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Abstract: Autonomous driving, as a pivotal technology in modern transportation, is progressively
transforming the modalities of human mobility. In this domain, vehicle detection is a significant
research direction that involves the intersection of multiple disciplines, including sensor technology
and computer vision. In recent years, many excellent vehicle detection methods have been reported,
but few studies have focused on summarizing and analyzing these algorithms. This work provides
a comprehensive review of existing vehicle detection algorithms and discusses their practical ap-
plications in the field of autonomous driving. First, we provide a brief description of the tasks,
evaluation metrics, and datasets for vehicle detection. Second, more than 200 classical and latest
vehicle detection algorithms are summarized in detail, including those based on machine vision,
LiDAR, millimeter-wave radar, and sensor fusion. Finally, this article discusses the strengths and
limitations of different algorithms and sensors, and proposes future trends.
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1. Introduction

The advancement in technology is gradually permeating into the lives of people, with
autonomous driving being at the forefront. In particular, autonomous vehicles (AVs) can
eliminate 94% of road accidents caused by human error and distracted driving [1]. Against
this backdrop, automated driving systems (ADSs) have emerged with the promise of
preventing accidents, reducing emissions, transporting the mobility-impaired, and taking
the stress out of driving [2]. Autonomous vehicles can be classified into six levels based
on the degree of human intervention and attention required, denoted as L0 to L5, each
signifying different degrees of autonomy [3]. Currently, most IVs can only achieve partial
autonomous driving functions, such as lane-keeping, intelligent speed limitation, adaptive
cruise control, etc. The realization of fully automated driving still has a long way to go.

Autonomous driving systems typically consist of three components: environmental
perception, behavioral decision making, and motion planning and control [4]. Environ-
mental perception serves as the prerequisite and foundation of autonomous driving [5]. In
particular, robust and reliable vehicle detection has been a topic of great interest [6]. Vehicle
detection, the ability of a vehicle to perceive its surrounding vehicles in real-world driving
scenarios, holds critical importance across various domains, including intelligent trans-
portation, military defense, security surveillance, and autonomous driving [7]. According
to traffic accident statistics, the main threat to drivers often comes from other vehicles [8].
Therefore, the efficient sensing and accurate recognition of the surrounding environment
are paramount for ensuring the safety of self-driving vehicles. In order for autonomous
vehicles to function effectively, they must be aware of other vehicles in a timely manner,
allowing them to formulate safe and reliable plans [9]. Given the potential for closing
speeds between vehicles, this necessitates the ability to accurately detect vehicles.
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Moreover, the performance of vehicle detection directly influences the quality of
decision making and control in autonomous vehicles. Detecting vehicles using different
sensors is a significant challenge due to the various characteristics of vehicles, such as size,
occlusion, orientation, and shadows [10]. Additionally, the time-sensitive nature of vehicle
detection, requiring faster processing than other applications, further complicates the
task [11]. Therefore, precise vehicle detection is crucial for the automation and intelligence
of vehicles. With the rapid development of deep learning, sensor technologies, and the
Internet of Things (IoT), more and more new methods and technologies have emerged and
are gradually being applied in the field of vehicle detection [12,13]. This paper focuses on
sensors and summarizes more than 200 classical and latest vehicle detection algorithms in
recent years. This paper also analyzes the tasks, evaluation metrics, and existing public
datasets for vehicle detection and presents the future trends of vehicle detection.

The rest of this article is organized as follows: Section 2 describes the tasks, evaluation
metrics, and existing public datasets for vehicle detection. Then, Section 3 introduces
vision-based vehicle detection algorithms, focusing on the application of deep learning
methods. Next, vehicle detection methods based on radar and LiDAR are delineated in
Section 4. Section 5 provides an integrated analysis of Sections 3 and 4, encompassing
the implementation of various sensor fusion techniques. Section 6 discusses the different
sensors and algorithms for vehicle detection, and offers future trends. Finally, Section 7 is
the conclusion.

2. Preliminaries for Vehicle Detection

Intelligent vehicles provide drivers with information regarding safety, assistance, and
comfort. In environmental perception, demands arise in complex road scenarios to detect
and assess various targets in real time and evaluate the effectiveness of detection indicators.
This section mainly describes the detection tasks and metrics for intelligent vehicles and
introduces some public datasets for vehicle detection.

2.1. Tasks

Vehicle detection is of crucial importance in the environment perception framework
of intelligent vehicle systems. It facilitates positioning and classifying diverse entities,
including pedestrians, non-motorized vehicles, traffic signage, and lane demarcations
within road environments. Vehicle detection is divided into 2D object detection and 3D
object detection, and both of them are widely applied in vehicle detection tasks. Two-
dimensional object detection serves as a fundamental technique in the realm of vehicle
detection. It entails utilizing a 2D bounding box within the visual field of intelligent vehicles
to select detected objects, and then the selected objects are classified and positioned. The
3D object detection system displays the specific position of the vehicles in the camera
coordinate system. This process requires 3D bounding boxes to select the detected objects,
followed by their classification and localization [14].

2.2. Evaluation Metrics

Metrics such as Intersection over Union (IoU), precision (P), recall (R), F1-score, Aver-
age Precision (AP), and mean Average Precision (mAP) are commonly utilized to evaluate
detection accuracy of algorithms. IoU quantifies the degree of overlap between predicted
bounding boxes and ground truth bounding boxes. Precision indicates the proportion of
predicted positive samples that are true positives, whereas recall signifies the proportion of
actual positive samples that are correctly identified. F1-score offers a combined measure of
precision and recall. These metrics are computed using specific formulas:

IoU =
pb∩gb
pb∪gb

(1)

P =
TP

TP + FP
(2)
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R =
TP

TP + FN
(3)

F1 =
2 × P × R

P + R
(4)

where pb and gb represent predicted boxed and ground truth boxes, respectively; TP
denotes the count of positive cases accurately identified as true samples; FP indicates
the tally of negative cases erroneously identified as true samples; and FN represents the
number of positive cases mistakenly classified as false samples. Additionally, AP measures
the precision performance for an individual class, while mAP offers the mean of AP values
across all classes. These metrics are formulated using the following equations:

AP =
∫ 1

0
P(R)dR (5)

mAP =
1
n

n

∑
i=1

P(i)∆R(i) (6)

where n is the number of categories in detection targets.
In the realm of assessing detection speed, parameters, FLOPs (Floating Point Oper-

ations), and FPS (Frames Per Second) are essential metrics. Parameters denote the total
count of trainable parameters involved in the model training, often used to gauge the size
of the model. FLOPs quantify the model’s complexity. The lower value of FLOPs indicates
reduced computational load for model inference. FPS assesses the detection speed by
indicating the number of frames processed per second.

2.3. Datasets

Datasets are indispensable for training models in each task of autonomous driv-
ing. High-quality annotated data, such as images, videos, and sensor data from various
scenarios, are the basis for training autonomous driving systems and machine learning
models, and are manually labeled to indicate information about correct behavior, object
detection, and environment perception. In order to propel and invigorate the field of
autonomous driving, industry organizations and researchers have produced many high-
quality datasets. Table 1 summarizes some essential information from these datasets. We
list a number of items, including year, location, scene, category, annotation, 3D boxes, and
application scenarios.

Table 1. Datasets for vehicle detection. Sc. stands for Scenes, Cl. for Classes, An. for Annotations,
and 3Db. for 3D boxes.

Dataset Year Loc. Sc. Cl. An. 3Db. Application Scenarios

KITTI [15] 2012 Karlsruhe
(DE) 22 8 15 k 200 k Multiple application

scenarios.

Cityscapes [16] 2016 50 cities - 30 25 k - Mainly oriented to
segmentation tasks.

Oxford RobotCar [17] 2016 Central
Oxford (UK) - - - - Multimodal joint calibration

tasks can be conducted.

Vistas [18] 2017 Global - 152 25 k - Globally constructed dataset
for autonomous driving.

BDD100K [19] 2018
San Fransisco

and New
York (US)

100 k 10 100 k - The total volume of data is
enormous, nearly 2 terabytes.

ApolloScape [20] 2018 4 cities in CN - 8–35 144 k 70 k It contains many extensive
and richer labels.
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Table 1. Cont.

Dataset Year Loc. Sc. Cl. An. 3Db. Application Scenarios

KAIST [21] 2018 South Korea - 3 8.9 k -

Primarily targets SLAM tasks,
emphasizing the provision of

examples in
complex scenarios.

Waymo open [22] 2019 6 cities in US 1 k 4 200 k 12 M

Focused on computer vision
tasks, and utilizes data

collected in
all-weather conditions.

Lyft L5 [23] 2019 California
(US) 366 - - 55 k More than 1000 h of

driving record data.

Argoverse [24] 2019
Pittsburgh
and Miami

(US)
1 k - 22 k 993 k

Focus on two tasks: 3D
tracking and

action prediction.

D2-City [25] 2019 5 cities in CN 1 k 12 700 k - Suitable for detection
and tracking tasks.

H3D [26] 2019 San Francisco
(US) 160 8 27 k 1.1 M

It is a large-scale
full-surround 3D multi-object

detection and
tracking dataset.

nuScenes [27] 2019 Boston (US),
Singapore 1 k 23 40 k 1.4 M

It was taken in dense traffic
and highly challenging

driving situations.

CADC [28] 2020 Waterloo
(CA) 75 10 7 k -

Focused on constructing a
dataset for driving in

snowy conditions.

A2D2 [29] 2020 3 cities in DE - 14 12 k 43 k Perception for
autonomous driving.

A*3D [30] 2020 Singapore - 7 39 k 230 k With a significant diversity of
the scene, time, and weather.

RADIATE [31] 2021 UK 7 8 - -
Focus on tracking and scene
understanding using radar
sensors in adverse weather.

ACDC [32] 2021 Switzerland 4 19 4.6 k -
A larger semantic

segmentation dataset on
adverse visual conditions.

KITTI-360 [33] 2022 Karlsruhe
(DE) - 37 - 68 k

An extension of the KITTI
dataset. It established

benchmarks for tasks relevant
to mobile perception.

SHIFT [34] 2022 8 cities - 23 2.5 M 2.5 M
A synthetic driving dataset
for continuous multi-task

domain adaptation.

Argoverse 2 [35] 2023 6 cities in US 250 k 30 - -

The successor to the
Argoverse 3D tracking dataset.
It is the largest ever collection

of LiDAR sensor data.

V2V4Real [36] 2023 Ohio (US) - 5 20 k 240 k
The first large-scale

real-world multimodal
dataset for V2V perception.
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3. Vehicle Detection Algorithms Based on Machine Vision

Machine vision systems are considered a promising research field with broad appli-
cations in various detection scenarios. Machine-vision-based sensors are the earliest and
most widely used sensors for vehicle detection [37]. These types of sensors are typically
referred to as passive sensors since they solely capture images of the objects without the
need for specialized illumination projection devices. Vision-based sensors typically have
access to a rich set of perception information from the traffic environment, such as textures,
colors, lane markings, obstacle identifications, and semantics. In the past few decades,
the rapid development of computer information and sensor technology has led to the
widespread adoption of sensor combinations based on multiple visual modalities. For ex-
ample, companies like Tesla [38] and Mobileye [39] have embraced pure vision solutions for
intelligent vehicle environment perception. According to the different principles of existing
algorithms, vehicle detection techniques based on machine vision can be categorized into
three components: traditional-based, machine learning-based, and deep learning-based
techniques [4].

3.1. Traditional-Based Methods for Vehicle Detection

Inherent appearance features of vehicles can be exploited in traditional-based vehicle
detection methods that typically include two main steps: hypothesis generation (HG) and
hypothesis verification (HV). In the HG stage, the system extracts a region of interest
(ROI) based on the appearance features of the detected vehicle. And then in the HV stage,
the system confirms whether the ROI contains vehicle targets. In other words, HG is the
backbone of the process, while HV is the further verification and validation of the generated
hypotheses, both of which are necessary. Depending on the traffic scenarios, the appearance
features of vehicles can generally be categorized into the following six common types.

• Color: Due to the continuity and concentration of the color distribution of the vehicles
in the image, the vehicles can be separated from the image background by applying
different color channels and setting appropriate segmentation thresholds [40,41]. How-
ever, techniques based on color features are susceptible to variations in illumination
and specular reflections [42].

• Symmetry: Most cars have symmetrical rear ends. By leveraging this feature, we
can search for regions with high symmetry on ROI in the image to obtain vehicle
information, resulting in the identification of vehicle objects and non-vehicle objects.
Moreover, symmetry can not only help to optimize the bounding boxes of vehicles,
but also be employed to confirm if the ROI includes targets for vehicles in the HV
stages [43]. However, the computation of symmetry increases the overhead of time
and reduces detection efficiency.

• Edges: Vehicle features such as silhouettes, bumpers, rear windows, and license plates
exhibit strong linear textures in both vertical and horizontal directions [44]. Extracting
these typical edge features from the image allows for a further determination of the
car’s bounding box [45,46]. However, the edge lines may tend to overlap with some
texture lines of the image background, which may lead to the appearance of false
positives in particular scenes.

• Texture: Typically, road textures exhibit a relatively uniform distribution, whereas
textures on car surfaces tend to be less uniform due to the presence of highly varied
regions. We can indirectly perform vehicle detection by distinguishing the difference
between these two conditions [47]. However, relying on feature textures to detect
vehicles may result in low detection accuracy.

• Shadows: In bright daylight, the vehicles traveling on the road cast stable shadows
underneath. The shadowed region clearly exhibits a lower gray value compared to
the remaining road areas. Utilizing segmentation thresholds enables the extraction of
the underlying shadow as the ROI for vehicles during the HG stage [48,49]. However,
the application scenarios of this approach are relatively limited.
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• Taillights: Vehicle detection at night is often achieved through the use of taillight
features due to the noticeable color (usually red). It is easy to extract information from
it through image processing techniques [50,51]. However, this method is only effective
for detecting vehicles at night.

Traditional vehicle detection methods have the advantages of a low cost, a fast detec-
tion speed, and simple working principles. However, these methods are based on prior
knowledge and hence are mainly susceptible to interference from other objects. An effec-
tive approach is to use the fusion of multiple features for detection [52]. In addition, the
extracted ROI can be used as basic feature information and then modeled using machine
learning or deep learning methods [48,53].

3.2. Machine Learning-Based Methods for Vehicle Detection

With the rapid development of computer technologies, machine learning (ML) has
become a popular issue in the realm of vehicle detection. ML, an essential branch within
the fields of artificial intelligence (AI) and computer science, is dedicated to using data and
algorithms to emulate how humans learn. An ML model transforms and encodes vehicle
images using manually designed features and applies a particular mapping method to
convert high-dimensional image space data to low-dimensional image space data. The
model is then trained continuously to receive a final model for vehicle detection. Typically,
vehicle detection using machine learning models can be divided into two key steps: first,
the input image is processed to obtain the ROI; second, the extracted image features are fed
into a classifier for training and optimization.

3.2.1. Feature Extraction

Ease to extract and identify, while preserving stable vehicle characteristics when the
vehicle attitude and type change, is a necessary quality of an effective feature extraction
technique. The histogram of oriented gradients (HOG) is one of the popular methods for
feature extraction in the field of object detection. It initially achieved significant success
in pedestrian detection [54], and has since expanded to other application domains, such
as vehicle detection and face recognition. Many researchers have improved upon the
HOG algorithm, such as two HOG vectors [55], the pyramid of HOG [56], and symmetry
HOG [57]. The deformable part model (DPM) employs the improved HOG descriptor
and adopts a multi-component strategy [58]. The Haar-like vector is also a fundamental
descriptor used for face detection and was later extended to vehicle detection [59]. Some
other feature extraction methods are also frequently used for vehicle detection, such as a
local binary pattern (LBP) [60], Gabor filters [61], and sped-up robust features (SURFs) [62].
Moreover, some studies have shown that the fusion of multiple feature descriptors may
result in a richer representation of vehicles [63,64].

3.2.2. Classifier

An ML classifier can distinguish vehicle and non-vehicle targets based on the local
features collected from the image. In general, a classifier needs to be trained on well-labeled
datasets first, with boundaries drawn between positive samples and negative samples.
AdaBoost, K-nearest neighbor (KNN), Naive Bayes (NB), Support Vector Machine (SVM),
and Decision Tree (DT) are the more commonly used classifiers for vehicle detection. The
selection of a classifier requires the consideration of both its generalization ability and
fitting accuracy. The generalization ability determines how well the model adapts to new
data, while the fitting accuracy measures whether the classifier has a sufficient fit on the
training data to identify patterns and associated information accurately. Ensemble learning
is a classic machine learning method, combining predictions from multiple base classifiers
to enhance overall predictive performance [65,66]. Different studies on feature engineering
and classifiers for vehicle detection are shown in Table 2. Vehicle detection methods
based on machine learning typically require scanning the entire image to extract features.
However, this process increases computational costs and time consumption. Ref. [67]
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notes that more than half of the image area contains no vehicle information. The use of
traditional-based feature extraction combined with a classifier has proved to be an effective
approach to address this difficulty. For instance, the ROI for the vehicle was extracted from
the image by utilizing the shadow. Then, Haar-like features and the AdaBoost classifier
were employed to detect the vehicles from the ROI [55].

Table 2. Different studies on feature engineering and classifiers for vehicle detection.

Feature Classifier Dataset Accuracy Reference

HOG Adaboost GTI vehicle database and real
traffic scene videos 98.82% [55]

HOG GA-SVM 1648 vehicles and
1646 non-vehicles 97.76% [56]

HOG SVM 420 road images from real
on-road driving tests 93.00% [57]

HOG SVM
GTI vehicle database and

another 400 images from real
traffic scenes

93.75% [68]

Haar-like Adaboost
Hand-labeled data of
10,000 positive and

15,000 negative examples
- [69]

SURF SVM 2846 vehicles from 29 vehicle
makes and models 99.07% [70]

PCA SVM 1051 vehicle images and
1051 nonvehicle images 96.11% [71]

SIFT SVM 880 positive samples and
800 negative samples - [72]

3.3. Deep Learning-Based Methods for Vehicle Detection

ML-based methods typically rely on manually designed feature extractors and clas-
sifiers, which, to some extent, limit the representational capacity of the models. With the
rise in deep learning, especially the introduction of convolutional neural networks (CNNs),
great progress has been achieved in object detection [73]. Object detection is a pivotal
subtask in the field of computer vision, often closely associated with object classification, se-
mantic segmentation, and instance segmentation. Object classification refers to recognizing
the different object classes present in an image, while target detection further determines
the relative positions of the objects on this basis and locates them by means of bounding
boxes. Semantic segmentation is a technique that assigns each pixel to a semantic category
label. Instance segmentation, on the other hand, is an extension of semantic segmentation
with the goal of distinguishing between different object instances. Figure 1 illustrates the
comparison of them. Vehicle detection frameworks under deep learning techniques can be
divided into two types: object-detection-based models and segmentation-based models.

3.3.1. Object-Detection-Based Methods

Object detection holds significant potential across diverse applications such as image
recognition and video surveillance. In general, object-detection-based models are classified
as anchor-based detectors, anchor-free detectors, and end-to-end detectors, as illustrated
in Figure 2.
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(1) Anchor-Based Detectors

In anchor-based models, predefined bounding boxes are used to detect target objects.
Depending on whether region proposals are utilized, anchor-based detectors fall into two
types: two-stage and one-stage.

Two-stage: In vehicle detection, vehicle region proposals are first generated followed
by classifying and regressing vehicle targets of interest from region proposals. R-CNN
series [73–76], SPP-Net [77], R-FCN [78], FPN [79], and Cascade R-CNN [80] are examples
of typical two-stage detectors. Faster R-CNN [73] consists of a separate region proposal net-
work and R-CNN [74] to detect objects, considerably lowering the running time consumed
by the detection network. Two-stage methods refine anchors multiple times, resulting in
more accurate results compared to one-stage methods.

One-stage: The method predicts the center and bounding boxes of vehicles by placing
anchors on the feature map. Typical representatives of one-stage detectors include SSD [81],
M2Det [82], RetinaNet [83], and part of the YOLO series [84–88]. YOLOv1 [89] is the
pioneering work of the YOLO family of algorithms. As an anchor-free model, it laid the
foundation for subsequent YOLO algorithms. From YOLOv2 to YOLOv5, all versions
use the anchor-based approach and continue introducing new techniques through each
iteration, all of which have improved detection performance. YOLOv4 extensively tests
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and applies some commonly used tricks in deep learning algorithms to achieve the optimal
balance between detection speed and accuracy. YOLOv5 continues the style of the YOLO
series of algorithms, and has a strong advantage in the deployment of mobile devices.
The innovative YOLOv7 introduces efficient layer aggregation networks (ELANs) as a
backbone, and re-parameterized convolutions are employed to accelerate the inference
speed. Although one-stage algorithms exhibit lower detection accuracy compared to
two-stage algorithms, they hold an advantage in terms of detection speed.

(2) Anchor-Free Detectors

The anchor-free model predicts the center point or keypoints of an object directly
and clusters them into a single entity to obtain bounding boxes. The keypoint-based
approach involves detecting critical features of the target or the interrelations among these
features to determine the target’s position and shape. These critical features may include
the corners and center of the object. Some models such as CornerNet [90], RepPoints [91],
CenterNet [92], ExtremeNet [93], and Grid R-CNN [94] are keypoint-based. CornerNet
identifies an object’s bounding box by detecting a pair of keypoints. CenterNet advances
this approach by utilizing a triplet of keypoints instead of a pair. This modification aims
to enhance both precision and recall in object detection tasks. The center-based approach
determines the target’s bounding box by predicting its center point and positional offset
with respect to the center point. Some classical center-based models include YOLOv1 [89],
FSAF [95], FCOS [96], GA-RPN [97], FoveaBox [98], YOLOX [99], YOLOv8 [100], and
YOLOv9 [101]. FCOS considers all locations within the object bounding box as positives,
utilizing four distances and a novel center score for object detection. GA-RPN defines
the pixels within the central region of the object as positives, predicting object proposal
locations, widths, and heights for Faster R-CNN. Anchor-free detectors are usually more
computationally efficient compared to anchor-based detectors. YOLOv8 adopts a novel
C2F module that enriches the gradient flow and employs a decoupled head for regression.
YOLOv9 introduces generalized ELAN based on YOLOv7 and proposes programmable
gradient information to accommodate customized network structures. It is expected for
YOLOv9 to become the industry standard for anchor-free detectors in the near future.

(3) End-To-End Detectors

Anchor-based methods rely on proposals or anchors, whereas anchor-free methods
utilize center points or keypoints. They indirectly predict a set of bounding boxes by
regression and classification tasks. The efficacy of their performances is notably shaped by
non-maximum suppression procedures aimed at consolidating near-identical forecasts, by
the formulation of anchor sets, and by the heuristics governing the allocation of target boxes
to anchors. End-to-end detectors analyze an input image to directly determine the location
and category of a target without the need for complicated pre-processing or post-processing
procedures. Some models such as DeFCN [102], Sparse R-CNN [103], and DETR [104]
are end-to-end-based. DeFCN is based on FOCS [96] and introduces a Prediction-aware
One-To-One (POTO) label assignment for classification. Sparse R-CNN re-evaluates the
design process of RPN and provides a fixed sparse set of learned object proposals (total
length of N) to the object recognition head to perform classification including location.
DERT is a new style of neural network based on Transformer [105] for end-to-end detection.
Unlike traditional convolutional networks, Transformer-based networks use self-attention
mechanisms for encoding and decoding, and can model global feature information. The
encoder–decoder architecture was initially proposed for machine translation tasks and
has since been widely used in various deep learning models [106]. In vehicle detection,
the role of the encoder is to encode the features of input images and map them to high-
dimensional vector representations. The decoder is responsible for mapping the encoded
features to the output space, which includes categories and positions of the vehicles. DETR
transforms the target detection task into an unordered ensemble prediction challenge. It
feeds the extracted feature sequences into both the encoder and decoder of the Transformer,
yielding an unordered set of length N as output. Each element within the set comprises
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the object’s category and coordinates. Deformable DETR [107], Anchor-DETR [108], and
RT-DETR [109] are also some excellent algorithms based on improved DETR. End-to-end
detectors can simplify the vehicle detection process and have an auspicious future.

The Microsoft Common Objects in Context (MS COCO) dataset is widely recognized
as one of the most authoritative datasets in the field of object detection. It encompasses
80 object categories, with a total of 2.5 million labeled instances across 328 k images. As a
benchmark, we have conducted the performance comparison of various deep models on
the MS COCO dataset, as illustrated in Table 3.

Table 3. Comparison of detection performances on MS COCO dataset.

Model Backbone AP AP50 AP75 APS APM APL

Anchor-based two-stage

Faster RCNN [73] VGG-16 21.9 42.7 - - - -
R-FCN [78] ResNet-101 29.9 51.9 - 10.8 32.8 45.0

CoupleNet [110] ResNet-101 34.4 54.8 37.2 13.4 38.1 50.8
Mask RCNN [76] ResNeXt-101 39.8 62.3 43.4 22.1 43.2 51.2

DetNet [111] DetNet-59 40.3 62.1 43.8 23.6 42.6 50.0
Soft-NMS [112] ResNet-101 40.8 62.4 44.9 23.0 43.4 53.2

G-RMI [113] - 41.6 61.9 45.4 23.9 43.5 54.9
Cascade R-CNN [80] Res101-FPN 42.8 62.1 46.3 23.7 45.5 55.2

SNIP [114] DPN-98 45.7 67.3 51.5 29.3 48.8 57.1

Anchor-based one-stage

SSD [81] VGG-16 28.8 48.5 30.3 10.9 31.8 43.5
DSSD [115] ResNet-101 33.2 53.3 35.2 13.0 35.4 51.1
M2Det [82] VGG-16 33.5 52.4 35.6 14.4 37.6 47.6

RefineDet [116] ResNet-101 36.4 57.5 39.5 16.6 39.9 51.4
RetinaNet [83] ResNet-101 39.1 59.1 42.3 21.8 42.7 50.2
YOLOv2 [84] DarkNet-19 21.6 44.0 19.2 5.0 22.4 35.5
YOLOv3 [85] DarkNet-53 33.0 57.9 34.4 18.3 35.4 41.9
YOLOv4 [86] CSPDarkNet-53 41.2 62.8 44.3 20.4 44.4 56.0
YOLOv5 [87] CSPDarkNet-53 49.0 67.3 - - - -
YOLOv7 [88] ELAN 52.9 71.1 57.5 36.9 57.7 68.6

Anchor-free keypoint-based

CornerNet [90] Hourglass-104 40.5 56.5 43.1 19.4 42.7 53.9
RepPoints [91] Res101-DCN 45.9 66.1 49.0 26.6 48.6 57.2
CenterNet [92] Hourglass-104 44.9 62.4 48.1 25.6 47.4 57.4

ExtremeNet [93] Hourglass-104 40.2 55.5 43.2 20.4 43.2 53.1
Grid R-CNN [94] ResNeXt-DCN 43.2 63.0 46.6 25.1 46.5 55.2

Anchor-free center-based

FSAF [95] ResNeXt-101 42.9 63.8 46.3 26.6 46.2 52.7
FCOS [96] ResNeXt-101 43.2 62.8 46.6 26.5 46.2 53.3

GA-RPN [97] ResNet-50 39.8 59.2 43.5 21.8 42.6 50.7
FoveaBox [98] ResNeXt-101 42.1 61.9 45.2 24.9 46.8 55.6
YOLOX [99] CSPDarkNet-53 50.0 68.5 54.5 29.8 54.5 64.4

YOLOv6 [117] EfficientRep 52.8 70.3 57.7 34.4 58.1 70.1
YOLOv8 [100] DarkNet-53 52.9 69.8 57.5 35.3 58.3 69.8
YOLOv9 [101] GELAN 53.0 70.2 57.8 36.2 58.5 69.3

End-to-end-based

DeFCN [102] - 38.6 57.6 41.3 - - -
Sparse R-CNN [103] ResNet-50 42.8 61.2 45.7 26.7 44.6 57.6

DETR [104] ResNet-50 43.3 63.1 45.9 22.5 47.3 61.1
Deformable DETR [107] ResNet-50 46.2 65.2 50.0 28.8 49.2 61.7

Anchor-DETR [108] ResNet-101 45.1 65.7 48.8 25.8 49.4 61.6
Efficient-DETR [118] ResNet-101 45.7 64.1 49.5 28.8 49.1 60.2

RT-DETR [109] ResNet-101 54.3 72.7 58.6 36.0 58.8 72.1
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3.3.2. Segmentation-Based Methods

Semantic segmentation is generally considered to be more precise and accurate than
target-level vehicle detection methods. It attempts to assign a label or category to each
pixel in an image and has a greater ability to identify a collection of pixels from different
categories and show the position and contour information of vehicles [16], making it
important for autonomous vehicles’ environmental perception. Semantic segmentation can
be categorized into fully supervised algorithms and weakly supervised algorithms. Weakly
supervised learning is a method that utilizes partial, inaccurate, or noisily labeled data for
model training [119]. Although this method requires less annotated data and has relatively
lower costs, the presence of noise or even mislabeling can impact the accuracy of detection.
In autonomous driving, such inaccurate detection significantly affects its performance and
safety in real-world scenarios. The fully supervised algorithms are almost always used in
most scenarios due to the low security of weakly supervised algorithms.

Traditional vehicle semantic segmentation methods rely on region classification. The
principle of these methods is similar to the two-stage detectors, in which vehicle candidate
regions are first extracted by a region proposal network, and then a trained classifier
assigns labels to each pixel within the candidate regions. DeepMask [120] is a CNN-based
model that outputs a class-agnostic segmentation mask, followed by the likelihood score
that the patch lies in the center of the vehicles. SharpMask [121] employs a top–down
refinement method to generate high-fidelity masks to augment the feed-forward network.
MultipathNet [122] makes three improvements on the Fast R-CNN [75] and incorporates
DeepMask proposals for detection. Mask R-CNN [76] extends Faster R-CNN [73] to detect
different scales and overlapping vehicles in an image with anchor boxes. However, these
methods rely on generating candidate regions, which limits the ability to deploy vehicle
detection in real time.

The use of pixel-level classification methods helps to improve the issue. A full convolu-
tion network (FCN) is a classical algorithm that was first proposed in 2015 [123]. The model
replaces the fully connected layers with convolutional layers and uses skip architecture to
fuse feature information. SegNet [124] builds on this with an encoder–decoder network.
The decoder network maps the low-resolution representation of the encoder to full input
resolution feature maps and performs non-linear upsampling in the max-pooling step of
the corresponding encoder. Google Labs improved FCN with four separate proposed algo-
rithms. DeepLabv1 [125] introduces the CRF model and atrous convolution to extract image
information. DeepLabv2 [126] is built on DeepLabv1 with the backbone of Resnet [127] and
an atrous spatial pyramid pooling (ASPP) module. DeepLabv3 [128] combines ideas from
DeepLabv1 and DeepLabv2 to segment objects at multiple scales. DeepLab3+ [129] adopts
Xception [130] as the backbone and introduces depthwise separable convolution to replace
some of the convolutional and pooling layers. DeepLab series can effectively increase the
filter’s receptive field. Nevertheless, the Deeplab series requires a high computational cost
to deploy in real scenarios.

To further improve the speed and accuracy of vehicle semantic segmentation, some
researchers have proposed feature fusion models. These models use multiscale convolution
to better access the deep contextual information of an image through a cross-layer struc-
ture and reduce computational consumption to some extent. RefineNet [131] efficiently
fuses high-level features with finer-grained low-level features to prevent image resolution
degradation. PSPNet [132] proposes a pyramid pooling module that exploits global context
information by the context aggregation of different regions. ICNet [133] incorporates multi-
resolution branches by proper label guidance and introduces the cascade feature fusion
unit for fast and high-quality segmentation. In addition, some scholars have attempted to
use a generative adversarial network (GAN) for vehicle semantic segmentation [134,135].
However, these methods are unstable during training and fine-tuning, and they are prone
to cause the model to collapse and fall into a local optimum.

The Transformer-based architecture is also being applied to semantic vehicle detection
as a powerful feature extractor. SERT [136] utilizes ViT [137] as its backbone while integrat-
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ing multiple CNN decoders to enlarge feature resolution. SegFormer [138] designs a novel
hierarchical structured Transformer block to acquire multiscale features and uses MLPs to
simply aggregate the features from different layers for decoding. SeaFormer [139] employs
a squeeze axial and detail-enhanced attention module to achieve the optimal trade-off
between segmentation accuracy and latency on ARM-based mobile devices.

Generally, semantic segmentation-based vehicle detection methods require high com-
putational complexity, which can lead to slower inference speed than that of other vehicle
detection algorithms. Therefore, the design and deployment of lightweight models is where
the need for the future lies, which requires both speed and accuracy. Recently, there has
been a lot of research into lightweight vehicle semantic segmentation models. ESPNet [140]
employs efficient convolutional modules, which are 22 times faster and 180 times smaller
than existing state-of-the-art vehicle semantic segmentation networks. DFANet [141] be-
gins with a solitary lightweight backbone and progressively consolidates discriminative
features through a cascade of sub-networks and sub-stages. Experiments show that the
model attained 1.7 GFLOPs at a speed of 160 FPS on one NVIDIA Titan X GPU and a
0.703 mIoU (mean IoU) on the Cityscapes dataset. LEDNet [142] utilizes an asymmetric
encoder–decoder architecture and achieved 71 FPS and a 0.706 mIoU on the Cityscapes
dataset with NVIDIA Titan X. Lightweight deployment capabilities will be a key technology
for researchers to consider in the field of autonomous driving.

4. Vehicle Detection Algorithms Based on Radar and LiDAR

Vehicle detection using radar and LiDAR is a key component of modern advanced
driver assistance systems (ADASs) and self-driving vehicles. LiDAR and radar differ
from the visible light images captured by cameras that they acquire information about the
distance and shape of the target. Both are now widely used in autonomous driving systems
for intelligent vehicles.

4.1. Millimeter-Wave Radar-Based Methods for Vehicle Detection

The millimeter-wave radar sensor operates by utilizing millimeter-wave frequen-
cies in wireless radio wave detection. Its principle lies in the emission and reception of
millimeter-wave signals, extracting parameters such as distance, velocity, direction, size,
and trajectory of objects through techniques like time-of-flight measurements and Doppler
effects. Compared to camera-based and LiDAR-based sensors, millimeter-wave radar is
more resilient and allows vehicle detection in harsher weather conditions. In addition, these
radars can also acquire accurate vehicle depth information, thus facilitating the perception
of autonomous driving. The radar-based vehicle detection process is shown in Figure 3.
Depending on the type of output signal, millimeter-wave radar is generally categorized
into target-level radar and image-level radar. Figure 4 presents an example of this.
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4.1.1. Target-Level Radar

The target-level radar is oriented to the output target and can transform received echo
signals directly into target information, such as distance, speed, and angle of the detected
vehicles. Radar detection results can be classified into three categories: moving targets,
stationary targets, and false targets. Dynamic vehicles, bicyclists, and pedestrians are the
most common moving targets, while stationary targets mainly include parked automobiles,
streetlamps, roadside trees, road guardrails, and curbs. False targets are invalid owing
to interference or background noise. The radar itself does not have the discriminatory
ability to classify detected targets. Therefore, there is a need to eliminate the interference of
stationary and false targets on vehicle detection as much as possible. According to research,
false target signals only remain for a short time when detected and can be eliminated by the
Kalman filter [143], multiple-hypothesis target [144], and iterative adaptive approach [145].
In addition, some scholars have found that the radar cross-section (RCS) and signal-to-noise
ratio (SNR) of stationary vehicles are much smaller than those of moving vehicles [146].
RCS refers to the extent to which an object is detected by radar, while SNR is the ratio of
the desired signal power to the noise power. According to the characteristics of the motion
state, a specific threshold value is set for the RCS and SNR of the radar, which can separate
the moving vehicle targets from the stationary ones. Recognition and classification can be
achieved by an ML-based classifier such as SVM and deep belief network (DBN).

The target-level radar provides information regarding the vehicle’s position and mo-
tion status, which is crucial for the environmental perception of autonomous driving.
However, it lacks the ability to depict the vehicle’s contour and type. Furthermore, the de-
tection accuracy of radar is not satisfactory when the vehicle is moving slowly or stationary.
Hence, depending solely on target-level radar as a vehicle sensor is inappropriate.

4.1.2. Image-Level Radar

Image-level radar is increasingly being applied in autonomous driving due to the need
for high-resolution imaging. It not only provides information on the speed and motion
status of the target but also generates an imaging map of the radar signals. In general, radar
image formats can be categorized into four types: projection maps, range–Doppler–azimuth
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maps, point cloud maps, and SAR maps. By projecting the reflection intensity of a radar
detection target onto the image, the reflection intensity map can be produced [12].

The generation of range–Doppler–azimuth maps requires the use of Fourier transform
and time–frequency domain analysis techniques combined with distance measurements,
Doppler shifts, and azimuth estimation algorithms. Both projection maps and range–
Doppler–azimuth maps are 2D imaging maps that can be represented with deep learning
algorithms, such as CNN [147], FCN [148], and LSTM [149].

Point cloud maps represent spatial data composed of a collection of points in the
3D coordinate system. Machine learning and deep learning algorithms are often used
to model point cloud information for vehicle classification and detection. It has been
reported that the radar point cloud can be clustered together using the Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) algorithm, allowing the obtained
clustered vectors to describe the vehicle features [150]. The vehicle targets were then
classified by SVM. However, the detection performance of millimeter-wave radar is limited
by its low resolution. To improve this problem, a GAN architecture has been designed
for recovering high-frequency shapes from original low-resolution millimeter-wave heat-
maps [151]. According to this research, a CNN-based point cloud segmentation algorithm
is utilized to detect vehicle targets, which can accurately reconstruct cars in real scenes with
low visibility. Li et al. [152] developed a method to enhance radar perception with temporal
information. They used the temporal relational layers of successive ego-centric bird-eye-
view radar image frames for radar object recognition. Synthetic aperture radar (SAR) is a
technique that produces fine-resolution coherent images from a resolution-limited radar
system. SAR obtains image data by processing the reflected echoes, which can be used for
vehicle detection with deep learning algorithms, such as CNN [153] and YOLO [154].

Millimeter-wave radar has been widely used in the field of autonomous driving for its
robustness and anti-interference. With the continuous development of radar technology,
how to further improve the resolution of radar will become a key research direction in
the future.

4.2. LiDAR-Based Methods for Vehicle Detection

LiDAR is an optical technology that senses distance by measuring the time lapse
between an emitted laser pulse and the detection of a reflected light pulse. In the pro-
cess, LiDAR feeds back the geometric information about the object, such as size and 3D
coordinates. The point cloud, composed of a collection of 3D points, can express the
sensory information of the transportation environment. Compared with cameras and
millimeter-wave radar, LiDAR has higher detection accuracy and can more accurately
acquire information about the surroundings of the vehicle [4]. Moreover, it is insensitive to
changes in light intensity, making it more applicable to vehicle detection in autonomous
driving. LiDAR-based vehicle detection methods can be divided into two categories:
traditional and deep learning.

4.2.1. Traditional-Based Methods

Traditional methods rely on the construction of feature engineering and data pro-
cessing. The traditional LiDAR vehicle detection algorithm is shown in Figure 5. For
vehicle detection in a single frame point cloud, the raw image needs to be pre-processed,
downsampled, ground-segmented, and clustered for feature extraction, respectively. Due
to the sparse nature of LiDAR point cloud data, it is often necessary to convert 3D LiDAR
data to 2D or 2.5D data to improve computational efficiency. These conversion techniques
include a graph method [155], range image [156], and occupancy map [157]. Some ir-
relevant point cloud information can be eliminated to optimize the traffic environment
sensing system. Studies have shown that the point cloud information of road pavement
is significantly different from vehicles and other obstacles. It has been reported that road
point clouds can be eliminated by setting specific feature thresholds to reduce the amount
of computation and improve detection in real time [158,159]. However, these methods fail
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to perform well when dealing with special road sections, such as potholes or steep slopes.
In this regard, scholars have proposed some fitting algorithms to solve the problem by
partitioning the uneven pavement into a combination of several smooth planes, such as
Markov random fields (MRFs) [160], random sampling consensus (RANSAC) [161], and
Gaussian process regression (GPR) [162]. Next, the point cloud information with the same
features is grouped with a clustering algorithm to highlight the attributes of the target.
DBSCAN and K-means are classical clustering algorithms that divide points into clusters by
density and distance, respectively. The clustered results are generally fed into the machine
learning-based classifier, and then the vehicle detection is performed.
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Traditional methods are simple to implement but are overly dependent on a priori
knowledge in processing point cloud information. In addition, the process of vehicle detec-
tion requires multiple steps and cannot meet the real-time requirements in real scenarios.

4.2.2. Deep Learning-Based Methods

With the rapid development of computer vision, LiDAR deep learning-based algo-
rithms for vehicle detection demonstrate superiority in detection speed and accuracy. Most
of these methods adopt an end-to-end approach, which facilitates the improvement in
real-time vehicle detection. In contrast to the construction of feature engineering, deep
learning algorithms can automatically learn complex point cloud information and extract
high-level representation from deep networks. Based on the principle of the algorithms,
LiDAR deep learning-based methods can be classified as point-based, projection-based,
and voxel-based. The visual representations of these methods are shown in Figure 6.

Sensors 2024, 24, x FOR PEER REVIEW  16 of 39 
 

 

 

Figure 6. Spatial data representation of LiDAR point cloud. 

(1) Point-Based Methods 

Point-based methods perform 3D detection  techniques of  raw point cloud data  to 

obtain vehicle targets. The primary characteristic of point cloud data is their insensitivity 

to the arrangement order of points. This implies that we can process point cloud data in 

any order. Vote3deep [163] employs a feature-centric voting scheme for constructing con-

volutional layers, which leverage the sparsity inherent in point cloud data. PointNet [164] 

is a classical algorithm presented in 2017. This method designs a novel neural network 

that processes point cloud information directly while respecting the permutation invari-

ance of the input points. However, the design of PointNet fails to capture the local struc-

ture  created by metric  space points,  restricting  its  ability  to gather fine-grained  infor-

mation. PointNet++ [165] improves on PointNet to fully extract global and local vehicle 

features. It utilizes the PointNet network recursively on the set of input points through a 

hierarchical approach and adaptively combines features from multiple scales at the learn-

ing layer. PointRCNN [166] references the feature point extraction method of PointNet++ 

and utilizes a two-stage framework for detection and segmentation. Stage one generates 

3D proposals through a bottom–up approach, and in the second stage, the convergence 

points of each proposal are converted to canonical coordinates. These models have excel-

lent detection accuracy but are time-consuming. To achieve a reasonable balance between 

accuracy  and  efficiency,  scholars  propose  a  single-stage  anchor-free-based  detection 

method named 3DSSD [167]. This method adopts a fusion sampling strategy in downsam-

pling to enable detection on fewer representative points, which yields the inference speed 

of 25+ FPS. 

Point-based methods maximize  the use  of  raw  information  from point  clouds  in 

space, which is effective for vehicle detection. However, the target is usually represented 

by only some of the points, resulting in a loss of spatial information between neighboring 

localized ones. 

(2) Projection-Based Methods 

Projection-based methods project a 3D point cloud onto a 2D plane to create a front 

view (FV) or bird’s eye view (BEV), which reduces the complexity of modeling point cloud 

data and requires fewer computational resources. DeepthCN [168] proposes a vehicle de-

tection system based on hypothesis generation and hypothesis verification. The data input 

to the system is first subjected to ground segmentation and point cloud segmentation, and 

then it is projected onto a Dense-depth Map and detected by ConvNet. RT3D [169] pro-

jects the 3D point cloud onto the BEV and applies R-FCN for feature map extraction. Bird-

Net [170] projects laser information into a novel cell encoding for BEV, and then employs 

a CNN-based network to estimate the location and heading of the object, which is mapped 

through post-processing to 3D orientation detection. BirdNet+ [171] discards the post-pro-

cessing step of BirdNet and achieves state-of-the-art results through an end-to-end detec-

tion framework for direct inference of oriented 3D boxes in BEV images. 

LiDAR is expensive but is widely used as it can acquire 3D information of the envi-

ronment with high accuracy. In projection-based methods, the feature map is eventually 

Figure 6. Spatial data representation of LiDAR point cloud.

(1) Point-Based Methods

Point-based methods perform 3D detection techniques of raw point cloud data to
obtain vehicle targets. The primary characteristic of point cloud data is their insensitivity
to the arrangement order of points. This implies that we can process point cloud data in
any order. Vote3deep [163] employs a feature-centric voting scheme for constructing con-
volutional layers, which leverage the sparsity inherent in point cloud data. PointNet [164]
is a classical algorithm presented in 2017. This method designs a novel neural network that
processes point cloud information directly while respecting the permutation invariance
of the input points. However, the design of PointNet fails to capture the local structure
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created by metric space points, restricting its ability to gather fine-grained information.
PointNet++ [165] improves on PointNet to fully extract global and local vehicle features. It
utilizes the PointNet network recursively on the set of input points through a hierarchical
approach and adaptively combines features from multiple scales at the learning layer.
PointRCNN [166] references the feature point extraction method of PointNet++ and utilizes
a two-stage framework for detection and segmentation. Stage one generates 3D proposals
through a bottom–up approach, and in the second stage, the convergence points of each
proposal are converted to canonical coordinates. These models have excellent detection
accuracy but are time-consuming. To achieve a reasonable balance between accuracy
and efficiency, scholars propose a single-stage anchor-free-based detection method named
3DSSD [167]. This method adopts a fusion sampling strategy in downsampling to enable
detection on fewer representative points, which yields the inference speed of 25+ FPS.

Point-based methods maximize the use of raw information from point clouds in space,
which is effective for vehicle detection. However, the target is usually represented by
only some of the points, resulting in a loss of spatial information between neighboring
localized ones.

(2) Projection-Based Methods

Projection-based methods project a 3D point cloud onto a 2D plane to create a front
view (FV) or bird’s eye view (BEV), which reduces the complexity of modeling point cloud
data and requires fewer computational resources. DeepthCN [168] proposes a vehicle
detection system based on hypothesis generation and hypothesis verification. The data
input to the system is first subjected to ground segmentation and point cloud segmentation,
and then it is projected onto a Dense-depth Map and detected by ConvNet. RT3D [169]
projects the 3D point cloud onto the BEV and applies R-FCN for feature map extraction.
BirdNet [170] projects laser information into a novel cell encoding for BEV, and then
employs a CNN-based network to estimate the location and heading of the object, which is
mapped through post-processing to 3D orientation detection. BirdNet+ [171] discards the
post-processing step of BirdNet and achieves state-of-the-art results through an end-to-end
detection framework for direct inference of oriented 3D boxes in BEV images.

LiDAR is expensive but is widely used as it can acquire 3D information of the envi-
ronment with high accuracy. In projection-based methods, the feature map is eventually
projected as a 2D map, which is similar to 2D target detection. Consequently, some scholars
have proposed pseudo-LiDAR representations, which essentially mimic LiDAR signals.
Wang et al. [172] converted depth maps to pseudo-LiDAR maps and improved the detec-
tion accuracy of within 30 m to 74% in the KITTI dataset. However, pseudo-LiDAR-based
methods generally require the depth estimation of the 2D map before performing 3D object
detection, resulting in two separate steps. Qian et al. [173] introduced a framework based
on the differentiable change in the representation module that allows end-to-end training of
the entire pseudo-LiDAR pipeline. Pseudo-L [174] presents three novel methods for virtual
view generation, including image-level generation methods, feature-level generation, and
a feature clone. Furthermore, a disparity-wise dynamic convolution is proposed, which
alleviates the feature degradation caused by depth estimation errors.

The success of projection-based methods is essentially the maturation of 2D detection
algorithms. However, dimensionality reduction in the 3D point cloud information will
inevitably result in the loss of spatial depth information, reducing the detection accuracy.

(3) Voxel-Based Methods

The point cloud data collected by LiDAR are typically dense, yet a majority of points
are concentrated within specific spatial regions. This leads to the sparsity of data, mak-
ing direct processing of the entire point cloud complex and inefficient. In order to better
describe the distribution of the point clouds in three dimensions, the challenge is solved
by dividing the point clouds into regular grids of voxels of a specific size. VoxelNet [175]
is a representative algorithm that combines PointNet and CNN to present an end-to-end
trainable architecture. The model represents voxel points through a voxel feature encoding
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(VFE) layer, which enables efficient parallel processing of the voxel grid. Voxel RCNN [176]
designs a voxel ROI pooling to further refine the features of the BEV region proposal
network. PV-RCNN [177] summarizes the 3D scene with 3D voxel CNNs into a small
collection of keypoints and then employs ROI grid points to extract richer contextual infor-
mation. PV-RCNN++ [178] proposes two improvements based on PV-RCNN, sectorized
proposal-centric sampling and vector pool aggregation, which can generate more efficient
keypoints and better aggregate local point features, respectively. VoxelNeXt [179] directly
uses a sparse convolutional network to detect and track 3D objects entirely through voxel
features without switching to a dense detection header and NMS post-processing, resulting
in a better trade-off between speed and accuracy. Other voxel-based methods include
MA-MFFC [180], PDV [181], and SAT-GCN [182].

The voxel-based approach converts the point cloud data into a 3D voxel grid, which
offers the advantages of high processing efficiency and good spatial information retention.
Nevertheless, some information might be lost using this method. Table 4 summarizes the
performance of different LiDAR-based deep learning models.

Table 4. The performance of different LiDAR-based deep learning models on KITTI dataset.

Model
Car AP (IoU = 0.7)

FPS Year Reference
Easy Moderate Hard

Point-based

Vote3deep 76.79 68.24 63.23 0.9 2017 [163]
PointRCNN 85.95 75.76 68.32 3.8 2019 [166]

STD 86.61 77.63 76.06 - 2019 [183]
Part-A2 85.94 77.95 72.00 - 2020 [184]
3DSSD 88.36 79.57 74.55 26.3 2020 [167]
SASSD 88.75 79.79 74.16 24.9 2020 [185]

Pyramid RCNN 87.03 80.30 76.48 8.9 2021 [186]
ST3D - - 74.61 - 2021 [187]
SASA 88.76 82.16 77.16 27.8 2022 [188]

PointDistiller 88.10 76.90 73.80 - 2023 [189]
DCGNN 89.65 79.80 74.52 9.0 2023 [190]

Projection-based

DeepthCN 37.59 23.21 18.01 - 2017 [168]
RT3D 72.85 61.64 64.38 11.2 2018 [169]

BirdNet 88.92 67.56 68.59 9.1 2018 [170]
PIXOR 81.70 77.05 72.95 10.8 2018 [191]

Complex-YOLO 67.72 64.00 63.01 59.4 2018 [192]
BirdNet+ 70.14 51.85 50.03 10.0 2020 [171]
E2E-PL 79.60 58.80 52.10 - 2020 [173]

Pseudo-L 23.74 17.74 15.14 - 2022 [174]
Ri-Fusion 85.62 75.35 68.31 26.0 2023 [193]

Voxel-based

3DFCN 84.20 75.30 68.00 - 2017 [194]
VoxelNet 77.47 65.11 57.73 30.3 2018 [175]
Second 83.13 73.66 66.20 20.0 2018 [195]

PV-RCNN 90.25 81.43 76.82 12.5 2020 [177]
HVNet 87.21 77.58 71.79 31.3 2020 [196]
TANet 83.81 75.38 67.66 28.8 2020 [197]

Voxel RCNN 90.09 81.62 77.06 25.0 2021 [176]
MA-MFFC 92.60 84.98 83.21 7.1 2022 [180]

PDV 90.43 81.86 77.49 7.4 2022 [181]
SAT-GCN 79.46 86.55 78.12 8.2 2023 [182]
BSAODet 88.89 81.74 77.24 - 2023 [198]
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4.2.3. Point Cloud Segmentation-Based Methods

In the context of road scenes, semantic segmentation labels each point to a predefined
category, such as pedestrians, vehicles, trees, etc. Vehicle detection algorithms based on
point cloud segmentation can be divided into two categories: traditional methods and deep
learning-based methods. Traditional segmentation approaches rely on prior knowledge and
feature engineering, like region growing [199], clustering [200], and model fitting [201]. The
design of feature engineering entails substantial time investment, while the determination
of segmentation boundaries through thresholding is prone to errors. Moreover, achieving
pixel-level segmentation poses significant challenges. These factors collectively contribute
to the limitations of traditional methods in point-cloud-based vehicle detection. Presently,
deep learning-based point cloud segmentation has achieved remarkable performance in
accuracy and speed. These approaches are classified as point-based, projection-based, and
voxel-based.

(1) Point-Based Methods

These methods directly process 3D point cloud information for vehicle detection.
PointNet [164] and PointNet++ [165] are the most representative models in this domain.
They leverage shared Multi-Layer Perceptrons (shared MLPs) and pooling to integrate
global and local features, while employing MLPs to assign semantic labels to individual
points. However, these point sampling methods exhibit poor scalability with respect to
the scale of point clouds. Additionally, employing max-pooling to group local points may
result in robustness in complex scenes. Some scholars have attempted to address these
issues. RandLA-Net [202] integrates random point sampling with a local feature aggrega-
tion module to increase the receptive field of each 3D point, rendering it suitable for the
semantic segmentation of large-scale point clouds on a per-point basis. S3Net [203] utilizes
sparse mechanisms to construct modules, thereby providing rich contextual information
for feature maps. Direct processing of point clouds can also be achieved through point con-
volution. KPConv [204] identifies a set of pivotal points in the spatial domain, employing
kernel functions to compute the weighting coefficients for each point, thereby effecting a
transformation of the features. Landrieu et al. [205] proposes a framework for a large-scale
point cloud based on the concept of a superpoint graph (SPG). The SPG facilitates the
provision of compact yet rich contextual information, which can increase the performance
of point cloud segmentation.

(2) Projection-Based Methods

The sparsity and lack of structure in point clouds pose challenges for feature extraction
using CNN in 3D space. Projection-based point cloud segmentation converts 3D point
clouds into 2D BEV maps, FV maps, and RV maps and then uses CNN for feature extraction,
followed by reconstructing the original 3D scenes. SqueezeSeg [206] employs spherical
projection to transform point clouds into front-view representations. Then, SqueeNet [207]
is used to output a point-wise label map, which is refined by a conditional random field.
SqueezeSegv2 [208] introduces a context aggregation module to enhance SqueezeNet and
proposes an adaptive training approach to reduce the distribution gap between simulated
data and real data. SqueezeSegv3 [209] introduces spatially adaptive convolution, which
employs different filters for various positions in the image. In order to minimize the loss of
information due to dimensional changes during projection, some scholars have proposed
multi-view projection methods. GVCNN [210] is a typical representative algorithm. It
groups feature subgraphs from different viewpoints based on discriminative weight and
then aggregates descriptions of each group through pooling.

(3) Voxel-Based Methods

The sparsity and lack of structure of point clouds greatly affects their representation
capability. Voxel-based point cloud segmentation transforms point clouds into structured
voxels and employs 3D networks for semantic segmentation. In this process, the depth
information is fully utilized at the expense of resolution. VoxNet [211] is a pioneer in this
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approach, utilizing 3D CNN to process the voxels of the occupied girds. Subsequently, a
number of voxel-based algorithms have been applied to vehicle detection, such as Seg-
Cloud [212], Kd-Net [213], and SPVNAS [214]. These models require a lot of computational
resources and memory space, which is detrimental to real-time 3D segmentation. Point-
Grid [215] is a hybrid model that integrates a point and grid, using simple points to quantify
local features for each grid unit. Further, considering the geometric spatial properties of 3D
point clouds, some scholars have attempted to optimize the network structure using oc-
trees, such as OctNet [216] and O-CNN [217]. Recently, Hou et al. [218] proposed applying
knowledge distillation to the semantic segmentation of LiDAR for model compression. The
method suggests inter-point and inter-pixel affinity distillation and uses a difficulty-aware
sampling strategy for difficult hypervoxels.

Projection-based methods and voxel-based methods lead to the loss of point cloud
information. In contrast, point-based methods effectively retain the original point cloud
data but incur higher computational costs. In recent years, point cloud segmentation
methods have emerged as a significant research focus for LiDAR-based vehicle detection.
Some of these algorithms are not specifically designed for vehicle detection but serve
as general network architectures that can be adapted to this domain through retraining.
Overall, the deep learning-based and the point cloud segmentation-based approach to
achieve vehicle detection can be summarized as the process shown in Figure 7.
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5. Vehicle Detection Algorithms Based on Multi-Sensor Fusion

Sections 3 and 4 summarize the vehicle detection algorithms under three typical
sensors: a camera, millimeter-wave radar, and LiDAR. It can be noted that each sensor has
its advantages and limitations related to its functional operation. A number of metrics for
these sensors are summarized in detail in Table 5. In autonomous driving, environmental
perception presents a multifaceted challenge. The integration of multiple sensors facilitates
synergistic advantages, leading to augmented information acquisition. In general, multi-
sensor fusion can be categorized into stereo vision-based, fusion of millimeter-wave radar
and vision-based, fusion of LiDAR and vision-based, and multi-sensor-based.

Table 5. Comparative analysis of different sensors. Numbers “1”–“5” denote the level from extremely
low to low, medium, high, and extremely high, respectively.

Sensor Camera Radar LiDAR

Silhouette Representation 5 2 3
Color Perception 5 1 1

Velocity Measurement 2 5 2
Angle Resolution 5 3 4
Range Resolution 2 4 5
Object Detection 5 3 4

Object Classification 5 1 3
Field of View 3 4 4
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Table 5. Cont.

Sensor Camera Radar LiDAR

Adaptability to Complex Weather 2 5 2
Sensor Size 2 2 4

Cost 3 1 5

5.1. Stereo Vision-Based Methods for Vehicle Detection

Stereo vision is a technique that utilizes two or more cameras to simultaneously
capture images of a scene from different perspectives in order to obtain depth information
and position information of a target in space. Based on the idea of estimating a target’s
parameters through the changes in the corresponding points in the disparity map, this
technique draws inspiration from the search mechanism of the human eyes. According to
the principle of the algorithms, stereo vision techniques can be classified into appearance-
based methods and motion-based methods, shown as Figure 8.
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Figure 8. An example of appearance-based methods and motion-based methods for vehicle detection:
(a) left-eye view, (b) right-eye view, (c) disparity map (appearance-based); (d) a frame from the video
stream, (e) the subsequent frame from the video stream, (f) the optical flow map (motion-based) [15].

(1) Appearance-Based Methods

These methods rely on the extraction of salient vehicle appearance features to achieve
vehicle detection. The U-V disparity is a common method used in vehicle detection [219].
Xie et al. [220] proposed a stereo vision segmentation algorithm based on a cascaded
framework. For a corrected binocular image pair disparity map, a probabilistic approach
is used to compute the U-V disparity, and outliers are removed using RANSAC to obtain
the road region. Ma et al. [221] used a nonparametric and refined U-V disparity mapping
method to obtain the road ROI, and then utilized an adjacent disparity similarity algorithm
to complement and extract the target region for vehicle detection. Observing that the depth
information of vehicles is constantly changing in stereo vision, some scholars used depth
information clustering to detect vehicles [222]. In recent years, researchers have reported
methods for vehicle environmental perception using machine learning and deep learning,
which have achieved satisfactory detection results [223,224].

(2) Motion-Based Methods

This type of algorithm relies heavily on the optical flow information. Optical flow
information refers to the displacement of pixel points between consecutive image frames
due to the motion of an object. Kale et al. [225] make use of optical flow in conjunction with
motion vector estimation for object detection and tracking in a sequence of frames. Sengar
et al. [226] utilized a Gaussian filter to remove noise from each frame and detected moving
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targets by calculating the optical flow between three consecutive frames. Some scholars
have proposed the fusion of vehicle depth information with optical flow information
through occupancy grids to strengthen representation capability and further enhance
detection efficiency. Chen et al. [227] optimized the classical optical flow algorithm at a
single resolution on a regular grid. Yin et al. [228] presented GeoNet, a joint unsupervised
learning framework. This method combines depth, optical flow, and self-motion estimation
for image reconstruction loss, and inference for static and dynamic scene parts.

5.2. Fusion of Radar and Vision-Based Methods for Vehicle Detection

Millimeter-wave radar exhibits strong adaptability to complex environments and
offers motion and depth information about vehicles. With their high-resolution imaging
capabilities, cameras excel in detection and classification tasks. The integration of these
two sensors is a typical configuration in many mature autonomous driving systems [14].
Figure 9 illustrates the three fusion levels that are often present for radar and vision-based
methods, including the data level, decision level, and feature level.
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(1) Data-Level Fusion

Data-level fusion is a well-established method for vehicle detection by fusing camera
data and radar data. Although this scheme is not currently a mainstream method, its
fusion idea is worthwhile. Specifically, data-level fusion first generates ROI through radar,
then visual images analyze these regions, and finally vehicle targets are obtained through
detectors. Wang et al. [229] employed a fusion strategy of visual attention mechanisms
to detect vehicles via an adaptive thresholding algorithm. Wang et al. [230] optimized
the fusion approach to achieve the balance between vehicle detection accuracy and speed.
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Craft [231] focuses on the spatial properties of the camera and radar, adaptively fusing
spatial contextual information between the two.

(2) Feature-Level Fusion

Feature-level fusion is a processing approach for features extracted from raw data.
This type of fusion is applicable to a collection of features extracted from multiple sensors or
data sources. For the feature extraction of radar information, radar points can be converted
into image format. Then, for the feature maps obtained from each sensor, deep models
(e.g., CNNs and Transformers) can be used to achieve feature fusion. Lekic et al. [232]
introduced a conditional multi-generator generative adversarial network. The model can
qualitatively and quantitatively convert environmental features detected by radar sensors
into visually appealing images. Chang et al. [233] presented a novel spatial attention
fusion method for vehicle detection. Starting with the sensor features, the method fuses
the vision features by applying an attention weight matrix. Zhou et al. [234] contributed
to multimodal fusion 3D object detection by narrowing the view disparity in different
sensor features.

(3) Decision-Level Fusion

Decision-level fusion is the highest level of image fusion in which the independent
detection results from each of the camera and radar sensors are integrated. The advantage
of radar lies in its ability to accurately measure the longitudinal distance of a target, while
the camera provides a broader field of view. Combining radar and a camera can fully utilize
these two types of information, thereby improving the accuracy and reliability of target
detection and tracking. Zhong et al. [235] reported a Kalman-filter-based camera–radar
fusion system, which strikes a balance between performance and energy efficiency and
demonstrates the competitiveness of the software–hardware ecosystem. Bai et al. [236]
correlated the respective detections of the radar and camera in the image plane to generate
a random finite set with an object type. The model is then refined using a Gaussian mixture
probability hypothesis density algorithm. Sengupta et al. [237] combined the Hungarian
algorithm and triple Kalman filtering for object tracking, significantly reducing the false-
negative rate and providing a promising direction for autonomous perception. Table 6
summarizes the performance of some of the latest different radar–camera-based deep
learning models.

Table 6. Performance of some of the latest radar–camera-based models on the nuScenes dataset.

Model
Metrics

FPS Year Reference
mAP NDS mATE mASE mAOE mAVE mAAE

CenterFusion 32.6 44.9 63.1 26.1 51.6 61.4 11.5 - 2021 [238]
CRAFT 41.1 52.3 46.7 26.8 45.3 51.9 11.4 4.1 2023 [231]
RCBEV 40.6 45.6 48.4 25.7 58.7 70.2 14.0 - 2023 [234]

MVFusion 45.3 51.7 56.9 24.6 37.9 78.1 12.8 - 2023 [239]
CRN 57.5 62.4 46.0 27.3 44.3 35.2 18.0 7.2 2023 [240]

5.3. Fusion of LiDAR and Vision-Based Methods for Vehicle Detection

Compared to millimeter-wave radar, LiDAR possesses a superior manufacturing
process, which allows it to deliver higher precision and resolution in imaging technology.
As a result, the integration of these two sensors is considered to be an outstanding method
for environmental perception. Figure 10 illustrates the three fusion levels that are often
present for LiDAR and vision-based methods, including the data level, decision level, and
feature level.
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(1) Data-Level Fusion

The raw data captured by LiDAR and a camera are inherently different in structure,
which renders data-level fusion complex and potentially detrimental to the quality of
information representation. As a result, this approach is currently no longer universally
applicable in the context of environmental perception.

(2) Feature-Level Fusion

This approach integrates data extracted from LiDAR and a camera through a feature
extraction mechanism. MV3D is a typical feature-level fusion framework [241]. This model
takes the FV and BEV of the LiDAR, along with an image from a camera, as inputs, and
projects the 3D proposals generated in the BEV into three views. Then, a feature fusion
network is employed to fuse the feature maps obtained from ROI pooling of each view
for vehicle detection. Ku et al. [242] used RPN to achieve multimodal feature fusion
on high-resolution feature maps, followed by 3D regression and classification. Ku et al.
proposed a method to accurately estimate the 3D bounding box [243]. The scheme first
employs a 2D detector, and then lifts the 2D region to 3D to generate stymied proposals
for 3D bounding box estimation. Zhao et al. [244] used LiDAR data to generate region
proposals, and fed the generated ROIs from candidates into a CNN for vehicle detection.
An et al. [245] leveraged the geometric consistency between 3D and 2D local regions,
integrating manually crafted 2D features with attention-based voxel features to enhance
the accuracy of 3D object detection. Li et al. [246] initially employed residual modules
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to extract image features and sparse convolutions to extract BEV map features from a
LiDAR point cloud. Subsequently, these features were fused and fed into the RPN to detect
vehicles. Liang et al. [247] converted multi-view images and LiDAR point clouds into BEV
maps separately, and then used a dynamic fusion module to fuse the two feature maps
for 3D target detection, which overcame the limitation of over-reliance on LiDAR data.
Liu et al. [248] constructed a shared BEV map, thus preserving the semantic density of
the camera and the geometry of the LiDAR. In addition, it can be extended to multi-task,
multi-sensor frameworks. Wu et al. [249] proposed VirConvNet, a fast and efficient virtual
point-based 3D object detection backbone network based on the VirConv operator, which
reduces redundant computation and noise interference. The application of feature-level
fusion improves the representation capability and thus helps to improve the accuracy of
vehicle detection. However, the use of multiple feature extraction modules to obtain feature
maps from sensors may lead to a decrease in speed.

(3) Decision-Level Fusion

A fusion algorithm is applied to the objects detected by the camera or LiDAR, re-
spectively, in decision-level fusion. Typical fusion algorithms include the Kalman filter,
Bayesian, etc. Oh et al. [250] used a CNN to fuse the classification outputs of an indepen-
dent unary classifier. This classifier utilizes more than two pre-trained convolutional layers
to consider local-to-global features as data representations. Guan et al. [251] proposed a
decision-level object detection method based on Dempster–Shafer evidence theory. They
complemented and converted the 2D LiDAR sparse depth map to a dense depth map,
then used YOLOv3 [85] for vehicle target detection on both an RGB image and depth map,
and then fused the two results to receive the information of vehicles. The decision-level
approach has excellent robustness and ensures the normal operation of the system even
if one of the sensors fails. At present, there is less research on decision-level methods
compared to feature-level methods. Table 7 summarizes the performance of different
LiDAR–camera-based deep learning models.

Table 7. Performance overview of LiDAR–camera-based models on KITTI dataset.

Model Fusion
Car AP3D (IoU = 0.7)

FPS Year Reference
Easy Moderate Hard

MV3D Feature - - - 2.8 2017 [241]
AVOD-FPN Feature 81.94 71.88 66.38 10.0 2018 [242]
PointFusion Feature 77.92 63.00 53.27 0.8 2018 [252]

ContFuse Feature 82.54 66.22 64.04 16.7 2018 [253]
F-PointNet Decision 83.76 70.92 63.65 - 2018 [243]

IPOD Decision 84.10 76.40 75.30 - 2018 [254]
MMF Feature 86.81 76.75 68.41 12.5 2019 [255]

F-ConvNet Decision 85.88 76.51 68.08 - 2019 [256]
SIFRNet Feature 85.62 72.05 64.19 - 2020 [257]

PointPainting Feature 92.45 88.11 83.36 - 2020 [258]
EPNet Feature 88.94 80.67 77.15 - 2020 [259]

F-PointPillars Feature 88.90 79.28 78.07 14.3 2021 [260]
Fast-CLOCs Feature 89.11 80.34 76.98 13.0 2022 [261]

SFD Feature 91.73 84.76 77.92 - 2022 [262]
VPFNet Feature 91.02 83.21 78.20 10.0 2022 [263]

FocalsConv Feature 92.26 85.32 82.95 6.3 2022 [264]
VFF Feature 92.31 85.51 82.92 - 2022 [265]

EPNet++ Feature 91.37 81.96 76.71 - 2022 [266]
PA3DNet Feature 90.49 82.57 77.88 47.6 2023 [267]
DVF-PF Feature 90.99 82.40 77.37 - 2023 [268]

LoGoNet Feature 92.04 85.04 84.31 - 2023 [269]
VirConvNet Feature 95.81 90.29 88.10 10.9 2023 [249]

VoxelNextFusion Feature 90.40 82.03 79.86 18.5 2024 [270]
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5.4. Multi-Sensor-Based Methods for Vehicle Detection

The original intentions behind the design of each sensor are different, and the fusion of
multiple sensors to achieve multimodal perception is a promising trend for vehicle detection
in autonomous driving in the future. Chavez-Garcia et al. [271] proposed a complete
perception fusion architecture based on an evidence framework that combines composite
representation with uncertainty management to solve the detection and tracking problem
of moving targets. Yi et al. [272] presented a spatial calibration algorithm based on a multi-
sensor system. They fused LiDAR, radar, and a camera to detect and recognize targets. In
the realm of autonomous driving, environmental perception and vehicle detection typically
entail the aggregation of information from disparate sensors. Therefore, multi-sensor fusion
solutions can also be extended to encompass research on the fusion of one or two sensors.

6. Discussion and Future Trends

Sections 3–5 of this paper provide a detailed overview of the mainstream self-driving
vehicle detection algorithms. In this section, we will discuss the algorithms for different
sensors and explore the future trends of vehicle detectors.

6.1. Discussion

(1) Machine Vision

Camera sensors typically use stereo vision technology to acquire depth information of
objects by comparing the disparity between images captured by two cameras to calculate the
distance of vehicles from the cameras. Once the camera sensor captures the image, vehicle
detection algorithms such as CNNs are employed to identify vehicles in the image and
determine their positions and bounding boxes. The bounding boxes provide information
about the size and orientation of the vehicles. By analyzing images from consecutive
frames to recognize the displacement of objects, their speed and direction can thereby
be determined. In the realm of machine-vision-based vehicle detection, deep learning
approaches have taken the lead. Due to the powerful fitting and representation capabilities
of deep models, they can extract deeper feature information, and thus are proven to be the
optimal choice for vehicle detection. The vehicle detection algorithm based on semantic
segmentation possesses a finer-grained representation compared to object-detection-based
methods, and achieves higher precision. However, the trade-off in detection speed is a
matter worth considering. The research on vehicle detection algorithms for camera sensors
presents a diverse landscape, with each method having advantages and disadvantages.
However, given the critical importance of speed metrics in autonomous driving, the design
of algorithms must prioritize real-time performance.

(2) Millimeter-Wave Radar

Millimeter-wave radar can transmit millimeter-scale electromagnetic pulse wave
energy and analyze the echo signal to receive the position and motion status of the vehicles.
By utilizing antenna array processing, the millimeter-wave radar can derive angular data
from a vehicle’s reflection points. Upon encountering an object, the emitted millimeter-
wave signal undergoes partial absorption and reflection, with the reflected signal returning
to the sensor. By measuring the time difference between the transmitted and received
signals, the distance between the object and the sensor is determined. This allows these
points to be located in 3D space when combined with the time of flight. Millimeter-
wave radar, as an inexpensive sensor, is capable of operating in all-weather conditions.
However, millimeter-wave radar has low resolution and cannot provide information on
the type and size of vehicles, which are indispensable requirements for vehicle detection.
Therefore, millimeter-wave radar is usually used as an auxiliary sensor or in combination
with other sensors. Nevertheless, its adaptability to complex weather conditions has led to
its widespread application in the field of autonomous driving.

(3) LiDAR
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LiDAR is an active sensor that plays a crucial role in detecting vehicles for autonomous
driving due to its high precision and optical stability. The operation principle of a LiDAR
sensor includes a laser emission, reception, and analysis. Firstly, a short-pulse laser beam is
generated by the laser emitter to record its round-trip time, resulting in distance information.
Subsequently, through the rotation or scanning of the sensor, LiDAR can acquire reflected
signals in different directions, thus constructing a point cloud in three-dimensional space
to achieve vehicle localization. By identifying and extracting parameters from the point
cloud information, the size and shape of vehicles can be obtained. Methods based on
deep learning and point cloud segmentation have been widely applied in vehicular radar
systems. However, the sparse and unstructured nature of a point cloud leads to high
computational costs when processing raw data directly. Researchers have adopted various
data representation methods to structure the original point cloud and then utilize deep
models for vehicle detection. This approach sacrifices some point cloud information in
exchange for higher detection efficiency. LiDAR can function as an independent sensor
or be fused with cameras for perception, representing a classic environmental perception
scheme.

(4) Sensor Settings

Table 8 shows the sensor solutions of some autonomous driving manufacturers. We
can see that Tesla and Xpeng have opted for a combination of cameras, millimeter-wave
radar, and ultrasonic radar, rather than using LiDAR as their fundamental perception
sensor. Other manufacturers have opted for LiDAR sensors, with Waymo in particular
using four LiDAR sensors. It can be concluded that the mainstream trend in the field
of environmental perception for autonomous vehicles is the fusion of radar and a vision
sensing solution. Radars and cameras possess complementary characteristics, allowing for
better perception in real-world environments.

Table 8. Autonomous driving sensor solutions of some manufacturers.

Company Autonomous Driving System Sensor Settings Link

Baidu Apollo
13 cameras

5 mmWave radars
2 LiDAR

https://www.apollo.auto/
(accessed on 12 May 2024)

Tesla Autopilot
8 cameras

mmWave radars
12 ultrasonic radars

https://www.tesla.com/
(accessed on 12 May 2024)

Waymo Waymo Driver
29 cameras

6 mmWave radars
4 LiDAR

https://waymo.com/
(accessed on 12 May 2024)

NIO Aquila

11 cameras
4 mmWave radars

1 LiDAR
12 ultrasonic radars

https://www.nio.cn/
(accessed on 12 May 2024)

Xpeng XPILOT
13 cameras

12 ultrasonic radars
5 mmWave radars

https://www.xiaopeng.com/
(accessed on 12 May 2024)

6.2. Future Trends

(1) Balancing Speed and Accuracy of Algorithms

The performance of vehicle detection algorithms directly influences the perception
capability of autonomous driving systems. In this field, the speed and accuracy of al-
gorithms are the core issues in environmental perception for intelligent vehicles. Many
algorithms exhibit either high precision or fast speed in practical deployment, but few
can simultaneously achieve both aspects. Some scholars attempt to enhance one aspect

https://www.apollo.auto/
https://www.tesla.com/
https://waymo.com/
https://www.nio.cn/
https://www.xiaopeng.com/
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of performance at the expense of another, which often lacks robustness in real driving
scenarios. The performance of deep models depends on multiple prerequisites, with the
design of the backbone network being considered one of the most critical factors. For
general vehicle-embedded chips, lower computational complexity and faster processing
speed are prioritized. Hence, exploring the effectiveness of network architectures while
ensuring low algorithmic complexity is an intriguing research direction. One of the future
research focuses will be on designing superior backbone network architectures to achieve a
balance between accuracy and speed.

(2) Multi-Sensor Fusion Strategy

Vehicle detection algorithms based on machine vision, millimeter-wave radar, or
LiDAR each possess distinct advantages and drawbacks. Inherent limitations persist in
vehicle detection algorithms reliant on a singular sensor modality, rendering them unavoid-
ably constrained. Therefore, multi-sensor fusion to realize cooperative perception will be a
hot research topic in the future. Currently, industrial-grade autonomous driving is typically
deployed with a multi-sensor fusion strategy, which is proven to be effective. Nonetheless,
fusion techniques for vehicle detection still encounter challenges such as immaturity and
representation disparities. To enhance the representation capabilities of multi-sensor fusion,
further consideration in design schemes and protocols is necessary. For algorithms, research
on enhanced fusion algorithms is imperative to maximize the utilization of non-redundant
multiscale information for a collaborative perception of multiple sensors.

(3) Multi-tasking Algorithms

Existing vehicle detection methods, such as target detection and semantic segmenta-
tion, are experimented in specific traffic scenarios. Different algorithms are often optimized
for varying usage contexts. However, practical vehicle detection in real-world traffic en-
vironment scenes confronts challenges of diversity and complexity, including adverse
weather conditions such as fog, night-time, snow, and rain. Presently, most algorithms are
tailored to specific scenes, lacking a universal approach capable of adaptive detection across
various environments. Therefore, coping with vehicle detection in complex environments
becomes an inevitable trend in the future. In future research, the integration of diverse algo-
rithms into a framework adaptable to dynamic traffic conditions should be pursued. This
can not only enhance detection speed and accuracy but also, more importantly, augment
the adaptability and robustness of the vehicle detection system, mitigating the occurrence
of traffic accidents due to perception failures.

(4) Unsupervised Learning

Today, almost all mainstream vehicle detection algorithms are based on supervised
learning. These methods require large amounts of well-labeled data to train the model, and
tend to have outstanding performance in test sets. However, these models require large
computational resources for dataset training, which is a time-consuming and laborious task.
Additionally, models based on supervised learning exhibit certain limitations in terms of
generalization; when confronted with scenes divergent from the training sets, the detection
accuracy often suffers. Hence, one feasible direction for the future is the development of
semi-supervised or weakly supervised vehicle detection algorithms to address this issue.
These algorithms can make better use of unlabeled data and thus achieve more accurate
vehicle detection across a broader range of scenarios.

7. Conclusions

Autonomous driving technology is gradually changing the way people commute and
reshaping transportation systems. Vehicle detection, the capability to perceive vehicles in
real driving scenarios, has long been a topic of great interest in the field of autonomous
driving. In this paper, we have provided a comprehensive review of vehicle detection
algorithms for autonomous driving. We started by introducing the tasks, evaluation metrics,
and datasets. Second, a detailed analysis of various detection methods was presented,
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such as machine-vision-based, millimeter-wave-radar-based, LiDAR-based, and sensor-
fusion-based approaches. Finally, we delved into various sensor modalities and their
associated detection algorithms, emphasizing the crucial balance between precision, speed,
and environmental adaptability, and provided an outlook on future research directions.
The main contribution of this work is to summarize and analyze over 200 classical as
well as state-of-the-art vehicle detection algorithms in an organized manner, which helps
researchers to have a deeper and more comprehensive understanding of this field. In the
future, more systematic and comprehensive perception techniques will become the research
hotspots. Sensor fusion strategies, multi-task algorithms, and unsupervised learning
methods show a very promising trend. At the same time, striking a more reasonable balance
between detection speed and detection accuracy has posed a challenge for researchers.
Capturing these key elements not only enhances vehicle detection efficiency but also
promotes the development of autonomous driving technology.
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