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Abstract: During robot-assisted rehabilitation, failure to recognize lower limb movement may
efficiently limit the development of exoskeleton robots, especially for individuals with knee pathology.
A major challenge encountered with surface electromyography (sEMG) signals generated by lower
limb movements is variability between subjects, such as motion patterns and muscle structure. To this
end, this paper proposes an sEMG-based lower limb motion recognition using an improved support
vector machine (SVM). Firstly, non-negative matrix factorization (NMF) is leveraged to analyze
muscle synergy for multi-channel sEMG signals. Secondly, the multi-nonlinear sEMG features are
extracted, which reflect the complexity of muscle status change during various lower limb movements.
The Fisher discriminant function method is utilized to perform feature selection and reduce feature
dimension. Then, a hybrid genetic algorithm-particle swarm optimization (GA-PSO) method is
leveraged to determine the best parameters for SVM. Finally, the experiments are carried out to
distinguish 11 healthy and 11 knee pathological subjects by performing three different lower limb
movements. Results demonstrate the effectiveness and feasibility of the proposed approach in three
different lower limb movements with an average accuracy of 96.03% in healthy subjects and 93.65%
in knee pathological subjects, respectively.

Keywords: surface electromyography; non-negative matrix factorization; multi-nonlinear features;
lower limb motion recognition; GA-PSO-SVM

1. Introduction

Lower-limb exoskeleton robots have been developed to assist elderly or disabled
individuals’ movements in daily activities [1–3] and to improve the recovery effect in patho-
logical rehabilitation [4]. The principal to realize the effective control of robotic exoskeletons
is accurately inferring the human users’ motion intentions. Among available sensing tech-
niques, surface electromyography (sEMG) signals are preferred for controling information
in rehabilitated exoskeleton robots, which mainly consider two factors: sEMG signals could
not only detect human user motion intentions ahead of actual physical movements [5], and
also directly reflect people’s motion states by muscle contractions. This characteristic of
sEMG signal can avoid control delays form exoskeleton robotic applications.

As a bioelectrical signal, sEMG signals contain highly relevant biological information
related to human motions. At present, sEMG signals have been extensively performed to
recognize human motion intentions in a variety of ways. For example, motion variables
(i.e., angle velocity, joint angle, etc.) are continuously estimated. Also, human gait or
limb motion modes (i.e., walking, sitting, etc.) are distinguished via machine learning
algorithm recognition-based approaches. In particular, many studies have been devoted to
recognizing human motion intentions.

In the field of human motion intention recognition, it is crucial to extract features
that conform to various motion changes or make motion changes more sensitive. Most
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existing works aim to directly extract features from sEMG signals, for instance, time
domain, frequency domain, time–frequency domain, nonlinear domain, depth features,
etc. For instance, Emilia et al. [6] extracted 15 time domain features to recognize lower
limb movements, with an average recognition accuracy of over 96.7%. Root mean square
(RMS), zero crossing (ZC), slope sign change (SSC), and waveform length (WL) in the time
domain, and wavelet transform in the frequency domain, were extracted and fused to
achieve over 95% classification accuracy in five lower limb movements [7]. For nonlinear
features, Lempel Ziv complexity (LZC) and entropy features were also utilized for motion
identification analysis [8–10]. Zhang et al. [11] extracted the time domain, frequency
domain, and sample entropy (SampEn) and proposed an improved differential evolution
(DE) algorithm to optimize the weight value of each feature and achieve the optimal
combination of multiple features.

In addition, existing recognition methods of movement classification via machine
learning algorithms (i.e., SVM, K-nearest neighbor (KNN), etc.) have also been applied.
Since SVM has a superior ability to deal with uncertainties under dynamic conditions, it
has been extensively implemented in limb motion classification. For example, a lower limb
motion recognition approach based on ReliefF and kernel principal component analysis
(KPCA) combined with SVM was proposed. The average recognition accuracy was im-
proved by 10.86% and 2.29% compared with ReliefF-KPCA-BP and ReliefF-KPCA-PNN,
respectively [12]. The frequency domain features, such as energy and variance of wavelet
packet coefficients were extracted, and a particle swarm optimization–improved SVM clas-
sification model was constructed to reach 90.66% classification accuracy in six commonly
used upper limb movements [13]. A back propagation (BP) neural network algorithm
model based on SVM was proposed, which improved the average recognition accuracy
by 9.4% compared with the SVM algorithm in lower limb motions [14]. In particular,
SVM parameters have a great influence on the recognition accuracy of movements. Thus,
seeking the optimal parameter values for SVM becomes a big challenge in the motion
recognition field. Heuristic algorithms (i.e., PSO, whale optimization algorithm (WOA),
etc.) are good candidates for optimizing and selecting the SVM model parameters. For
instance, an improved WOA algorithm was proposed to reach the optimal parameters of
the SVM model [15]. Liu et al. [16] extracted multi-domain features of sEMG signals, and si-
multaneously established an accurate SVM classification model by proposing an improved
WOA. Cao et al. [17] proposed a novel adaptive mutation particle swarm optimization
(AMPSO) to optimize the parameters of the SVM algorithm for recognition of sEMG-based
limb motions.

Since the muscles associated with lower limb movements overlap each other, the
corresponding sEMG signals are complex in nature. Thus, classifying lower limb move-
ments is more challenging for researchers, compared to the recognition of the upper limb
movements. However, the objects of most existing methods focus on healthy individuals,
with unsatisfactory results for subjects having knee issues. In addition, the functionality of
each muscle performing the task-specific lower limb movements (i.e., walking, standing,
etc.) is completely different [18]. The knee joint has multiple degrees of freedom move-
ments in flexion, extension, adduction, abduction, medial, and lateral, in which flexion and
extension play the most important roles in human lower limb movements and are easy to
injure during gait exercise [16,19].

In this paper, the muscles involved in flexion and extension of knee joints are selected
to provide the object. A muscle synergy approach is adopted to select the most appropriate
muscles. Moreover, nonlinear features of sEMG are believed to be effective in classifying
the movements. The Fisher discriminant function method based on the Fisher score (FS) is
adopted to reduce the dimension of the multi-nonlinear feature vectors, which makes it
conducive for the improved SVM classifier to accuracy recognize lower limb movements.
The objective of this paper is to find out the optimal parameter values of the SVM model by
proposing an improved hybrid GA-PSO to distinguish various lower limb movements in
individuals with and without knee pathology. Hence, an sEMG-based lower limb motion
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recognition using SVM with an improved hybrid GA-PSO algorithm is proposed. The main
contributions are as follows.

• Non-negative matrix factorization (NMF) method is applied to analyze muscle synergy
for multi-channel sEMG signal of various lower limb movements so as to select the
most appropriate muscles.

• Taking into account the non-linearity and non-stationary of sEMG, we extract the
multi-nonlinear features (e.g., approximate entropy (ApEn), SampEn, fuzzy entropy
(FuzzyEn), LZC, Lyapunov, and correlation dimension (CD)). Also, the feature selec-
tion is performed with the help of the FS based on the Fisher discriminant function
method, prior to feeding the dimension-reduced features to the improved SVM.

• Since the hybrid GA-PSO algorithm has both high convergence efficiency and the
capability of avoiding being trapped in a local optimal solution, this approach is
leveraged to optimize the SVM to find out the best parameters (i.e., penalty factor
p and kernel function parameters g). Simultaneously, a GA-PSO-SVM approach is
utilized to construct a lower limb motion recognition model.

• The proposed approach performance has been verified in the task of classifying three
lower limb movements associated with knee muscles in healthy individuals (96.03%)
and subjects afflicted with knee disorders (93.65%), respectively.

2. The Proposed Approach Framework

sEMG is a kind of bioelectric signal generated with muscle contraction, which drives
joint movement and reflects the motion information of the limb. As the electrical signal
source of muscle activity, sEMG essentially reflects the movement state of nerve, bone, and
muscle systems [16]. Hence, we try to combine the sEMG signal with the motion state of
the knee joint musculoskeletal system, as revealed in Figure 1a. Also, the NMF method is
utilized to select optimal muscles for various lower limb movements. Specifically, there are
two types of subjects with and without knee pathology performing three different lower
limb movements (e.g., walking, sitting, and standing). For each subject, in Figure 1b, we
label the trials of “walking” as class 0, the trials of “standing” as class 1, and the trials of
“sitting” as class 2. We further extract and reduce multi-nonlinear features of sEMG signals
as input to an improved GA-PSO-SVM recognition model by classifying three lower limb
movements.
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Figure 1. The proposed approach framework. (a) Musculoskeletal model of lower limb. (b) Lower
limb movement recognition model.

2.1. Selection of Muscles

Muscle synergy reflects the shared neural drives of motor units across different mus-
cles, which has also been widely applied in limb motion recognition [20]. In this paper,
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vastus medialis (VM), rectus femoris (RF), biceps femoris (BF), and semitendinosus (ST) are
selected as the four most relevant muscles in the lower limb motions, while the contribution
of each muscle varies in various movements. Hence, muscle synergy analysis is applied to
reduce the data redundancy and obtain the muscles with the greatest contribution during
movements. According to muscle synergy theory, the contribution of each muscle in a
movement can be obtained through a linear combination of muscle synergies and activation
coefficients [16].

VN×T ≈ WN×K × HK×T ≈ [W1W2 · · · , WK]×
[H1H2 · · · , HK]

T ≈ ΣK
i=1Wi Hi,

(1)

where V is the given muscle activity level matrix, N is the channel number, T is the time
series length, and K is the number of muscle synergies. W and H are the muscle synergy
matrix and the activation coefficients matrix. In addition, Wi represents the muscle synergy
and Hi indicates the activation coefficients of the i muscle synergy, respectively.

NMF is a decomposition technique, which can transform the sEMG signals from the
muscle activity space to the synergy space. More exactly, muscle activation level matrix
V ∈ Rm×n is decomposed into two factors W ∈ Rm×r and H ∈ Rr×n. The relation is
given by,

Vm×n = Wm×r × Hr×n + Em×n, (2)

where m and n are the number of recorded muscles and data samples, r indicates the
dimension of muscle synergies, and E is a matrix of residuals, respectively. In particular,
the dimension of muscle synergies is determined based on 90% of the total accumulated data
variance. The muscle synergy space Y ∈ Rk×q is implemented as the input of the muscle
synergy-driven musculoskeletal model, where k and q are mentioned above, respectively.

2.2. Multi-Nonlinear Feature Extraction and Selection

2.2.1. Feature Extraction

Different sEMG features can reflect various muscle statuses during movement. More-
over, as sEMG belongs to the nonlinear time series, here, six nonlinear features from sEMG,
i.e., ApEn, SampEn, FuzzyEn, LZC, Lyapunov, and CD, are extracted [21]. Specifically,
entropy could characterize the complexity of the signal series, and the greater the values
are, the more complex the signal is. Also, LZC, Lyapunov, and CD could describe the
irregularity, complexity, and dynamical changes of sEMG [10]. Six nonlinear features will
be introduced in sequel.

Entropy. ApEn relies on the data length [22], and SampEn is an improvement of
ApEn, independent of data length and insensitive to missing data [23]. Nevertheless, both
ApEn and SampEn measure similarity using a unit step function, with a large mutation
and lacking continuity of entropy. Note that FuzzyEn utilizes an exponential function
to blur the similarity measure so that entropy changes continuously and smoothly with
parameters [24]. In addition, the vector similarity of ApEn and SampEn is determined
by the absolute value difference with the data baseline drift. FuzzyEn determines the
similarity of vectors by determining the shape of the fuzzy function with an exponential
function, thereby blurring the similarity measure. Since the exponential function possesses
the two desired properties, continuous ensures the similarity does not change abruptly
and convex ensures self-similarity is maximum, the imported exponential functions do not
sacrifice precision.

For an N sample time series {x(i) : 1 ≤ i ≤ N}, a fixed value of m and τ integers and
tolerance r1, forms vector sequences

{
Xm

i , i = 1, · · · , N − m + 1
}

as follows:

Xm
i = {x(i), x(i + 1τ), · · · , x(i + (m − 1)τ)}, (3)

where Xm
i represents m consecutive x values.
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The distance dij between Xm(i) and Xm(j) is as follows:

dij = d[Xm
i , Xm

j ] = max
k∈(0,m−1)

{|x(i + kτ)− x(j + kτ)|}. (4)

Estimate the probability Cm
i (r1) as:

Cm
i (r1) =

1
N − (m − 1)τ

N−(m−1)τ

∑
j=1

θ(dij − r1) (5)

and

ϕm(r1) =
1

N − (m − 1)τ

N−(m−1)τ

∑
i=1

ln Cm
i (r1), (6)

where θ is the Heaviside function,

θ =

{
0, dij ≤ r1

1, dij > r1
. (7)

Therefore, for a finite sequence of length N, both ApEn and SampEn of the signal are
obtained

ApEn(m, r1, N) = Œm(r1)− Œm+1(r1) (8)

and
SampEn(m, r1, N) = ln Œm(r1)− ln Œm+1(r1), (9)

respectively.
In addition, given n, the similarity degree Dij from Xm

i to Xm
j is calculated through a

fuzzy function µ(dij, n, r1) as:

Dij(n, r1) = µ(dij, n, r1) = e−(dij/r1)
n
. (10)

Define the function φm as:

φm(n, r1) =
1

N − m + 1

N−m+1

∑
i=1

(
1

N − m

N−m

∑
j=1,j ̸=i

Dij), (11)

and thus, the FuzzyEn of the signal is obtained as:

FuzzyEn(m, n, r1, N) = ln’m(n, r1)− ln’m+1(n, r1). (12)

It is remarked that the parameter m is defined by the data itself and represents the
length of the repeating modes in the sample vectors. Also, the tolerance r1 means the
constraint on the repeated modes. In general, m is set to 2, and r1 is 0.15∗ standard
deviation in biological time series analysis [25].

Lempel-Ziv complexity. LZC evaluates the chaotic state (that is, complexity) and
randomness of the time series signal by measuring the number of different sub-strings and
their occurrence rates along a given sequence [9,26].

For a time series {X = x(1), x(2), · · · , x(N)} with length N, first transform it into a
binary symbolic sequence {S = s(1), s(2), · · · , s(N)} by,

s(i) =

{
0, i f x(i) < X̄
1, otherwise

, (13)

where X̄ is the mean value of the signal X(N).
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Initialize both S = s(1) and Q = s(2), and set the complexity index c(N) = 1. Then,
define SQ by combining S with Q, and SQr represents the substring obtained from SQ by
deleting the last letter of SQ.

Determine whether Q belongs to a subsequence of SQr. If so, Q is no new pattern
at present, the complexity remains unchanged; otherwise, Q stands for a new pattern,
the complexity index increases. The former processes are represented until all characters in
the sequence S are traversed to obtain the complexity index c(N).

Note that c(N) indicates signal complexity index and is related to N. In general,
to avoid the c(N) being affected by the time series length N, the normalized LZC complexity
index is,

LZC =
c(N)(log(N) + 1)

N
, (14)

when N is large, LZC can be simplified as:

LZC =
c(N) log(N)

N
. (15)

In particular, the normalized complexity index has upper and lower limits more
conducive to the extraction of nonlinear dynamic features.

Chaotic features. Motivated by our previous works [21], both CD and Lyapunov are
extracted as the chaotic features, to reflect the complexity of sEMG signals.

The phase space Y is reconstructed by embedding dimension m1 and relay time τ1,
i.e.,

Y =
[

xN , xN−τ1 , · · · , xN−(m1+1)τ1

]
. (16)

where m1 and τ1 are determined by the convergence result and the sampling interval,
respectively.

The correlation dimension is expressed by,

CDm = lim
r→0

ln CI(r2)

ln r2
, (17)

where CI(r2) is the association function representing the probability, in which the distance
between two points is less than r2. Further, both CDm and CI(r2) satisfy the logarithmic
linear relationship, θ is the Heaviside function,

CI(r2) =
1

N2

N

∑
j=1

N

∑
i=1

θ(r2 − |Yi − Yj|), i ̸= j. (18)

By the Wolf algorithm [27], the Lyapunov exponent is expressed by,

λ =
1

tM − t0

M

∑
k=1

log2
L′(tk)

L(tk)
, (19)

where L(tk) is the distance between points Y(ti) and its nearest neighbor point, and it is the
evolution of the two points with time t, M is the total number of iterations, respectively.

2.2.2. Features Selection

In the data signal sequel, each feature is denoted by a vector of length 24,

fi = [LZCVM, LZCST , LZCBF, LZCRF, CDVM, · · · , CDRF, LyVM, · · · , LyRF,

SEVM, · · · , SERF, AEVM, · · · , AERF, FEVM, · · · , FERF].
(20)

The subscript of a feature vector component stands for the muscle. Hence, a matrix
F ∈ R24×Ntrain = [ f1, · · · , fNtrain ] can represent the entire set of features. The Fisher discrim-
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inant function, which takes the ratio of inter-class to intra-class dispersion degree as the
optimization goal, to maximize the discriminant of various samples [28].

For the training sample {x(i)}, SB and Sw indicate the inter-class and intra-class
spacing matrix, respectively,

SB =
N

∑
q=1

Nq(x̄ − x̄q)(x̄ − x̄q)
T (21)

and

Sw =
Q

∑
q=1

Qq

∑
i=1

(xi − x̄q)(xi − x̄q)
T , (22)

where Q and Qq are the number of training sample categories and belonging to class q,
x̄ and xi represent the average vector of all training samples and i-th training sample, x̄q
indicates the average vector of the q-th training sample, respectively. Thus, the separability
index FS is obtained, i.e., FS = tr(SB)

tr(Sw)
, where, tr(SB) and tr(Sw) are traces of the inter-class

and intra-class spacing matrix, respectively. Also, the larger the index FS, the more accurate
the classification would be achieved in the sample space.

According to FS, that is, {FS1, FS2, · · · , FS6}, an optimal set of feature components
is selected, which would reduce the computational overheads of subsequent recognition
tasks, and hopefully maintain the accuracy of the sEMG classifier.

In short, the Fisher discriminant function maps samples from high-dimensional to low-
space, such that the projected samples have large inter-class spacing and small intra-class
spacing in low-dimensional space to achieve the optimal separability of samples in low-
dimensional space. Thus, an FS is computed for each feature component according to Fisher
discriminant function, separately. Next, the top-q ranked feature components with large
scores are picked to alleviate the complexity and achieve feature dimensionality reduction.

2.3. Improved Hybrid GA-PSO Algorithm with SVM

2.3.1. Hybrid GA-PSO Algorithm

PSO, a population-based method, is desirable for regarding each individual in a
population as a particle in the search space [29]. Supposing the D-dimensional location
of the i-th particle at iteration time t is represented as Lt

i =
{

lt
i1, lt

i2, · · · , lt
iD
}

, its velocity is
Vt

i =
{

vt
i1, vt

i2, · · · , vt
iD
}

, the optimal location found so far (i.e., the personality best position,
pbest) is Lpt

i =
{

lpt
i1, lpt

i2, · · · , lpt
iD
}

until iteration t, the optimal location found by the
swarm so far (i.e., the global best position, gbest) is Lgt

i =
{

lgt
i1, lgt

i2, · · · , lgt
iD
}

, and then,
this particle is updated as follows:

vt+1
ij = wvt

ij + c1r3(lpt
ij − lt

ij) + c2r4(lgt
ij − lt

ij) (23)

and
lt+1
ij = lt

ij + vt+1
ij , (24)

where w is an inertia weight parameter of the particle and is set as 1, c1 and c2 indicates the
cognition and social learning factor, and r3 and r4 are random numbers between [0, 1], respectively.

GA [30], an effective optimization algorithm, is desirable to solve various problems
in engineering applications. Also, it simulates the process of population evolution and
performs a series of genetic operations, such as selection, crossover, and mutation on the
current population, to generate a new generation and gradually progress the population to
a state close to the optimal solution. Therefore, in this paper, both crossover and mutation
in GA are incorporated into PSO to increase the diversity of populations.

Assuming that two individuals zi
t, zj

t(i ̸= j) crossover arithmetically at time t, the two
new individuals are generated at time t + 1, i.e.,

zi
t+1 = αzj

t + (1 − α)zi
t (25)
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and
zj

t+1 = αzi
t + (1 − α)zj

t, (26)

if α is constant, the crossover operation becomes uniform arithmetic crossover; otherwise,
it is non-uniform arithmetic crossover.

The mutation operation has two advantages: it can give GA the ability of local random
search and maintain population diversity to prevent premature convergence. For gene
operations in the GA, mutation is partially incorporated into PSO to increase the population
diversity. In this paper, the position liD of the i-th particle in the D-dimensional space in the
PSO is replaced by individual zi

t, and the historical optimal individual zi
max is leveraged to

replace the individual optimal lpt
ij in PSO. Similarly, the historical optimal species group

zj
max is leveraged to replace the global optimal lgt

ij, and cumulative difference ∆zi
max,t of

zi
max is used to replace vt+1

ij as follows:

∆zi
max,t = ∆zi

max,t−1 +
(∆zi

max,t − ∆zi
max,t−1)

t
. (27)

Substituting (27) into (23) and (24), respectively, the velocity and position update of
the mutation are obtained as,

∆zi
max,t+1 = ∆zi

max,t + c1r3(zi
max − lt

ij) + c2r4(z
j
max − lt

ij) (28)

and
lt+1
ij = lt

ij + ∆zi
max,t+1. (29)

To summarize, the hybrid GA-PSO approach can be described in Algorithm 1.

Algorithm 1 Pseudo-code of GA-PSO.

1: Initialize particle swarm size M, cognition and social learning factor c1 and c2 ∈ [0, 4],
random values r3 and r4 ∈ [0, 1], maximum iterations T, search dimension N, particle
velocity V, particle position P, convergence accuracy C.

2: Conduct selection, crossover and mutation operations for search particle by formulas
(26)–(29).

3: Calculate the fitness of each particle. The fitness and its position of the optimal search
particle are determined by ranking the fitness.

4: while t ≤ T do
5: for each search particle do
6: Update lpt

ij and lgt
ij

7: if lpt
ij ≤ pbest and lgt

ij ≤ gbest then
8: update the velocity and position of search particle by (22) and (23)
9: end if

10: end for
11: Conduct selection, crossover and mutation operations for the search particle accord-

ing to formulas (26)–(29).
12: Calculate the fitness of each search particle. The fitness and its location of the

optimal search particle are determined by ranking the fitness.
13: t = t + 1
14: end while
15: Return the velocity and position of the optimal search particle.

2.3.2. Improved GA-PSO-SVM Algorithm

Admittedly, options abound for the sEMG classification, e.g., LDA, neural network,
and SVM. In particular, SVM, is an effective recognition method in lower limb sEMG, but,
whose performance would be significantly influenced by the kernel function parameter g
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and penalty factor p [31]. Hence, the parameters of SVM should be appropriately set to
satisfy a high modeling capability under various identification situations.

The PSO algorithm, as a heuristic algorithm, is a good candidate to optimize and
select the model parameters in SVM. However, the PSO is easily trapped in local opti-
mal solutions [29]. The GA algorithm draws on the experience of natural selection and
Mendelian laws of heredity to run computational processes with unique chromosome
coding and decoding operations. Nevertheless, the coding and decoding process increases
the calculation complexity [30]. Also, GA could evaluate multiple solutions in the search
space to reduce the risk of falling into a locally optimal solution. Leveraging both GA and
PSO, we establish a hybrid algorithm combining both GA and PSO to optimize the SVM
model. More specifically, both high convergence efficiency and the ability to avoid falling
into local optimal solutions are mainly associated with PSO and GA [32], respectively.

We aim to optimize the SVM by leveraging a hybrid GA-PSO and applying it to seek
the best parameters. In particular, the radial basis function is adopted as a kernel function.
Figure 2 describes the chart of the GA-PSO-SVM algorithm for lower limb movement
classification, as follows: (i) The parameters p and g are initialized and search particle
sij = (pi, gi) is set; (ii) SVM classification error rate is defined as the fitness function so
that sij in PSO contains the model parameters to be optimized in SVM; (iii) A hybrid
GA-PSO algorithm is utilized to update the individual positions iteratively, and meanwhile,
the optimal model parameters (pd, gd) that correspond to the minimum fitness are gener-
ated during the optimization process; (iv) GA-PSO-SVM classifier model is constructed to
optimize parameters and output the movement classification results.

GA-PSO

Obtain the best 

parameters

Crossover

Mutation

Calculate the V of 

each particle

Calculate the  Lb and 

Gb of particle 

Update the V and P 

of each particle

Initialize parameters

End

Meet termination 

conditions?

N

Y

Initialize the position 

of p and g

SVM

Classification Error 

Rate

Individual Fitness 

Function 

GA-PSO Algorithm

Update

Detailed 
process

Figure 2. Flow chart of genetic algorithm–particle swarm optimization–support vector machine
(GA-PSO-SVM) algorithm for lower limb motion classification.

3. Experimental Protocol and Results Discussion

3.1. Experimental Protocol

A publicly available dataset is discussed in this study, which can be found in the UCI
machine learning repository [33]. This dataset was acquired from 22 male participants older
than 18 years of age. Also, this dataset contains signals from eleven subjects with knee
normality and abnormality, previously diagnosed by a professional. The sEMG is recorded
by the acquisition equipment (MWX8, USA) with a sampling frequency of 1000 Hz, and the
real-time data are transmitted through a Bluetooth adapter. Biceps femoris (BF), rectus
femoris (RF), semitendinosus (ST), and vastus medialis (VM) are the four relevant muscles
to the knee joint flexion and extension movement. In particular, RF and BF are utilized for
the extension of the knee joint and flexion of the hip joint, respectively; ST is used for the
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extension and abduction of the hip joint and flexion of the knee joint; and VM is leveraged
for the abduction of the hip joint [34]. Also, each subject performs three different lower
limb motions (i.e., walking, standing, and sitting).

3.2. Results Analysis and Discussion

3.2.1. Signal Preprocessing

The sEMG is highly sensitive to noises and susceptible to external interference, so
preprocessing is required. Since subjects with knee abnormality have slow response, there
will be deviations at the beginning of each movement collection. Thus, to avoid this kind
of biased data, the 200 ms of front and back segments of each motion data are discarded.
In particular, the effective frequency band of the sEMG signal lies between 10 and 400
Hz, and mainly occurs between 10 and 150 Hz [35]. Hence, a fourth order band-pass
Butterworth filter with a cut-off frequency of 50 Hz is utilized to effectively reduce the
influence of baseline drift and artifact noises. The amplitude of the sEMG signals of four
BF muscles corresponding to walking movement with healthy individuals and subjects
having knee pathology before and after preprocessing are presented in Figure 3. Results
show that the sEMG signal is filtered by both 10–150 Hz band-pass filter and 50 Hz notch
filter, to remove high-frequency noises and other artefacts. After filtering, the baseline drift
is effectively removed.
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Figure 3. sEMG preprocessing from biceps femoris (BF) muscle during walking movement. (a) Raw sEMG
spectrum; (b) sEMG spectrum from 10 to 150 Hz; (c) spectrum removing 50 Hz frequency component.

3.2.2. Selection of Muscles

As can be seen from Figure 4, the contribution level of muscle obtained by the same
muscle during various movements and subjects are quite different. Thus, it is necessary
to select the muscle with the highest correlation with a specific motion [16]. Nevertheless,
how to determine the best muscle for healthy and pathology subjects when performing
different lower limb movements is challenging. The four muscles, i.e., RF, BF, VM, and ST,
are selected as previously mentioned in Section 3.1. We will derive the contribution level of
the selected muscles through muscle synergy. In more detail, the weight coefficient of each
muscle is calculated by the NMF method, by analyzing the muscle synergy and obtaining
contribution level of all muscles. Muscle synergy of four muscles involved in the three limb
movements are presented in Figure 4.
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Figure 4. Muscle synergy of various motions (blue and red represent healthy subjects and pathology
subjects, respectively).

Table 1 reveals the muscle contribution proportions compared to 1 of all subjects
about four muscles when performing various three lower limb movements, respectively.
From Table 1, we know that the muscle contribution levels of various movements for an
individual and various subjects with the same movement are different. For instance, VM
and RF own the largest proportion in walking and standing movements while BF accounts
for the largest in sitting, respectively. In addition, for healthy subjects, the contribution
of VM in walking of Subject 1 is the highest while that of Subject 2 is the lowest. Also,
for pathology subjects, the contribution of RF in standing of Subject 4 is the highest while
that of Subject 6 is the lowest. This means that the proportion varies significantly between
participants. Thus, the muscle selection must be made prior to motion classification.
Therefore, VM, RF, and BF are selected here as the muscles for limb recognition during
walking, standing, and sitting movements, respectively.

Table 1. Muscle contributing level about four muscles.

Motions Muscles
Healthy Subjects Pathology Subjects

Sub.1 Sub.2 Sub.3 Sub.4 Sub.5 Sub.6

Walking

RF 0.2504 0.1368 0.2177 0.0347 0.1213 0.1124

BF 0.2607 0.1812 0.2314 0.1283 0.1451 0.1722

VM 0.9019 0.8201 0.8326 0.9081 0.8737 0.8102

ST 0.2223 0.1740 0.1439 0.1209 0.9383 0.1961

Standing

RF 0.9225 0.8219 0.8452 0.9305 0.9051 0.7086

BF 0.1480 0.1500 0.1394 0.0941 0.0931 0.1871

VM 0.0939 0.1240 0.1843 0.1713 0.0875 0.1315

ST 0.2229 0.1521 0.1568 0.0974 0.1527 0.1852

Sitting

RF 0.1168 0.1254 0.2341 0.1531 0.0928 0.1697

BF 0.8481 0.7526 0.7246 0.9441 0.9150 0.8875

VM 0.0909 0.1805 0.1841 0.1895 0.1880 0.1829

ST 0.1849 0.1860 0.1876 0.1876 0.1950 0.1826

3.2.3. Feature Selection Results

Six nonlinear features (i.e., ApEn, SampEn, FuzzyEn, LZC, Lyapunov, and CD) are
extracted from sEMG in two types of subjects (i.e., healthy and pathology subjects) during



Sensors 2024, 24, 3097 12 of 16

various lower limb movements. All feature combinations were successively input into the
GA-PSO-SVM classification model to recognize lower limb movements. Simultaneously,
we leveraged accuracy to evaluate the proposed approach’s performance, as follows,
Accuracy = TP + TN/TP + TN + FP + FN, where, TP and FP are true and false positive,
TN and FN are true and false negative, respectively.

From Table 2, for healthy subjects, the recognition accuracy based on NF1, NF2, NF4,
and NF5 is relatively similar, reaching 91.23%, 92.01%, 92.54%, and 90.02%, respectively,
while the accuracy of selection feature NF3 can reach 97.42%. In addition, for pathology
subjects, the recognition accuracy of selection feature AF2 (95.38%) is the highest. In total,
whether healthy or pathology subjects, with the increase of the dimension of multi-features
combination, the recognition accuracy increases. Nevertheless, if all features are directly
input into the classification model, it will not only increase the complexity and time of
the training model, but also reduce the recognition accuracy of the classifier. In addition,
motivated by [21], due to the similarity between the features, there is a situation in which
the accuracy decreases with the increase of dimension of multi-feature combination. Hence,
it is necessary to discriminate and analyze the FS value of extracted features.

Table 2. The recognition accuracy of feature selection (%).

Types Walking Standing Sitting Average

HS

NF1 88.99 93.38 91.30 91.23

NF2 94.38 91.09 90.57 92.01

NF3 97.08 98.05 97.14 97.42

NF4 91.10 94.42 92.09 92.54

NF5 90.75 87.79 91.53 90.02

PS

AF1 86.53 83.99 84.95 85.16

AF2 95.13 95.78 95.25 95.38

AF3 92.43 92.20 90.88 91.79

AF4 90.92 91.49 90.01 90.84

AF5 87.93 86.80 87.25 87.32

It is challenging to distinguish the muscle movement status with all features. Since
muscle movement is a gradual process, the change in features before and after muscle
movement fatigue is insignificant. Hence, the Fisher discriminant analysis method is
utilized to evaluate the score of each feature and find the optimal feature components.
Figure 5 demonstrates the average FS value of six features during three lower limb move-
ments, respectively.
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Figure 5. Separability values for six nonlinear features.
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From Figure 5, the FS index of each feature finds the difference between either
healthy or pathology subjects. That is, according to the FS index, the optimal feature
components can be obtained. For a healthy subject, the FS of each feature is ApEn, LZC,
SampEn, FuzzyEn, CD, and Lyapunov, in turn. Therefore, we will increase the number
of features in the feature combination in the decreasing order of FS index from large
to small, that is, NF1 = {LZC, FE}, NF2 = {LZC, FE, SE}, NF3 = {LZC, FE, SE, AE},
NF4 = {LZC, FE, SE, AE, Ly}, and NF5 = {LZC, FE, SE, AE, Ly, CD}. Likewise, for pathol-
ogy subject, the feature combinations are expressed as AF1 = {AE, LZC},
AF2 = {AE, LZC, SE}, AF3 = {AE, LZC, SE, FE}, AF4 = {AE, LZC, SE, FE, CD}, and
AF5 = {AE, LZC, SE, FE, CD, Ly}, successively. In this paper, the average FS value of the
six features is the basis (that is, 0.46 for healthy subject and 0.43 for pathology subject),
respectively, the features with FS values higher than average are selected. Consequently,
for healthy subject, the optimal feature components are NF1, NF2, and NF3, and AF1 and
AF2 are the optimal feature components of pathology subjects. Thus, NF3 and AF2 are the
optimal feature components for healthy and pathology subjects, respectively.

3.3. Experimental Comparison Analysis

3.3.1. Time-Frequency and Nonlinear Feature

To verify the performance of the extracted nonlinear features, we compare them to
the time domain and frequency domain features, respectively. Also, the three time-domain
features, including RMS, IEMG, and ZC, are extracted, and the frequency domain analysis
indicators include MPF and MF. Similarly, these extracted features are also selected.

Figure 6 shows the classification results of four types of movements with multi-domain
features (e.g., time domain, frequency domain, selected time–frequency domain, and se-
lected nonlinear domain). In particular, the average recognition accuracy is leveraged to
measure the performance of various features and is expressed by Accuracy1 + Accuracy2
+ · · ·+ Accuracyn/n; n is the number of features. Also, the window size is 300 ms. From
Figure 6, the average recognition accuracy based on time domain features, frequency do-
main features, and selected time–frequency domain features is 88.53%, 73.40%, and 78.67%,
respectively, while the average accuracy of the selected nonlinear features can reach 97.40%,
for healthy subjects. In terms of the pathology subjects, the average recognition accu-
racy of extracted nonlinear features (94.10%) is higher than that of the time domain
(83.36%), frequency domain (72.67%), and selected time–frequency domain (67.67%), re-
spectively. The results show that the classification accuracy of the selected features in
the time–frequency domain is the lowest, and also, the nonlinear features are also higher
than that of the time and frequency domain features. The extracted nonlinear features
can better reflect the natural attributes of sEMG, rather than random direct extraction of
feature parameters.
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Figure 6. Recognition results of healthy and pathological subjects during three lower limb movements
using different features. (a) Healthy subjects. (b) Pathology subjects.
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3.3.2. Different Classifier Algorithms

In addition, to verify the classification performance of the proposed GA-PSO-SVM ap-
proach, we compare it with the SVM with gray wolf optimization (GWO-SVM), WOA-SVM,
GA-SVM, and PSO-SVM through both the recognition accuracy and time computational.
In particular, to avoid possible errors caused by the results of one experiment, each classi-
fication model is trained four times. From Table 3, the proposed GA-PSO-SVM method
possesses the highest classification accuracy for three lower limb movements, as compared
to other optimized SVM classification models. Average recognition accuracy based on
WOA-SVM and GA-SVM is relatively similar, reaching 85.33% and 87.16%, respectively,
while the accuracy of the proposed method can reach 95.76%. In particular, the average
accuracy of GWO-SVM and PSO-SVM is 81.79% and 92.00%, respectively. In terms of the
training time of the classification model, the averaged training time of the proposed ap-
proach is 16.63 s, which is significantly shorter than other classification models. Experiment
results show that the proposed approach could not only improve the recognition accuracy,
but also shorten the training time.

Table 3. Comparison of healthy and pathology subjects with different algorithms (%).

GWO-SVM WOA-SVM PSO-SVM GA-SVM Ours

Walking
HS 88.17 90.09 92.37 90.73 97.08

PS 76.79 86.26 88.99 87.86 93.10

Standing
HS 83.50 83.79 92.75 82.37 97.14

PS 80.49 84.64 91.10 89.78 94.00

Sitting
HS 83.34 85.46 94.38 90.78 98.05

PS 78.45 81.69 92.43 91.43 95.20

Average 81.79 85.33 92.00 87.16 95.76

Training time(s) 17.63 16.96 16.85 1 6.75 16.63

4. Conclusions

In this paper, a lower limb motion recognition model is constructed by combining the
musculoskeletal model and the fused nonlinear chaotic features of sEMG signals. According
to the skeletal and muscle motion mechanism during human movements, the musculoskele-
tal model of lower limb movements is built. In general, sEMG is considered a kind of
nonlinear and non-stationary signal with chaotic components. The six nonlinear chaotic
features are extracted, and fisher discriminant analysis is utilized for feature fusion. Com-
pared with single features, it has a stronger characterization ability and achieves better
results in training and testing models. To solve the problem that SVM is very sensitive to
parameter setting, which leads to lower recognition accuracy, a recognition model based
on the hybrid GA-PSO algorithm is proposed to optimize the parameters of SVM. The ef-
fectiveness of the proposed approach is validated by trials on eleven healthy subjects and
eleven knee abnormal subjects, and results strongly support the superior performance of
the proposed approach.

With the popularity of sEMG wearable sensing equipment, the lower limb motion
recognition has attracted much attention owing to it helping improve human–machine
interaction performance in exoskeleton rehabilitation. However, this paper mainly focuses
on three lower limb motions. Hence, future works will include researching the practicability
of the proposed approach of multi-channel sEMG with complex movements (i.e., crossing
obstacles or going up stairs), to enhance the practicability of the proposed approach.
Moreover, the reviewer’s valuable suggestions have motivated us to extend the proposed
approach to the exoskeleton rehabilitation training model.
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