
Citation: Tao, R.; Zhu, M.; Cao, H.;

Ren, H. Fine-Grained Cross-Modal

Semantic Consistency in Natural

Conservation Image Data from a

Multi-Task Perspective. Sensors 2024,

24, 3130. https://doi.org/10.3390/

s24103130

Academic Editor: Christoph M.

Friedrich

Received: 11 March 2024

Revised: 3 May 2024

Accepted: 11 May 2024

Published: 14 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Fine-Grained Cross-Modal Semantic Consistency in Natural
Conservation Image Data from a Multi-Task Perspective
Rui Tao 1,2 , Meng Zhu 3, Haiyan Cao 2 and Honge Ren 1,4,*

1 College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China;
trlx20@nefu.edu.cn

2 College of Artificial Intelligence and Big Data, Hulunbuir University, Hulunbuir 021008, China;
ske159@163.com

3 College of Information Engineering, Harbin University, Harbin 150076, China; zhum913@163.com
4 Heilongjiang Forestry Intelligent Equipment Engineering Research Center, Harbin 150040, China
* Correspondence: nefu_rhe@163.com

Abstract: Fine-grained representation is fundamental to species classification based on deep learning,
and in this context, cross-modal contrastive learning is an effective method. The diversity of species
coupled with the inherent contextual ambiguity of natural language poses a primary challenge in
the cross-modal representation alignment of conservation area image data. Integrating cross-modal
retrieval tasks with generation tasks contributes to cross-modal representation alignment based on
contextual understanding. However, during the contrastive learning process, apart from learning the
differences in the data itself, a pair of encoders inevitably learns the differences caused by encoder
fluctuations. The latter leads to convergence shortcuts, resulting in poor representation quality
and an inaccurate reflection of the similarity relationships between samples in the original dataset
within the shared space of features. To achieve fine-grained cross-modal representation alignment,
we first propose a residual attention network to enhance consistency during momentum updates
in cross-modal encoders. Building upon this, we propose momentum encoding from a multi-task
perspective as a bridge for cross-modal information, effectively improving cross-modal mutual
information, representation quality, and optimizing the distribution of feature points within the cross-
modal shared semantic space. By acquiring momentum encoding queues for cross-modal semantic
understanding through multi-tasking, we align ambiguous natural language representations around
the invariant image features of factual information, alleviating contextual ambiguity and enhancing
model robustness. Experimental validation shows that our proposed multi-task perspective of
cross-modal momentum encoders outperforms similar models on standardized image classification
tasks and image–text cross-modal retrieval tasks on public datasets by up to 8% on the leaderboard,
demonstrating the effectiveness of the proposed method. Qualitative experiments on our self-built
conservation area image–text paired dataset show that our proposed method accurately performs
cross-modal retrieval and generation tasks among 8142 species, proving its effectiveness on fine-
grained cross-modal image–text conservation area image datasets.

Keywords: cross-modal; multi-task; image captioning; cross-modal retrieval; cross-modal alignment

1. Introduction

Neuro-networks function as parameterized databases, typically driven by specific
tasks, with each network dedicated to fulfilling a corresponding task. However, there
are instances where our requirements transcend single-task boundaries. Consider the
context of rapidly accumulating natural conservation area image data. We seek not only
to retrieve a single image but also to attach essential descriptions when summoning an
image. Furthermore, we aspire to employ textual descriptions as queries to sift through
our image repository, locating images that align with our specific needs. This scenario
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necessitates simultaneous engagement with two tasks: cross-modal image–text retrieval
and image captioning.

As these data accumulate over time, the volume becomes formidable. For example,
the Snapshot Serengeti Project at Serengeti National Park, Tanzania deployed hundreds of
camera traps to understand the dynamics of African animal species. From 2010 to 2013,
the project collected 3.2 million images from 225 camera traps [1]. And it was found to
be very costly to manually process the images and add annotation labels, given such a
large amount of data. The project carried out by Ref. [2] required thousands of technical
volunteers to work for 2–3 months to annotate image data. With the improvement in
camera manufacturing technology, each camera deployed in the field can record more than
40,000 photos per day due to a single trigger event [3], and many camera traps have been
deployed in related projects. Refs. [4,5] deployed hundreds of camera traps in their project.
Refs. [6,7] deployed about 50 cameras at water sources in natural conservation areas and
recorded more than 800,000 wildlife images within a few weeks.

When we resort to two separate models to independently address these tasks, we
encounter suboptimal outcomes. Specifically, the images retrieved through descriptive text
queries may not align with the descriptive text generated by the model for the same image.
In other words, these two models exhibit inconsistent encoding and decoding for the same
data. Can we train a model that maintains consistency during both encoding and decoding,
all while meeting the task requirements, thus mitigating semantic ambiguity within our
cross-modal parameterized database?

To address this, we propose a multi-task model for joint training in cross-modal
image–text retrieval and image captioning. Through the collaborative optimization of
parameters, we achieve cross-module information sharing, thereby facilitating semantic-
consistency encoding and decoding modeling. Post-training, the encoder and decoder
can be independently employed to perform cross-modal image–text retrieval and image-
captioning tasks while maintaining semantic consistency between the two tasks. This is
made possible because our model is constructed upon a foundation of shared semantic-
consistency representation space. Of course, the prerequisite is the construction of a dataset
aligning with our specific needs and the judicious design of the model’s structure. For ease
of exposition, we name the proposed method ReCap (Retrieval and Captioning).

As illustrated in Figure 1, we are able to retrieve corresponding images from the
dataset using a customized textual input and subsequently generate descriptive text for
the retrieved images. In this paper, our objective is to preserve semantic consistency in the
context of fine-grained visual features and rich textual descriptions by jointly training a
retriever and a captioner.

Query:  gnu and  grey crowned crane.

Result:

Captioner
A gnu(Connochaetes taurinus) was lying on the grass, 

surrounded by a group of gray crowned 

cranes(Balearica regulorum).

Figure 1. An application instance of the ReCap model.

The contributions of this work include (1) the creation of a dataset of image–text pairs
for natural conservation; (2) proposing a combined offline and online training approach;
(3) introducing a method for information transfer through collaborative parameter solving
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within a multi-task module; and (4) presenting a technique for cross-modal alignment
and semantic consistency preservation based on a shared representation space for cross-
modal tasks.

2. Related Work

The cross-modal semantic consistency between images and text in our research is
primarily achieved through the model design and joint training of two tasks: cross-modal
retrieval and image captioning. The essence of this approach lies in the optimization of
the cross-modal shared space embedding of images and text. On one hand, optimization
is performed from the perspective of cross-modal alignment between image and text
entities. On the other hand, the model needs to reorganize tokens related to the input image
representation in the shared space in an autoregressive manner and output them in natural
language, thereby achieving semantic consistency between image and text descriptions
at a broader and deeper semantic level. The encoder and decoder constitute the core
modules of our designed model, involving popular techniques in cross-modal alignment
and cross-modal representation fusion. Subsequently, the literature review will delve into
both cross-modal representation alignment and cross-modal representation fusion.

2.1. Cross-Modal Alignment

Currently, research on the cross-modal alignment of image and text representations
is predominantly centered around contrastive learning methods. These studies achieve
the embedding and alignment of image and text representations in a shared cross-modal
space by training encoders separately for each modality using a contrastive learning
loss. ConVIRT [8] demonstrates the potential of contrastive objectives to learn image
representations from text. Inspired by ConVIRT, CLIP [9] performs pre-training on a
dataset containing four billion image–text pairs and has become a milestone of vision–
language models with excellent cross-modal representation. CLIP4Clip [10] demonstrates
the CLIP model with high performance in cross-modal retrieval. ALIGN [11] performs
pre-training on massive noisy web data. The above methods all use contrastive loss, which
is the most effective loss for cross-modal alignment [12–15].

Intuitively, performing cross-modal contrastive learning by treating corresponding
visual and textual entities as inputs to image and text encoders, respectively, can achieve
better cross-modal alignment. Therefore, some research works in this domain utilize object
detection models as visual unit extractors. The extracted target pixel regions are then
fed to the image encoder for contrastive learning with the text encoder, enhancing the
performance of cross-modal representations. Often, these studies require the integration of
a pre-trained object detection model at the front end of the visual data input [16–18]. An
intuitive approach is to align the visual features of the region where the object is located
with the label. For example, Oscar [19] uses Faster R-CNN [20] to detect the object in the
image and then aligns it with the word embeddings of the object tags. However, they are
not suitable for fine-grained cross-modal alignment, as the object tags are too limited to
align the vision features suitably. With a properly designed prompt, CLIP can be used for
open-vocabulary classification, which solves the problem of limited object tags. ViLD [21]
designed an open vocabulary object detection model by knowledge distillation from the
CLIP. Ref. [22] achieved language-driven zero-shot semantic segmentation by directly using
the representation of CLIP. Groupvit [23] implements unsupervised image segmentation
by using the text representation of CLIP as a pseudo label.

Contrastive learning with dual encoders, while excelling in cross-modal retrieval tasks
involving images and text, encounters challenges in adapting to fine-grained cross-modal
retrieval tasks with natural conservation images due to the following reasons. First, certain
species’ visual features in natural conservation images exhibit high intra-class and inter-
class similarities, resulting in dense distributions of these highly similar representations
in the shared space. This necessitates encoders with finer discriminative capabilities.
Second, these encoders, trained on image–text pair datasets using contrastive learning, are
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often constrained by the representation of text descriptions alone and struggle to adapt
well to cross-modal retrieval tasks where the semantics are similar but the expression
methods differ.

2.2. Cross-Modal Fusion

With the successful application of the transformer [24] architecture in the fields of
natural language processing, computer vision, and multi-modal, ViLT [25] proposes a
transformer-based multi-modal encoder which focuses on cross-modal feature fusion,
and takes the masked language modeling loss [26] for visual embedding as future work.
This work has been achieved by VL-BEiT [27] after VIT [28] and MAE [29]. From then
on, a big convergence of language, vision, and multi-modal pretraining has emerged.
BLIP [30] proposes a new vision–language pre-training framework that transfers flexibly
to both vision–language understanding and generation tasks. The multi-way transformer
proposed by BEiT-V3 [31] has achieved state-of-the-art transfer performance in both vision
and vision–language tasks. FLIP [32], which is called Fast Language–Image Pre-training,
presents a simple and more efficient method for training CLIP by dropping a part of masked
tokens. VLMo [33] jointly learns a dual encoder and a fusion encoder with a modular
Transformer network. Coca [34] is a minimalist design to pre-train an image–text encoder–
decoder foundation model jointly with contrastive loss and captioning loss like CLIP and
SimVLM [35], respectively.

Cross-modal feature fusion is not suitable for cross-modal retrieval tasks due to the
lack of effective optimization for unimodal encoders. However, when applied to image-
captioning tasks for the same input image, this method generates descriptions that share
the same semantics but have different expressions. This indicates that such methods
contribute to solving cross-modal semantic consistency. Our research goal is to explore the
joint application of cross-modal feature fusion and cross-modal feature alignment, aiming
to leverage their respective strengths and compensate for weaknesses, fostering mutual
enhancement. This objective is emphasized in the Method section for in-depth discussion.

3. Design Concept and Proposed Methodology

The overarching design strategy is to develop and train a pair of image–text encoders
that extract representations with cross-modal semantic consistency, and the feature point
distribution in the shared space accurately reflects contextual relevance. Based on this
strategy, we designed a pair of encoders for cross-modal contrastive learning, consisting
of an image encoder and a text encoder. After considering computational costs and per-
formance trade-offs, we chose to obtain a pair of encoders through distillation that can be
freely modified according to the experimental requirements (refer to the Appendix A.1 for
detailed information). To promote cross-modal semantic consistency, we introduced the
method of momentum encoding. However, the input data for cross-modal momentum en-
coding come from different modalities and lack mutual information, making it challenging
to maintain consistency. To address this issue, we adopted a multi-task perspective and
utilized a residual attention network to fully integrate representations from both modalities
before outputting the momentum encoding queue. Finally, we trained the cross-modal
encoder using a contrastive learning approach with the obtained momentum encoding
queue to achieve fine-grained cross-modal semantic consistent representations. The overall
architecture of the proposed method is illustrated in Figure 2.

Before introducing the cross-modal momentum encoder, we first present the residual
attention network and the design of the objective function.
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Initialized

Text Encoder
Initialized

Image Encoder

A couple of white cattle egret 

(Bubulcus ibisstanding) next 

to a  buffalo (Bubalus bubalis).

Cross-modal Res-Att Captioner

... ...

LM Loss MLM Loss

ITC Loss

Figure 2. An overview of training ReCap for cross-modal semantics consistency.

3.1. Residual Attention Neuro-Network

Based on Reference [36], we designed a residual attention network as illustrated in
Figure 3. For detailed derivation of its input and output, please refer to Appendix A.2. The
primary training objective for Cross-modal Res-Att is masked language modeling (MLM).
In this context, let us denote a caption as CnP and the set of randomly masked positions as
MCnP. The MLM loss can be formally defined as follows:

LMLM = − ∑
i∈MCnP

log p
(

CnPi | CnP\MCnP

)
, (1)

where CnP\MCnP
is the masked version of the input caption, i.e., Two [MASK] are [MASK]

on [MASK] of a pond. The cross-modal Res-Att module predicts the masked tokens based
on the image and text context.

Self Attention

Cross Attention

Layer Normalization

Layer Normalization

Feed Forward Network

Layer Normalization

Self Attention

Layer Normalization

Feed Forward Network

Concatenation

Layer Normalization

Feature Split

Image Embeddings

Asymmetric Co-Attn

Connected Attention

×S

×N

Text Embeddings

Figure 3. Residual Attention Network Architecture.

3.2. Captioner Training Objectives

The captioner is an autoregressive language generation model which operates on
the principle of predicting the next token based on the input sequence and previously
generated tokens. For example, given an initial input feature sequence Fk = Fk

1 , . . . Fk
u and

the first token generated, denoted as Ck
1, the objective function is log pθ(Ck

1|Fk), and the
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generation process for Ck
2 is log pθ(Ck

2|Fk, Ck
1), and so on. Therefore, the objective function

of an autoregressive language generation model is represented by Equation (2):

LLM = max
θ

N

∑
k=1

log pθ

(
Ck

1 , . . . . . . , Ck
m | Fk

)
. (2)

where θ represents the trainable parameters, and the input sequence Fk can be visual
features, language features, or a combination of both.

3.3. Image–Text Contrastive Loss Function

Following [8], the image–text contrastive learning (ITC) formulates the loss function
according to InfoNCE [37]. Let T denote a certain species class embedding and V denote
its visual embedding, then we have the embedding pair (V, T). We use (Vi, Ti) to denote
the i-th pair of positive samples and (Vi, Tj)j ̸= i to denote a pair of negative samples. The
ITC training objective of ReCap consists of two loss functions to make the distance of the
positive pair closer than the negative one in the embedding space. Since ITC is asymmetric
for each modality, it needs to be computed separately from both directions for images and
text. The contrastive loss for the i-th pair in the image→ text direction:

ℓ
(V→T)
i = − log

exp(sim(Vi, Ti)/τ)

∑N
k=1 exp(sim(Vi, Tk)/τ)

, (3)

where sim(·) is the cosine similarity, i.e., sim(a, b) = a⊤b/(∥a∥∥b∥), and τ is a temperature
parameter. Similarly, we formulate the text→ image loss as:

ℓ
(T→V)
i = − log

exp(sim(Ti, Vi)/τ)

∑N
k=1 exp(sim(Ti, Vk/)τ)

. (4)

Finally, the training objective is a weighted sum:

LITC =
1
N

N

∑
i=1

(
λℓ

V→T)
i + (1− λ)ℓ

(T→V)
i

)
, (5)

where λ ∈ [0, 1] is a hyperparameter weight, and N is the batch size.

3.4. Cross-Modal Momentum Encoder

In reference to the MoCo momentum encoding [12], we propose an offline encoder
training method. Due to the high compression and ambiguity of textual information,
compared to visual information, which is sparse, many detailed visual features are over-
whelmed by dense textual information during cross-modal learning. To address this, we
employ a residual attention network to repeatedly fuse visual features with textual features
in a residual manner, increasing the proportion of visual information in the deep neuro-
network’s forward channel. This enhances visual information redundancy to mitigate the
drowning of sparse visual information during fusion with textual information. Addition-
ally, because images contain factual information and exhibit invariance, aligning variable
and ambiguous linguistic features around factual information contributes to eliminating
linguistic feature ambiguity in context during cross-modal alignment. Consequently, this
results in semantic consistency embedding, with visual information as the clustering center
in the cross-modal representation space.

3.4.1. Momentum Encoder

In brief, the principle of the momentum encoder is that the training of the encoder in
unsupervised learning can be simplified as a look-up table problem. In other words, an
encoded query should have high similarity to its corresponding key and low similarity to
other keys. This simplifies the entire process to minimizing the contrastive loss. During the
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solving process, contrastive learning requires a queue containing keys for both positive
and negative samples to look up for queries. To maintain the consistency of encoding for
positive and negative samples in the queue, the momentum encoder is employed.

The encoding update rule for the momentum encoder is shown in Equation (6), where
the momentum parameter m ∈ [0, 1) is used. The query encoding θq is updated based
on gradient back propagation, while the key encoding θk is updated using momentum.
Typically, m takes a value greater than 0.9, which is equivalent to taking a moving average
of the encoding updates. The slow-changing momentum encoder reduces the difference
between the encoding of positive and negative samples in the queue, thereby improving the
cross-task transfer performance of the encoder optimization process based on momentum
in contrastive learning:

θ ← mθk + (1−m)θq (6)

3.4.2. Offline Cross-Module Information Propagation

The cross-module joint solving of parameters constitutes the inter-module propa-
gation of information. Deep learning models are essentially parameterized databases,
with relationships among data implicitly encoded within the model’s parameters. There-
fore, cross-module operations on parameters represent the propagation of information
across modules.

Firstly, as illustrated in Figure 4, we feed the image–text paired dataset to the unimodal
encoders, obtaining image encodings (Ve0, Ve1, Ve2 . . .) through the ITC loss. Subsequently,
as depicted in Figure 5, we feed (Ve0, Ve1, Ve2 . . .) to the Res-Att module. Based on the
momentum encoding method proposed in Section 3.4.1, a cross-modal momentum encod-
ing queue is obtained using the joint loss function shown in Equation (7). Specifically, we
obtain a visual momentum encoding queue (Vm0, Vm1, Vm2 . . .) and a language momen-
tum encoding queue (Tm0, Tm1, Tm2 . . .). Then, as shown in Figure 6, we feed back the
momentum encodings to update the unimodal encoders:

LRes&Cap = LMLM + LLM. (7)

Ve Te

(Ve0，Ve1，Ve2  )

queue of vision embedings

Offline Training Step1

Text

Encoder
Image

Encoder

Caption

Ground-Truth
Image

ITC

Figure 4. Initial visual encoding.
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(Ve0，Ve1，Ve2  )

queue of vision embedings

Tm

Vm

Caption

Ground-Truth

ResAtt Captioner
Generated

Caption

(Tm0，Tm1，Tm2  )

queue of text

 momentum embedings

(Vm0，Vm1，Vm2  )

queue of vision

momentum embedings

Offline Training Step2

Figure 5. Redundant disambiguation momentum encoding.

(Vm0，Vm1，Vm2  )

queue of vision

momentum embedings

(Tm0，Tm1，Tm2  )

queue of text

 momentum embedings

Ve Te

Text

Encoder

Image

Encoder

Caption

Ground-Truth
Image

ITC ITC

Offline Training Step3

Figure 6. Unimodal encoding momentum update.

The loss function for the visual encoder in this training stage is represented by
Equation (8), while the loss function for the language encoder is represented by Equation (9).
The overall objective function is depicted by Equation (10):

ℓ
(V→Tm)
i = − log

exp(sim(Vi, Tmi)/τ)

∑N
k=1 exp(sim(Vi, Tmk)/τ)

, (8)

ℓ
(T→Vm)
i = − log

exp(sim(Ti, Vmi)/τ)

∑N
k=1 exp(sim(Ti, Vmk/)τ)

, (9)

LMomentum =
1
N

N

∑
i=1

(
λℓ

V→Tm)
i + (1− λ)ℓ

(T→Vm)
i

)
, (10)

where λ ∈ [0, 1] is the hyperparameter weight, and N is the batch size. Repeating these
steps forms a closed loop for cross-modal momentum encoder training, which can be
conducted offline. It should be noted that our proposed offline training method needs to
be accompanied by the decoupling of the momentum encoding queue we adopted. This
decoupling allows for independent settings of batch size and the length of the momentum
encoding queue. For instance, during training, we used a batch size of 32 and a queue
length of 4096. This enabled us to contrast more negative samples, facilitating the model
to learn representations closer to the domain distribution. The length of the queue can be
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adjusted based on computational resources. In summary, the decoupling + offline strategy
balances computational resources and model performance.

3.4.3. Why Contrastive Learning and Momentum Encoding

The objective of contrastive learning is specifically to distinguish between positive and
negative samples. If the encodings of positive and negative samples come from different
encoders or different training stages of the same encoder, the model may learn more about
the differences between the encoders rather than the differences between the data. To
ensure a fair comparison between positive and negative samples and optimize the features
extracted by the encoder, consistency in the encoding of positive and negative samples
needs to be maintained in a long queue. For example, in our model training, the length of
the momentum encoding queue is set to 4096. Essentially, contrastive learning treats each
sample as a multi-class classification task, thereby enhancing the flexibility of embedding
cross-modal contextual information in a shared space. However, due to the inherent
diversity and ambiguity of natural language expressions, ambiguity is inevitable. This
challenge is particularly pronounced in image–text paired datasets, where the same image
can be interpreted from various perspectives, leading to significantly different language
descriptions with varying semantics. Therefore, there are significant challenges to achieving
cross-modal semantic consistency in representation. From a model structure perspective,
cross-modal representation is determined by the encoder, and the compression of data
information by the encoder inevitably leads to information loss. This requires a balance
between encoding efficiency and encoder performance.

Image captioning is a standardized task for cross-modal understanding, where the
model generates corresponding language descriptions based on input image represen-
tations. The task inherently involves calculating the similarity between image and text
representations, necessitating a shared semantic space for image–text cross-modal semantic
alignment, similar to cross-modal retrieval tasks. In other words, sharing a semantic space
is a fundamental prerequisite for both cross-modal generation and cross-modal retrieval
tasks. When the factual information and diversity/ambiguity of natural language de-
scriptions in images are projected into a shared semantic space, the goal is to enhance the
mutual information between the two modal representations. As the mutual information
between modal representations increases in this space, the performance of cross-modal
retrieval and cross-modal generation models based on this representation space improves.
To optimize cross-modal representation and shared space embedding for the captioner’s
cross-modal understanding, we propose a multi-task perspective involving the joint train-
ing of image-captioning and cross-modal retrieval tasks. This approach ensures primary
consistency in the shared representation space between the two tasks, thus facilitating
improved cross-modal mutual information. If the two tasks are trained separately, although
they may project into the same-dimensional space, they contain different information
without an information-sharing process between the modalities, thus failing to effectively
reduce discrepancies between the modalities. To establish an information channel, we
employ dual momentum encoders. However, directly comparing the image momentum
encoder and the text momentum encoder through contrastive learning faces challenges in
ensuring cross-modal semantic consistency due to the different data properties between the
two modalities. To synchronously and consistently update the momentum encodings of
both modalities across modes, we propose using a residual attention network as a channel
for cross-modal information exchange. Considering the sparsity of image data and the
abstract nature of language data, we ensure that sparse data contribute proportionately to
the information during the deep network’s feedforward process by using image features as
residuals. Through cross-modal information fusion and momentum encoding, we obtain
momentum encoding queues with higher cross-modal mutual information, resulting in
better performance of the image–text encoder in cross-modal semantic consistency.
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4. Experiments

Our method is named ReCap (Retrieval and Captioning). In this section, we primarily
validate the effectiveness of our proposed method on standardization tasks using public
datasets. Specifically, these tasks encompass image captioning and image–text retrieval
on the COCO dataset, classification tasks on the iNaturalist2018 dataset, as well as image-
captioning and image–text retrieval tasks on the iNaturalist2018 dataset.

4.1. Dataset Settings

We utilized the Karpathy split [38] of the MSCOCO dataset [39], comprising 123,000 im-
ages, with each image accompanied by five sentences as annotations. The iNaturalist2018
dataset comprises 8142 distinct species, each serving as an individual image classification
category. It encompasses a total of 437,513 training images and 24,426 validation images.
As this dataset initially lacked caption annotations, we conducted a comprehensive an-
notation effort, providing five sentences of description for each image. Furthermore, we
annotated both the common name and the Latin name for each species. The specific process
of enhancing the INaturalist2018 dataset is detailed in Appendix A.3. In Table 1, we present
some examples of our annotated data.

Table 1. Samples of nature conservation image–text pair dataset.

Images

Captions
Two geese are
walking on the
shore of a pond.

A bunch of
yellow flowers
are sitting in a
field.

A Catasticta
nimbice is sitting
on an Ageratum
houstonianum
in the sun.

An Aepyceros
melampus
grazing in a
field.

4.2. Implementation Details

We utilized eight NVIDIA 3090 24G GPUs for the image–text encoder contrastive
learning training process, with a queue length set to 4096 and a momentum parameter of
0.995. We employed the AdamW optimizer with a decay weight set to 0.02. The learning
rate was the warm-up set to 1 × 10−4 for the first 1000 iterations and decayed in a cosine
function manner to 1 × 10−5 for the subsequent iterations. The total training duration for
the model was approximately 127 h.

4.3. Evaluation Metrics

The image caption model employs four widely recognized evaluation metrics, namely,
BLEU (Bilingual Evaluation Understudy) [40], METEOR (Metric for Evaluation of Trans-
lation with Explicit ORdering) [41], CIDEr (Consensus-based Image Description Evalua-
tion) [42], and SPICE (Semantic Propositional Image-Captioning Evaluation) [43]. Among
these, BLEU4 segments sentences into four-word chunks to gauge the descriptive accuracy
of the model-generated captions. METEOR, building on the foundations of BLEU, ad-
dresses the issue of excessive word matching while emphasizing word recall and precision.

CIDEr, primarily applied in the domain of image description, employs TF-IDF (Term
Frequency-Inverse Document Frequency) to weigh each sentence fragment. It encodes
the frequency (Er) of a fragment in the reference description and the frequency (Ec) in
the generated description. Subsequently, it computes the similarity between Er and Ec to
generate an evaluation score for the model.

SPICE, on the other hand, is an evaluation metric based on scene graphs and semantic
concepts. It assesses the extent to which the model-generated description aligns with the
entities, attributes, and relationships present in the image.
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The image classification task on iNaturalist has only one label for each picture, denoted
as gi. The result predicted by the model is denoted as pi, and the error rate is

ei = min
i

d(gi, pi), (11)

where d(·) is

d(x, y) =
{

0 if x = y
1 otherwise

, (12)

and the total score is
score =

1
N ∑

i
ei. (13)

4.4. Experiment Project Selection

The core idea of our proposed method is briefly summarized as follows. Firstly,
through the joint training of cross-modal retrieval and image-captioning tasks, we obtain
a momentum-encoded queue with a contextual understanding of image–text pairs. This
serves as an information bridge to train a cross-modal image encoder and a cross-modal
text encoder using contrastive learning methods. This pair of encoders forms the basis
for cross-modal fine-grained semantic consistency, as they determine the extraction and
embedding of representations of various modal data into a shared cross-modal semantic
space distribution. After training, our model yields an image encoder, a text encoder,
and a captioner, which are the three key modules of ReCap. Due to the absence of a
standardized task on a common dataset that can comprehensively evaluate our proposed
method, we selected several standardized tasks on public datasets to individually test the
performance of the three key modules of ReCap. Conducting experiments on standardized
tasks on public datasets facilitates comparison with state-of-the-art (SOTA) methods on
leaderboards, which, on the one hand, validates the effectiveness of the proposed method
and, on the other hand, allows for a level measurement through comparison. Specifically,
the experimental section validates the effectiveness of the captioner through the image-
captioning task on the MSCOCO dataset as shown in Table 2. The effectiveness of the image
encoder and text encoder’s cross-modal representations is verified through cross-modal
retrieval tasks as shown in Table 3. The effectiveness of the image encoder is validated
through the image classification task on the iNaturalist 2018 dataset as shown in Table 4.
Additionally, Tables 2–4 in the experimental section reflect the proposed method’s multi-
task perspective.

Table 2. Quantitative analysis of image captioning on MSCOCO dataset (%).

Method B4 C M S

Oscar [19] 36.6 124.1 30.4 23.2
BUTD [44] 36.2 113.5 27.0 20.3

UnifiedVLP [45] 33.53 113.1 27.5 21.1
ClipCap [46] 33.5 113.1 27.5 21.1

ReCap 39.8 126.7 31.6 24.4

Table 3. Quantitative analysis of cross-modal retrieval on MSCOCO dataset (%).

Method Retrieval I2T Retrieval T2I
R@1 R@5 R@10 R@1 R@5 R@10

Oscar [19] 57.5 82.8 89.8 73.5 92.2 96.0
METER [47] 57.1 82.7 90.1 76.2 93.2 96.8
ViSTA [48] 52.6 79.6 87.6 68.9 90.1 95.4

ALADIN [49] 51.3 79.2 87.5 64.9 88.6 94.5
ReCap 65.5 89.2 92.9 77.1 92.6 96.3
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Table 4. Comparison on Image Classification on iNaturalist 2018 (%).

Method Top1 Accuracy

MetaFormer [50] 84.3
OMNIVORE [51] 84.1
RegNet-8GF [52] 81.2

VL-LTR [53] 81.0
µ2Net+ [54] 81.0

MixMIM-L [55] 80.3
DeiT-B [56] 79.5
CeiT-s [57] 79.4
GPaCo [58] 78.1

ReCap 85.1

4.5. Evaluation on the MSCOCO Dataset

We trained models on the MSCOCO dataset to perform image captioning and image–
text retrieval tasks in order to validate the effectiveness of the proposed method. Table 2
presents the performance comparison of ReCap with state-of-the-art models in the context
of image captioning. Here, B4 denotes BLEU-4, C represents CIDEr, M stands for METEOR,
and S corresponds to SPICE. Further details are provided in Section 4.3. Table 3 illustrates
the performance comparison of ReCap in image–text retrieval tasks against high-level
models. Here, I2T denotes image-to-text retrieval, while T2I represents text-to-image re-
trieval. R@1, R@5, and R@10 respectively indicate recall rates for the top 1, top 5, and top 10
retrieval recommendations. The experimental results demonstrate that ReCap outperforms
several state-of-the-art models, thereby validating the efficacy of the proposed method.

Based on the comparative data in Table 2, it is evident that ReCap demonstrates im-
proved performance compared to others. Taking the scores in the B4 column as an example,
the ReCap score is increased by nearly seven points. This improvement can be attributed to
two main enhancements: firstly, the incorporation of an open vocabulary, meaning there is
no restriction on the number of categories; and secondly, the Res-Att network excels in the
fusion of cross-modal features, effectively emulating the representation style of the dataset.
This results in a higher overlap between the generated captions and the ground truth.

As shown in Table 3, in the retrieval task of image to text, the R@1 score exhibits an
improvement of approximately 8 to 14 percentage points compared to others. In the text-to-
image retrieval task, there is an improvement of approximately 1 to 12 percentage points
compared to others. This indicates a significant effect of the proposed method in the cross-
modal alignment of image and text features. The improvement in text-to-image retrieval
performance is relatively challenging due to the high information compression in textual
data and the sparse nature of image data. When calculating mutual information, the same
textual representation often exhibits similarity to a larger number of image representations.
For instance, different models of cars appearing in images with similar backgrounds would
have high similarity. To effectively differentiate between the brand and model of cars in
the image, a finer-grained cross-modal alignment is required for text-to-image retrieval.
Therefore, adopting an open vocabulary approach during the training of the image encoder
is essential, as it avoids the limitations to a finite set of categories and proves crucial in the
cross-modal modeling tasks involving image and text.

4.6. Evaluation on the iNaturalist Dataset

In accordance with the introduction, the motivation behind this study is to address
the need for the cross-modal processing of vast quantities of imagery data from natural
conservation. In order to assess the cross-modal alignment of the model’s representations
between images and text, we opted to employ the image classification task on the iNatural-
ist2018 dataset. This section’s experiments were conducted independently using the image
encoder and text encoder. Notably, the image encoder was originally designed without a
classification head. To achieve classification, we employed a method that involves compar-
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ing the representations output by the image encoder with the prompt encodings generated
by the text encoder.

The format of the prompts used is ‘a photo of <category>’, where ‘category’ corre-
sponds to the category names in the dataset. In other words, for as many categories as
there are in the dataset, there are corresponding prompts. In essence, our image classifi-
cation approach assigns an image to the category with the highest similarity to its image
representation. Specific experimental results are presented in Table 4. The experimental
outcomes demonstrate that ReCap outperforms several state-of-the-art models, thereby
confirming the the proposed method’s cross-modal alignment capability between image
features and textual representations for species.

As shown in Table 4, ReCap demonstrates a performance improvement of approx-
imately 1 to 7 percentage points compared to others. This indicates that our proposed
method, employing an open vocabulary approach, is capable of handling image classi-
fication tasks on the iNaturalist Dataset. The experimental results not only affirm the
effectiveness of our method in cross-modal representation alignment but also validate the
feasibility of applying this approach to open vocabulary image classification tasks.

4.7. Evaluation on the NACID Dataset

After verifying the effectiveness of the above, the model was trained on the NACID
dataset Appendix A.3 and the two tasks of image captioning and image–text retrieval
were evaluated. The model performance scores are shown in Tables 5 and 6. Through all
the experimental results, it can be seen that the model has the ability to perform image
captioning and image–text retrieval on the enhanced INaturalist2018 image–text pair
dataset, which verifies the effectiveness of the ReCap model proposed in this paper.

Table 5. Quantitative analysis of image captioning on NACID (%).

Method B4 C M S

ReCap 40.8 144.1 33.6 25.5

Table 6. Quantitative analysis of cross-modal retrieval on NACID (%).

Method Text to Image Image to Text
R@1 R@5 R@10 R@1 R@5 R@10

ReCap 72.8 89.1 93.2 82.0 96.6 98.3

4.8. Qualitative Evaluation

Next, we conducted qualitative experiments on cross-modal retrieval and generation
using the NaCID test set. Additionally, to validate the effectiveness of the proposed method
on natural protected area image datasets, we selected three image datasets from natural
protected areas for zero-shot experiments.

The top 5 results for text-to-image retrieval are illustrated in Figure 7. Both non-target
images and target images contain relevant content related to grassland and the target
species. From the perspective of our application, we seek relatively open-ended retrieval
results. This approach allows the model to continuously improve through small-sample
learning in real-world applications. If the model were confined to strict one-to-one retrieval,
it would lack practical utility.

As shown in Table 7, the captions generated by the model align well with the content
of the test images, and the species names are consistent with the Latin names used in the
training set. This intuitively demonstrates the model’s learning capability in the domain of
image–text cross-modal alignment. In the fourth prediction, the bear species (Ursus arctos
horribilis) occurred 24 times in the training set, but there were no caption annotations for
“cubs” in the training data prior to GPT-2 fine-tuning. This underscores the importance of
pre-existing knowledge within NLP models for image-captioning tasks, as it can provide
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additional information that is subsequently expressed in the form of generated descriptions.
In the context of our approach, aligning image representations cross-modally in the pre-
trained NLP decoder representation space leverages the rich knowledge of the NLP decoder
for a deeper understanding of the images.

Caption: A herd of Cervus elaphus is standing on top of a grass-covered field.

(a) Target Image (b) Text to Image Retrieved Top-5 with ReCap

Figure 7. Examples of text-to-image retrieval on validation dataset.

Table 7. Examples sentences generated by ReCap for test images.

Images

Captions

A few
Abudefduf
saxatilis swim in
the stony water.

There are some
red Castilleja
indivisa in the
grass.

A Libellula
quadrimaculata
is flying over the
water.

A Ursus arctos
horribilis and
her cubs on a
green field.

We conducted zero-shot experiments using three datasets related to natural conserva-
tions; refer to Appendix A Table A2. The experimental procedure was as follows: Firstly,
we designed sentences resembling “A photo of <species>” based on the dataset content.
Subsequently, we performed text-to-image retrieval with these sentences and provided the
retrieved images to the captioner for generating descriptive text. The experimental results
are presented in Table 8. The experimental results indicate that the species names on the
retrieval side, the species within the images, and the species names on the generation side
are all consistent. This observation underscores that the features extracted by the image
encoder and text encoder are aligned, and the semantics of the encoder and decoder are in
harmony, visually demonstrating the model’s capabilities in cross-modal alignment and
semantic consistency between text and images. Examining the generated captions reveals
the decoder’s capacity for systematic descriptions of foreground and background elements.
This is a result of the combined influence of the model’s prior knowledge and fine-tuning.

Table 8. Examples of ReCap zero-shot retrieval and captioning.

Query A photo of Leopardus
pardalis.

A photo of Phoenicopterus
rubber. A photo of Aglais io.

Dataset Wildlife Conservation
Society

Birds 510 Species-Image
Classification

Animals Detection
Images Dataset

Result

Caption
A small Leopardus
pardalis walking through
a forest at night.

A pink Phoenicopterus
ruber standing in the water.

A close-up of an
Aglais io is sitting on
top of a flower.
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4.9. Ablation Study

The results of the ablation experiments are presented in Table 9. In the table, the term
“C+C” indicates a direct connection between the encoder and captioner, where the visual
representations generated by the encoder are used as input for the captioner. “C+R+C”
signifies the bridging of encoder and captioner through the Res-Att module.

Table 9. Ablation study of ReCap on the MSCOCO and iNaturalist 2018 datasets.

MSCOCO iNaturalist2018
Module Composition I2T-R@1 T2I-R@1 Cap-B4 I2T-R@1 T2I-R@1 Cap-B4

C+C 51.5 75.2 31.9 54.1 68.9 32.3
C+R+C 51.3 75.7 35.3 53.7 69.5 36.1
ReCap 65.5 77.1 39.8 63.6 72.2 41.0

From the experimental results in the “C+C” row, it can be observed that the I2T and
T2I performance on both datasets is relatively consistent, maintaining an average level.
In comparison to the performance of ReCap, there is a slight decrease in T2I, while I2T
and image captioning exhibit more substantial performance degradation. This suggests
that when the encoder and decoder operate independently, the model’s performance
heavily relies on the knowledge inherited from pre-trained models and the training process.
However, without a channel for information transfer between them, they cannot leverage
distinct task perspectives from each other to enhance each other’s performance.

Looking at the experimental results in the “C+R+C” row, there is a noticeable im-
provement in the performance of image captioning compared to the “C+C” row. This
indicates that after a finer-grained cross-modal alignment of image and text representations
at the micro-level, it becomes more favorable for the captioner to generate descriptions for
images. It is evident that the Res-Att module significantly contributes to the optimization
of cross-modal representation alignment and the refinement of shared semantic space
embedding for text and images.

ReCap and the “C+R+C” configuration only differ in the presence of a momentum
feedback loop in their model structures. From the experimental results, it is evident that
there are overall performance improvements in the model, particularly in the I2T and
image-captioning tasks. This suggests that the feedback information on the decoding side
significantly aids in enhancing the performance of the encoder, resulting in substantial
gains in the cross-modal alignment of image and text representations.

The improvement in image-captioning performance further illustrates that, after
optimizing the encoder’s performance, it is possible to further enhance the decoder’s
performance. From the perspective of data propagation, the encoder is at the front end,
and the captioner is at the back end. With the addition of momentum feedback and
Res-Att-based cross-modal fusion, the two form a feedback loop for mutual optimization.

5. Conclusions

The image–text representation initially undergoes coarse alignment through the en-
coder, followed by fine-grained alignment by the decoding side consisting of Res-Att and
the captioner. Subsequently, the encoder is momentum updated based on the decoding
side information, forming feedback from the decoding side to the encoding side, enhancing
the quality of both the encoder and caption generation. The essence of this process lies in
the sharing of a semantic space, where the decoder imparts its understanding of embed-
ding similarities and categorization to the encoder. These insights are propagated to the
encoder’s network parameters through momentum-based backpropagation. Furthermore,
contrastive learning on the encoding side plays a crucial role. As mentioned earlier, the
classification in contrastive learning is open-ended, with as many categories as there are
samples. Such a classification method has no upper limit on granularity, compelling the
encoder to learn subtle distinctions among samples as much as possible. Achieving this
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solely from the encoding side would be information bottlenecked, and this is where feed-
back from the decoding side effectively bridges the information gap. Experimental results
also confirm the contribution of prior knowledge in the decoder during this process. In
summary, the feedback from the decoding side, the prior knowledge in the decoder, and
momentum updates collectively enhance the quality of feature extraction in the encoder.
All of this coalesces into a shared semantic space embedding for the encoder–decoder,
where both entities possess a shared and aligned embedding space, embodying the essence
of semantic consistency.

The performance of both cross-modal retrieval in image–text pairs and generative
models fundamentally depends on the quality of shared space embeddings. The main
contribution of our proposed method lies in the effective fusion of the advantages of both
tasks in the cross-modal shared space embedding of images and text through thoughtful
model design. This approach is particularly suitable for scenarios where there are strict
alignment requirements between the objects in the image and the vocabulary in the text.
Moreover, it demands that the model can further associate the input image representation
with a more extensive and semantically rich textual description along a longer logical chain.
Our proposed method is well suited for such scenarios.
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Appendix A

Appendix A.1. Encoder Design and Initialization

We designed and initialized a pair of encoders, one for images and one for text, to
extract representations of image and text data (the initialized image encoder and initialized
text encoder as shown in Figure 2). These unimodal encoders serve as projectors that
embed each modality into a shared semantic space.

As illustrated in Figure A1, we leverage the knowledge from the pre-trained CLIP [9]
model to initialize our lightweight transformer encoder. The encoder initialization is
performed offline to reduce the computational requirements throughout the entire model
training process. Distillation from the CLIP pre-trained encoder to the target encoder is
achieved through the calculation of the L1 loss. Let the image encoder of the pre-trained
CLIP model be denoted as V(·), and the text encoder as T(·). The distilled image encoder
is denoted as DV(·), and the distilled text encoder as DT(·). The input image–text pairs
are respectively denoted as in and tn. The loss functions for distilling the image and text
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encoders are denoted as LV and LT , respectively. The L1 loss for the model distillation is
expressed as:

LV = |DV(in)−V(in)|
LT = |DT(tn)− T(tn)|.

(A1)

As illustrated in Figure A2, the unimodal encoder consists of L layers of stacked
self-attention and feed-forward modules. The projector is employed to adjust the output
dimensions of each module to ensure compatibility, while the normalization layer serves to
balance the scale differences among various modal data, enhancing the model robustness
and facilitating subsequent momentum calculations.

Pre-trained

Image Encoder

Pre-trained

Text Encoder

Distilled

Text Encoder

Distilled

Image Encoder

L1 loss L1 loss

Image embedding

Text embedding

Prompt of category

Category name of the 

object in the image

A photo of

 [Zalophus californianus]

Figure A1. An example of knowledge distillation from a pre-trained model.

Self Attention

Feed Forward

×L

Projector

Norm

Figure A2. The structural details of the distilled encoder module.

Appendix A.2. Derivation Process of Input and Output of Residual Attention Network

In accordance with [36], we adopted the practice of concatenating every S Asymmet-
ric Co-Attention (AC) block with a Connected Attention (CA) block, thereby creating a
Cross-Modal Skip-Connection (CK) module. Furthermore, the Cross-modal Res-Att is
concatenated with N CK modules. As visually represented in Figure 3, we represent the
Self-Attention layer, Cross Attention layer, Feed Forward Network, Layer Normalization,
and Concatenation layer as SA, CA, FFN, LN, and Cat, respectively. The image embedding
is denoted as v = {Vcls,V(I),V(R1), . . . V(Ri)}, while the text embedding is represented
as l = {wcls, w1, . . . , wn}, consisting of word vectors corresponding to the input caption
paired with I. Here, ’I’ signifies the input image, ’Ri’ refers to the i-th patch within it,
and an additional [CLS] token is utilized to summarize the input sequence. Let lS−1, vS−1

and lS represent the input word vectors, visual features, and output of the S-th AC layer,
respectively. Then,

lS
SA = LN

(
SA

(
ls−1

)
+ ls−1

)
, (A2)
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lS
CA = LN

(
CA

(
lS
SA, vN−1

)
+ lS

SA

)
, (A3)

ls = LN(FFN(ls
CA) + ls

CA). (A4)

Subsequently, we feed both ls and vN−1 into a CA block to facilitate cross-modal
information interaction. The computation [vN ; lS] of the CK module’s output is denoted
as follows:

[vN−1; lN−1] = Cat([vN−1, lS) (A5)

[vN
SA; lN

SA] = LN(SA([vN−1; lN−1]) + [vN−1; lN−1]), (A6)

[vN ; lN ] = LN(FFN([vN
SA; lN

SA]) + [vN
SA; lN

SA]). (A7)

Appendix A.3. NaCID Dataset

We utilized the iNaturalist2018 dataset [59], which consists of 8142 species, with
437,513 training set images and 24,426 validation set images. However, the dataset does not
include text descriptions corresponding to the images. In order to generate text descriptions
paired with images, we followed the pipeline of Laion COCO 600M [60] to curate our
Nature Conservation Image-text Pair Dataset (NaCID) in four steps: (1) using BLIP L/14 to
generate 40 captions for each image in iNaturalist dataset; (2) ranking them using Open AI
CLIP L/14 to select the best five captions; (3) using Open AI RN50x64 CLIP model to select
the best one; and (4) using a small, fine-tuned T0 [61] model to roughly repair the grammar
and punctuation of the texts.

We obtained a dataset consisting of natural images and paired text descriptions which
are called captions. After that, we used the spaCy [62] method to recognize the predefined
span types related to the categories of animals and plants. Then, we followed the pipeline
of entity name replacement [63] to further annotate the entities in captions with the fine-
grained species names supported by the image classification ground truth of the iNaturalist
dataset, such as Heterotheca subaxillar, Ageratum houstonianum etc. The entity definitions are
shown in Table A1, where AML represents animals, and ANT represents plant classification.

Table A1. Applicable metadata for each entity type.

Entity Type Applicable Types of Perturbable Spans

AML <Animal-quantity> (e.g., a dog, two cats)
ANT <Plant-quantity> (e.g., an apple, flowers)

Appendix A.4. Three Datasets for Zero-Shot Experiments

Three conservation area datasets were used to test the cross-dataset robustness.

Table A2. Three conservation area datasets used for zero-shot experiments.

Dataset Names Download URLs

birds 525 species https://www.kaggle.com/datasets/gpiosenka/100-bird-species
Animals Detection
Images Dataset

https://www.kaggle.com/datasets/antoreepjana/animals-detection-
images-dataset

Wildlife Conservation
Society https://library.wcs.org/Library/Science-Data/Datasets.aspx

https://www.kaggle.com/datasets/gpiosenka/100-bird-species
https://www.kaggle.com/datasets/antoreepjana/animals-detection-images-dataset
https://www.kaggle.com/datasets/antoreepjana/animals-detection-images-dataset
https://library.wcs.org/Library/Science-Data/Datasets.aspx
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