of thermal conductivity λ (W/m·K) 0.1509–7.01 × 10−5 T 

Heat capacity at unwavering pressure cp (J/kg·K) 1745 + 4.2 T 
Dynamic viscosity µ (Pa·s) 0.085–4 × 10−4 T + 5 × 10−7 T2 

Iron core 
Density ρ (kg/m3) 7650 

Coefficient of thermal conductivity λ (W/m·K) 0.1306 
Heat capacity at unwavering pressure cp (J/kg·K) 1890 

Windings 

Heat capacity at unwavering pressure (J/kg·K) 376.98–3.2 × 10−4 T2 + 0.221 T 
Coefficient of thermal conductivity (W/m·K) 404.18 + 8.64 × 10−5 T2–0.104 T 

Density ρ (kg/m3) 8900 
Coefficient of thermal conductivity λ (W/m·K) 338 

Heat capacity at unwavering pressure cp (J/kg·K) 390 

Insulation paperboards 
Density ρ (kg/m3) 1200 

Coefficient of thermal conductivity λ (W/m·K) 0.03 
Heat capacity at unwavering pressure cp (J/kg·K) 2000 

To mimic the thermal state, the transformer windings are evenly divided into multi-
ple sections, and it utilizes coil spacers and oil duct barriers to generate directed passes. 
Specifically, the HV winding is divided into four passes, while the LV winding is divided 
into five passes. This is because the LV side experiences higher currents and temperatures, 
necessitating more directed sections for effective heat dissipation. 

The ambient temperature is set at 17 °C, and a defined heat transfer coefficient is 
applied to the oil tank to simulate the heat convection of air. The inlet oil velocity is kept 
constant, and an average pressure condition is established at the domain outlet with no 
additional pressure applied. Additionally, all solid surfaces are configured with a no-slip 
condition when in contact with the fluid, as shown in Figure 2. 

 
Figure 2. Directed pass configuration. 

3.3. Mesh Division 
To mimic the full-scale transformer, a multi-scale meshing method is adopted. This 

study utilizes a hexahedral meshing method, as illustrated in Figure 3. Given that the 
thickness of the oil duct barriers in the model is only 2 mm, significantly smaller than the 
dimensions of other components, using a fine mesh would result in an excessive number 
of elements, imposing computational strain. Conversely, using larger mesh sizes could 
lead to distortion at the junctions between the oil ducts and windings, severely compro-
mising simulation accuracy. Therefore, we adopt a multi-region decomposition meshing 

Figure 2. Directed pass configuration.

3.3. Mesh Division

To mimic the full-scale transformer, a multi-scale meshing method is adopted. This
study utilizes a hexahedral meshing method, as illustrated in Figure 3. Given that the
thickness of the oil duct barriers in the model is only 2 mm, significantly smaller than the
dimensions of other components, using a fine mesh would result in an excessive number of
elements, imposing computational strain. Conversely, using larger mesh sizes could lead
to distortion at the junctions between the oil ducts and windings, severely compromising
simulation accuracy. Therefore, we adopt a multi-region decomposition meshing strategy,
applying targeted refinement and sweeping treatment at the junctions to enhance mesh
density strategically, ensuring a smoother transition between different components.
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Figure 3. Meshing of full-scale transformer model.

This study performs its computations on a server equipped with 2 × 64-core CPUs,
operating at a frequency of 3.6 GHz and possessing a memory capacity of 352 GB. To ensure
the mesh precision is sufficient to meet computational requirements, various meshing
strategies with 13 million, 17 million, and 20 million nodes were tested. It was found
that an insufficient number of mesh nodes could lead to significant computational errors.
However, the discrepancy in the final temperature field results between the 17 million and
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20 million nodes was merely 0.3 ◦C; thus, the meshing strategy with 17,130,871 nodes was
ultimately selected. The quality of the mesh is depicted in Figure 4.
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4. Simulation Results and Discussion

To investigate the temperature rise characteristics of transformer windings under
different loading ratios, this study examined three specific loading conditions: 80%; 100%;
and 120%. In addition, detailed analyses were conducted on the temperature distribution
along the axial sections and the top circumference in a steady state. The positions of the
data points are illustrated in Figure 5, with points A, B, C, and D located on the HV winding
and points E, F, G, and H on the LV winding, each set distributed at 90-degree intervals.
The axial positions are represented as Line1 and Line2.
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4.1. Axial Direction Temperature

The axial temperature distribution of the windings is depicted in Figure 6. On the
one hand, the temperature field distributions for both the HV and LV windings generally
exhibit an upward trend from bottom to top. This is influenced by the oil flow cooling effect;
as the temperature rises, the oil flows upward, causing the temperature difference between
the winding and the oil to gradually decrease, thereby affecting the heat dissipation. On
the other hand, given that the radial width of the main channel around the winding is
much greater than the axial height between the coil spacers, the oil flow rate increases in
narrower channels under a fixed total oil flow. When the oil duct barrier redirects the flow,
the speed increases below the barrier, enhancing the cooling effect, and then slows down
after passing the barrier. Consequently, within each section of the winding, the temperature
change exhibits an initial increase followed by a decrease.
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For instance, at a 120% loading ratio, as shown in Figure 6a, within pass 1 of the HV
winding, the temperature first increases by 10.5 ◦C, then drops by 4.6 ◦C; for pass 2, the rise
is 10.1 ◦C, and the fall is 4 ◦C; for pass 3, the ascent is 9.6 ◦C, and the descent is 3.6 ◦C; for
pass 4, the increase is 11 ◦C, and the decrease is 0.8 ◦C. Concurrently, as shown in Figure 6b,
in the LV winding, pass 1 records an 11.2 ◦C increase and a 6.7 ◦C decrease; pass 2 shows
a 10 ◦C rise and a 5.5 ◦C fall; pass 3 has a 9.6 ◦C elevation and a 4.7 ◦C reduction; pass
4 undergoes an 8.1 ◦C increment and a 3.9 ◦C decrement; pass 5 experiences a 10.3 ◦C
upturn and a 0.6 ◦C downturn.

Comparing the results across the three loading ratios reveals that with an increase in
loading ratio, the magnitude of temperature rise and fall within each section also grows,
but the temperature difference within the same winding’s different sections decreases. This
phenomenon suggests that a higher loading ratio leads to higher temperatures, thereby
increasing the flow rate and improving the cooling effect. However, when the flow rate is
constant, the cooling effect gradually weakens with rising temperatures. Additionally, it
is observed that the temperature drop in the terminal sections is very slight. Structurally,
this is because the terminal sections, or the top positions of the windings, are encased by
multiple corner rings, resulting in minor flow speed changes when the oil passes through
barriers, hence the subtle temperature variation.

4.2. Radial Direction Temperature

The radial temperature distribution at the top of the windings is depicted in Figure 7.
The diagram illustrates that the temperature varies circumferentially for each coil disc,
decreasing gradually from the inside to the outside. Specifically, the temperatures at points
A and E are notably higher than those at other points on the circumference; the temperatures
at points B, D, F, and H are relatively low and similar, marking the lowest temperature
points, while the temperatures at points C and G are intermediate. This pattern occurs
because the heat sources are relatively concentrated, and the cooling conditions are poorer
at the positions adjacent to the two-column windings, resulting in higher temperatures. The
external positions have slightly less heat source and notably better cooling conditions than
the internal ones. The least heat is at points B, D, F, and H, which only emanate heat from
the windings themselves and are almost unobstructed, thereby having optimal cooling
conditions and the lowest temperatures.
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Moreover, it is observed that the temperature differential around the circumference
increases with the loading ratio. At an 80% loading ratio, as shown in Figure 7a,b, the
maximum temperature difference is 3.9 ◦C for the HV winding and 4.2 ◦C for the LV
winding; at a 100% loading ratio, as shown in Figure 7c,d, they are 5.8 ◦C and 6.3 ◦C,
respectively; and at a 120% loading ratio, as shown in Figure 7e,f, they are 8.3 ◦C and 9.1 ◦C,
respectively. However, the variations between points B, D, F, and H become increasingly
minor. These observations indicate that the impact of cooling conditions intensifies with
the rising temperature. Yet, when the cooling conditions are constant, the higher the
temperature, the lesser the impact becomes.
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4.3. Temperature Distribution

Through this research, we have identified the locations of the highest temperatures
within the windings. Subsequently, we analyze the change patterns and distribution
characteristics of the highest temperatures over time. Figure 8 displays the steady-state
temperature distribution of the windings when the transformer operates at an 80% loading
ratio. It reveals that the highest temperature at the top of the LV winding is 60.2 ◦C,
while at the HV winding top, it is 55.8 ◦C, with a temperature difference of 4.4 ◦C. The
overall temperature distribution across the windings is relatively uniform, with minor
temperature differences between the sections. This uniformity results from the lower losses
and temperature rises associated with the smaller loading ratio, coupled with the slower
oil flow rate, which yields more gradual and even temperature changes.
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Figure 9 illustrates the temperature change curves per hour at the top, middle, and
bottom positions of the windings. Initially, the temperature change rate of the LV winding
is greater than that of the HV winding. Subsequently, the temperature rise in both windings
slows down, reaching a steady state near 8 h of operation. The temperature differences
at the top, middle, and bottom of the HV winding are 7.7 ◦C and 9.5 ◦C, respectively, as
shown in Figure 9a, while for the LV winding, they are 10.2 ◦C and 3.3 ◦C, as shown in
Figure 9b. The LV winding, positioned between the core and HV winding, exhibits inferior
cooling conditions compared to the HV winding. Additionally, with the oil at the bottom
being cooler and the flow being relatively slow, the temperature rise differences between
the middle and bottom are marginal.
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At a 100% loading ratio or rated operating condition, the highest temperature for the
LV winding reaches 88.6 ◦C, and for the HV winding, it is 77.8 ◦C, showing a difference of
10.8 ◦C, as illustrated in Figure 10. Compared to the 80% loading ratio condition, increased
losses lead to higher temperature rises and quicker oil flow, making the temperature change
process due to oil flow direction and speed more evident across different sections.
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Figure 10. Temperature contour with 100% load.

From the temperature change curves in Figure 11, it is evident that, compared to an
80% loading ratio, the initial temperature rise rate at a 100% loading ratio has significantly
increased, with the temperatures stabilizing around 7 h, reducing the time by 52 min. The
temperature differences at the top, middle, and bottom of the HV winding are 11.1 ◦C and
13.9 ◦C, respectively, as shown in Figure 11a, similar to those in the LV winding, which
are 13.1 ◦C and 14.9 ◦C, as shown in Figure 11b, demonstrating a regular temperature
distribution during rated operation.
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Figure 11. Axial temperature with 100% load. (a) HV winding; (b) LV winding.

At a 120% loading ratio, an overload condition, Figure 12 shows a marked increase in
overall winding heat generation compared to normal operating conditions, with distinct
temperature changes between adjacent sections. This indicates that the higher the tempera-
ture, the more pronounced the cooling effect changes due to flow speed. At this point, the
highest temperature for the LV winding reaches 108.2 ◦C, and for the HV winding, it is
94.9 ◦C, a difference of 13.3 ◦C.
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Figure 12. Temperature contour with 120% load.

These changes are well illustrated in Figure 13. With the increase in loading ratio, the
rate of temperature rise in the windings further accelerates, reaching a steady state near
6 h, which is 76 min faster than under normal conditions. The temperature differences
at the top, middle, and bottom of the HV winding are 14.7 ◦C and 16.3 ◦C, respectively,
as shown in Figure 13a, while in the LV winding, they are 15.8 ◦C and 18.7 ◦C, as shown
in Figure 13b.
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mission, to ensure that the FBGs are not damaged due to changes in the spacing between 
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5. Temperature Rise Test and Analysis
5.1. Construction of Experimental Platform

To verify the accuracy of the aforementioned computational results, we established an
experimental platform for a 35 kV single-phase scaled-down converter transformer and
positioned the corresponding sensors within the windings to monitor temperature changes.
Despite the higher cost of FBGs, to ensure the reliability of the experimental results, we
chose 24 of the most representative points for measurement based on previous calculations
and placed the FBGs at the top, middle, and bottom parts, installing four sensors evenly
around the circumference of each coil, as shown in Figure 14.
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Figure 14. Sensor arrangement options.

FBGs are created by inscribing gratings onto the optical fiber core, which serve as
narrow-band reflective filtering elements. The grating causes reflection of a single wave-
length while transmitting others. Temperature changes result in variations in the effective
refractive index and grating period, thus shifting the reflected wavelength [35]. The FBGs
used in this experiment are encapsulated in glass fiber to ensure stable operation, with
a wavelength range between 1528 and 1566. They have a temperature collection range
from −40 to 180 ◦C, with a resolution of 0.1 ◦C and a measurement error of less than
±1 ◦C. Considering factors like vibration and temperature that may affect the stability
of transmission, to ensure that the FBGs are not damaged due to changes in the spacing
between the coils, we have reserved space in the spacers and secured the FBGs within them,
as shown in Figure 15a. Moreover, the customized sensors are designed to maintain their
measurement precision and ensure the validity of the experimental results. Subsequently,
they are connected to a flange on the top of the oil tank through internal optical cables,
and external optical cables connect them to smart temperature measurement devices for
storing and analyzing temperature data. The overall assembly of the winding containing
all sensors is illustrated in Figure 15b.
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The temperature rise test is one of the most critical routine tests for transformers, as-
sessing the temperature change characteristics of the transformer windings under different
operating conditions. It is the most time-consuming test and requires a high-capacity power
source for support. Following the guidelines of relevant international standards to ensure
the safety of the test procedure, this study employed a short-circuit wiring method, short-
circuiting the two low-voltage bushings with a metal plate and connecting the high-voltage
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bushing to an AC power source. The power voltage was adjusted according to the loading
ratio, and the wiring circuit is shown in Figure 16. The transformer was considered to have
reached a steady state when the rate of temperature change at the measuring points was
less than 1 ◦C/h, after which the test was terminated. The test environment was maintained
at 17 ◦C, with the experimental platform and site wiring depicted in Figure 17.
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5.2. Experimental Results and Discussion

The experiment was conducted in three sessions, corresponding to 80%, 100%, and
120% loading ratios, respectively. Each test began at room temperature and continued
until a steady state was achieved. The transformer was allowed to cool back to room
temperature before commencing the subsequent test, with a data recording frequency of
once per minute.

5.2.1. Axial Temperature Characteristics

The temperature characteristics over time for the top, middle, and bottom measure-
ment points of the windings are displayed in Figure 18. The first set of experiments at an
80% loading ratio lasted the longest, approximately 9.1 h, with the transformer reaching
a steady state at 8 h. At this point, the HV winding temperatures were 53.9 ◦C, 46.28 ◦C,
and 36.37 ◦C, respectively, as shown in Figure 18a, while the LV winding recorded 58.35 ◦C,
48.2 ◦C, and 44.78 ◦C, as shown in Figure 18b. Compared to the simulation results, the
maximum discrepancy was 1.9 ◦C, located at the top of the HV winding.
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The second set of experiments at a 100% loading ratio lasted about 8.3 h, with a steady
state achieved around 7.1 h. The temperatures for the HV winding were then 76.11 ◦C,
65.04 ◦C, and 51.2 ◦C, respectively, as shown in Figure 18c. And for the LV winding, they
were 87.21 ◦C, 73.78 ◦C, and 58.96 ◦C, as shown in Figure 18d. The largest difference
between the experimental and simulation results was 1.73 ◦C, found in the middle of the
LV winding.
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The third set at a 120% loading ratio lasted about 7.8 h, reaching the steady state
at approximately 5.8 h. The recorded temperatures for the HV winding were 93.23 ◦C,
78.65 ◦C, and 62.22 ◦C, as shown in Figure 18e. And for the LV winding, they were 106.5 ◦C,
90.77 ◦C, and 71.98 ◦C, as shown in Figure 18f. The highest discrepancy compared to the
simulation was 1.74 ◦C at the top of the HV winding.

After the transformer reaches a steady state, the comparison between simulation and
experimental temperatures is summarized in Table 3. Furthermore, after comparing the
simulation and experimental values at all instances, the maximum discrepancy found was
1.9 ◦C at the top of the HV winding during the 80% loading rate experiment in steady state,
representing an error rate of 4.5%, as shown in Figure 19.

Table 3. Comparison of results.

Loading
Ratio Location

HV Temperature (◦C) LV Temperature (◦C)

Test Simulation Errors Test Simulation Errors

80%
Top 53.90 55.80 1.90 58.35 60.20 1.85

Middle 46.28 48.10 1.82 48.20 49.94 1.74
Bottom 36.37 38.06 1.69 44.78 46.43 1.65

100%
Top 76.11 77.80 1.70 87.20 88.60 1.40

Middle 65.03 66.71 1.67 73.78 75.51 1.73
Bottom 51.19 52.85 1.66 58.96 60.60 1.64

120%
Top 93.23 94.97 1.74 106.50 108.21 1.71

Middle 78.65 80.24 1.59 90.77 92.45 1.68
Bottom 62.20 63.90 1.69 71.98 73.71 1.73
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5.2.2. Radial Direction Temperature

The radial temperature distributions for the HV and LV windings under different
loading ratios are shown in Figure 19. The temperature along the circumference of the
same coil disc decreases from the inside to the outside, with points A and E registering
the highest temperatures on the circumference. The pattern of temperature rise at each
point is essentially the same, with variations only in the peak values. At an 80% loading
ratio, as shown in Figure 20a,b, the maximum temperature difference was 4.3 ◦C for the
HV winding and 4.5 ◦C for the LV winding; at 100% loading, as shown in Figure 20c,d,
they were 6.6 ◦C and 7.2 ◦C, respectively; and at 120% loading, as shown in Figure 20e,f,
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they were 9.3 ◦C and 8.5 ◦C, respectively. This demonstrates that the transformer’s highest
operating temperature is located at the top of the windings near the position between
two adjacent pillar windings. This conclusion applies to almost all transformers. Designers
can control the hotspot temperature to stay within safe values by increasing spacing or flow
rate. The experimental outcomes effectively validate the accuracy of the simulation results.
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6. Conclusions

This paper established a high-precision 3D model of a 35 kV scaled-down converter
transformer and conducted coupled electromagnetic–thermal–fluid calculations under
three loading conditions: 80%; 100%; and 120%. The analysis of the winding temperature
rise characteristics led to the following conclusions:

(1) The axial temperature distribution of the windings demonstrates a progressive in-
crease from bottom to top. Significant changes in flow velocity on either side of the
oil duct barriers markedly impact the cooling effect, resulting in temperature within
each winding section first increasing and then decreasing. The maximum radial tem-
peratures are observed at positions adjacent to the two-column windings, decreasing
gradually toward the outer side;

(2) With increasing loading ratios, the time for the transformer to reach a steady state
decreases, but the temperature differences between the HV and LV windings, as well
as among the top, middle, and bottom of the windings, increase. At a 120% loading
ratio, the maximum temperature can reach 107.9 ◦C, with the largest temperature
difference being up to 35.4 ◦C;

(3) The establishment of the full-scale model significantly enhances the precision of
simulation calculations. According to the data collected by the FBG sensors, the
validation results for the coupled calculation model indicate that the error during the
transition from rated operation to steady state is less than 2.3%.

This paper provides valuable guidance for transformer design, temperature prediction,
and operational safety.
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