Enhancing Si3N4 Selectivity over SiO2 in Low-RF Power NF3–O2 Reactive Ion Etching: The Effect of NO Surface Reaction
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Effect of Source and Bias Powers on Etch Rate and Etch Selectivity
3.2. Effect of the O2/NF3 Gas Ratio on Etch Rates and Etch Selectivity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yeo, Y.C.; Lu, Q.; Ranade, P.; Takeuchi, H.; Yang, K.J.; Polishchuk, I.; King, T.J.; Hu, C.; Song, S.C.; Luan, H.F.; et al. Dual-metal gate CMOS technology with ultrathin silicon nitride gate dielectric. IEEE Electron Device Lett. 2001, 22, 227–229. [Google Scholar]
- Silvagni, A. 3D NAND flash based on planar cells. Computers 2017, 6, 28. [Google Scholar] [CrossRef]
- Kim, S.; Kwon, D.W.; Lee, S.H.; Park, S.K.; Kim, Y.; Kim, H.; Kim, Y.G.; Cho, S.; Park, B.G. Characterization of the vertical position of the trapped charge in charge-trap flash memory. J. Semicond. Technol. Sci. 2017, 17, 167–173. [Google Scholar]
- Tzeng, S.D.; Gwo, S. Charge trapping properties at silicon nitride/silicon oxide interface studied by variable-temperature electrostatic force microscopy. J. Appl. Phys. 2006, 100, 023711. [Google Scholar] [CrossRef]
- Kim, S.B.; Choi, D.G.; Hong, T.E.; Park, T.S.; Kim, D.S.; Song, Y.W.; Kim, C.I. Study on self-aligned contact oxide etching using C5F8/O2/Ar and C5F8/O2/Ar/CH2F2 plasma. J. Vac. Sci. Technol. A 2005, 23, 953–958. [Google Scholar] [CrossRef]
- Schaepkens, M.; Standaert, T.E.F.M.; Rueger, N.R.; Sebel, P.G.M.; Oehrlein, G.S.; Cook, J.M. Study of the SiO2-to-Si3N4 etch selectivity mechanism in inductively coupled fluorocarbon plasmas and a comparison with the SiO2 -to-Si mechanism. J. Vac. Sci. Technol. A 1999, 17, 26–37. [Google Scholar] [CrossRef]
- Tatsumi, T.; Matsui, M.; Okigawa, M.; Sekine, M. Control of surface reactions in high-performance SiO2 etching. J. Vac. Technol. B 2000, 18, 1897–1902. [Google Scholar] [CrossRef]
- Abe, H.; Yoneda, M.; Fujiwara, N. Developments of plasma etching technology for fabricating semiconductor devices. Jpn. J. Appl. Phys. 2008, 47, 1435–1455. [Google Scholar] [CrossRef]
- Oehrlein, G.S.; Hamaguchi, S. Foundations of low-temperature plasma enhanced materials synthesis and etching. Plasma Source Sci. Technol. 2018, 27, 023001. [Google Scholar] [CrossRef]
- Aritome, S. NAND Flash Memory Technologies, 1st ed.; John Wiley & Sons: Hoboken, NJ, US, 2015; p. 273. [Google Scholar]
- Park, K.T.; Nam, S.; Kim, D.; Kwak, P.; Lee, D.; Choi, Y.H.; Choi, M.H.; Kwak, D.H.; Kim, D.H.; Kim, M.S.; et al. Three-dimensional 128 Gb MLC vertical NAND flash memory with 24-WL stacked layers and 50 MB/s high-speed programming. IEEE J. Solid-State Circ. 2015, 50, 204–213. [Google Scholar] [CrossRef]
- Kim, J.; Hong, A.J.; Kim, S.M.; Shin, K.S.; Song, E.B.; Hwang, Y.; Xiu, F.; Galatsis, K.; Chui, C.O.; Candler, R.N.; et al. A stacked memory device on logic 3D technology for ultra-high-density data storage. Nanotechnology 2011, 22, 254006. [Google Scholar] [CrossRef]
- Song, J.; Park, K.; Jeon, S.; Lee, J.; Kim, T. Development of a novel wet cleaning solution for Post-CMP SiO2 and Si3N4 films. Mater. Sci. Semicond. Process. 2022, 140, 10635. [Google Scholar] [CrossRef]
- Zhou, Z.; Han, S.; Wu, Y.; Hang, T.; Ling, H.; Guo, J.; Wang, S.; Li, M. Study on the SiO2 wet-etching mechanism using γ-ureidopropyltriethoxysilane as an inhibitor for 3D NAND fabrication. ACS Appl. Electron. Mater. 2024, 6, 2788–2795. [Google Scholar] [CrossRef]
- Kim, T.; Park, T.; Lim, S. Improvement of Si3N4/SiO2 etching selectivity through the passivation of SiO2 surface in aromatic carboxylic acid-added H3PO4 solutions for the 3D NAND integration. Appl. Surf. Sci. 2023, 619, 156758. [Google Scholar] [CrossRef]
- Lieberman, M.A.; Lichtenberg, A.J. Principles of Plasma Discharges and Materials Processing, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005; pp. 289–299. [Google Scholar]
- He, B.; Yang, Y.; Yuen, M.F.; Chen, X.F.; Lee, C.S.; Zhang, W.J. Vertical nanostructure arrays by plasma etching for applications in biology, energy, and electronics. Nano Today 2013, 8, 265–289. [Google Scholar] [CrossRef]
- Stephen, J.F. An overview of dry etching damage and contamination effects. J. Electrochem. Soc. 1990, 137, 3885–3892. [Google Scholar]
- Pang, S.W. Surface damage on GaAs induced by reactive ion etching and sputter etching. J. Electrochem. Soc. 1986, 133, 784–787. [Google Scholar] [CrossRef]
- Standaert, T.E.F.M.; Hedlund, C.; Joseph, E.A.; Oehrlein, G.S.; Dalton, T.J. Role of fluorocarbon film formation in the etching of silicon, silicon dioxide, silicon nitride, and amorphous hydrogenated silicon carbide. J. Vac. Sci. Technol. A 2004, 22, 53–60. [Google Scholar] [CrossRef]
- Machima, P.; Hershkowitz, N. SiO2 and Si3N4 etch mechanisms in NF3/hydrocarbon plasma. J. Phys. D Appl. Phys. 2006, 39, 673–684. [Google Scholar] [CrossRef]
- Pankratiev, P.; Barsukov, Y.; Vinogradov, A.; Volynets, V.; Kobelev, A.; Smirnov, A.S. Selective SiN/SiO etching by SF6/H2/Ar/He plasma. AIP Conf. Proc. 2019, 2179, 020017. [Google Scholar]
- Hsiao, S.N.; Ishikawa, K.; Hayashi, T.; Ni, J.; Tsutsumi, T.; Sekine, M.; Hori, M. Selective etching of SiN against SiO2 and poly-Si films in hydrofluoroethane chemistry with a mixture of CH2FCHF2, O2, and Ar. App. Surf. Sci. 2021, 541, 148439. [Google Scholar] [CrossRef]
- Zhu, X.M.; Pu, Y.K. Using OES to determine electron temperature and density in low-pressure nitrogen and argon plasmas. Plasma Sources Sci. Technol 2008, 17, 024002. [Google Scholar] [CrossRef]
- Zhu, X.M.; Pu, Y.K. Optical emission spectroscopy in low-temperature plasmas containing argon and nitrogen: Determination of the electron temperature and density by the line-ratio method. J. Phys. D Appl. Phys. 2010, 43, 403001. [Google Scholar] [CrossRef]
- Zhu, X.M.; Chen, W.C.; Li, J.; Pu, Y.K. Determining the electron temperature and the electron density by a simple collisional–radiative model of argon and xenon in low-pressure discharges. J. Phys. D Appl. Phys. 2009, 42, 025203. [Google Scholar] [CrossRef]
- Park, H.M.; Garvin, C.; Grimard, D.S.; Grizzle, J.W. Control of ion energy in a capacitively coupled reactive ion etcher. J. Electrochem. Soc. 1998, 145, 4247–4252. [Google Scholar] [CrossRef]
- Coburn, J.W. Role of ions in reactive ion etching. J. Vac. Sci. Technol. A 1994, 12, 1417–1424. [Google Scholar] [CrossRef]
- Catherine, Y. Plasma Processing, 1st ed.; Electrochemical Society: Pennington, NJ, US, 1985; p. 317. [Google Scholar]
- Kawata, H.; Murata, K.; Nagami, K. The dependence of silicon etching on an applied DC potential in CF4 + O2 plasmas. J. Electrochem. Soc. 1985, 132, 206–211. [Google Scholar] [CrossRef]
- Nagy, A.G. High-speed reactive ion etching of silicon by the application of a confined DC bias. Solid State Technol. 1983, 26, 173–178. [Google Scholar]
- Brčka, J.; Harman, R.; Blackburn, A. The selectivity of poly Si and SiO2 etching using a negative dc biasing of powered electrode. Vacuum 1986, 36, 531–533. [Google Scholar] [CrossRef]
- Bruce, R.H.; Reinberg, A.R. Profile control with D-C bias in plasma etching. J. Electrochem. Soc. 1982, 129, 393–396. [Google Scholar] [CrossRef]
- Giapis, K.P.; Sadeghi, N.; Margot, J.; Gottscho, R.A.; Lee, T.C.J. Limits to ion energy control in high density glow discharges: Measurement of absolute metastable ion concentrations. J. Appl. Phys. 1993, 73, 7188–7194. [Google Scholar] [CrossRef]
- Lazar, M.; Vang, H.; Brosselard, P.; Raynaud, C.; Cremillieu, P.; Leclercq, J.-L.; Descamps, A.; Scharnholz, S.; Planson, D. Deep SiC etching with RIE. Superlattices Microstruct. 2006, 40, 388–392. [Google Scholar] [CrossRef]
- Gritsenko, V.A.; Kwok, R.W.M.; Wong, H.; Xu, J.B. Short-range order in non-stoichiometric amorphous silicon oxynitride and silicon-rich nitride. J. Non-Cryst. Solids 2002, 297, 96–101. [Google Scholar] [CrossRef]
- Wong, C.K.; Wong, H.; Filip, V.; Chung, P.S. Bonding structure of silicon oxynitride grown by plasma-enhanced chemical vapor deposition. Jpn. J. Appl. Phys. 2007, 46, 3202–3205. [Google Scholar] [CrossRef]
- Kastenmeier, B.E.E.; Matsuo, P.J.; Beulens, J.J.; Oehrlein, G.S. Chemical dry etching of silicon nitride and silicon dioxide using CF4/O2/N2 gas mixtures. J. Vac. Sci. Technol. A 1996, 14, 2802–2813. [Google Scholar] [CrossRef]
- Blain, M.G.; Meisenheimer, T.L.; Stevens, J.E. Role of nitrogen in the downstream etching of silicon nitride. J. Vac. Sci. Technol. A 1996, 14, 2151–2157. [Google Scholar] [CrossRef]
- Kastenmeier, B.E.E.; Matsuo, P.J.; Oehrlein, G.S. Highly selective etching of silicon nitride over silicon and silicon dioxide. J. Vac. Sci. Technol. A 1999, 17, 3179–3184. [Google Scholar] [CrossRef]
- Kastenmeier, B.E.E.; Matsuo, P.J.; Oehrlein, G.S.; Ellefson, R.E.; Frees, L.C. Surface etching mechanism of silicon nitride in fluorine and nitric oxide containing plasmas. J. Vac. Sci. Technol. A 2001, 19, 25–30. [Google Scholar] [CrossRef]
- Reese, R.M.; Dibeler, V.H. Ionization and dissociation of nitrogen trifluoride by electron impact. J. Chem. Phys. 1956, 24, 1175–1177. [Google Scholar] [CrossRef]
- Thynne, J.C.J. Negative ion formation by electron impact in nitrogen trifluoride. J. Phys. Chem. 1969, 63, 1586–1588. [Google Scholar] [CrossRef]
- Lowe, H.D.; Haruhiro, H.; Goto, H.H.; Ohmi, T. Control of ion energy and flux in a dual radio frequency excitation magnetron sputtering discharge. J. Vac. Sci. Technol. A 1991, 9, 3090–3099. [Google Scholar] [CrossRef]
- Lee, J.W.; Donohue, J.F.; Mackenzie, K.D.; Westerman, R.; Johnson, D.; Pearton, S.J. Mechanism of high density plasma processes for ion-driven etching of materials. Solid-State Electron. 1999, 43, 1769–1775. [Google Scholar] [CrossRef]
- Mayer, T.M.; Barker, R.A.; Whitman, L.J. Investigation of plasma etching mechanisms using beams of reactive gas ions. J. Vac. Sci. Technol. 1981, 18, 349–352. [Google Scholar] [CrossRef]
- Matsui, S.; Yamato, T.; Aritome, H.; Namba, S. Fabrication of SiO2 blazed holographic gratings by reactive ion-etching. Jpn. J. Appl. Phys. 1980, 19, 126–128. [Google Scholar] [CrossRef]
- Okano, H.; Horiike, Y. Plasma Processing; Frieser, R.G., Mogab, C.J., Eds.; Softbound Proceedings Series; Electrochemical Society: Pennington, NJ, USA, 1981; p. 199. [Google Scholar]
- Nordheden, K.J.; Verdeyen, J.T. The effect of oxygen on the etch rate of NF3 discharges. J. Electrochem. Soc. 1986, 133, 2168–2171. [Google Scholar] [CrossRef]
- Konuma, M.; Bauser, E. Mass and energy analysis of gaseous species in NF3 plasma during silicon reactive ion etching. J. Appl. Phys. 1993, 74, 62–67. [Google Scholar] [CrossRef]
- Kastenmeier, B.E.E.; Matsuo, P.J.; Oehrlein, G.S.; Langan, J.G. Remote plasma etching of silicon nitride and silicon dioxide using NF3/O2 gas mixtures. J. Vac. Sci. Technol. A 1998, 16, 2047–2056. [Google Scholar] [CrossRef]
- Mogab, C.J.; Adams, A.C.; Flamm, D.L. Plasma etching of Si and SiO2-the effect of oxygen additions to CF4 plasmas. J. Appl. Phys. 1978, 49, 3796–3803. [Google Scholar] [CrossRef]
Gas Mixture | Reactor | Si3N4 Selectivity | Ref. |
---|---|---|---|
CHF3 | Radio-frequency inductively coupled plasma | 1 | [6] |
C2F6 | 0.8 | ||
C3F6 | 0.5 | ||
C3F6, H2 | 0.2 | ||
CHF3 | Radio-frequency inductively coupled plasma | 1.3 | [20] |
C4F8 | 0.4 | ||
NF3, C2H4 | Magnetically confined inductively coupled plasma | 0.75 | [21] |
C5F8, O2 | Capacitively coupled plasma | 10 | [22] |
SF6, H2 | Magnetic neutral loop discharge plasma | 2.4 | [23] |
CH2FCH2F, O2, Ar | 3.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tung, N.H.; Lee, H.; Dinh, D.K.; Kim, D.-W.; Lee, J.Y.; Eom, G.W.; Kim, H.-U.; Kang, W.S. Enhancing Si3N4 Selectivity over SiO2 in Low-RF Power NF3–O2 Reactive Ion Etching: The Effect of NO Surface Reaction. Sensors 2024, 24, 3089. https://doi.org/10.3390/s24103089
Tung NH, Lee H, Dinh DK, Kim D-W, Lee JY, Eom GW, Kim H-U, Kang WS. Enhancing Si3N4 Selectivity over SiO2 in Low-RF Power NF3–O2 Reactive Ion Etching: The Effect of NO Surface Reaction. Sensors. 2024; 24(10):3089. https://doi.org/10.3390/s24103089
Chicago/Turabian StyleTung, Nguyen Hoang, Heesoo Lee, Duy Khoe Dinh, Dae-Woong Kim, Jin Young Lee, Geon Woong Eom, Hyeong-U Kim, and Woo Seok Kang. 2024. "Enhancing Si3N4 Selectivity over SiO2 in Low-RF Power NF3–O2 Reactive Ion Etching: The Effect of NO Surface Reaction" Sensors 24, no. 10: 3089. https://doi.org/10.3390/s24103089
APA StyleTung, N. H., Lee, H., Dinh, D. K., Kim, D. -W., Lee, J. Y., Eom, G. W., Kim, H. -U., & Kang, W. S. (2024). Enhancing Si3N4 Selectivity over SiO2 in Low-RF Power NF3–O2 Reactive Ion Etching: The Effect of NO Surface Reaction. Sensors, 24(10), 3089. https://doi.org/10.3390/s24103089