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Abstract: Aiming at the problem that ultra-wide band (UWB) cannot be accurately localized in envi-
ronments with large noise variations and unknown statistical properties, a combinatorial localization
method based on improved cubature (CKF) is proposed. First, in order to overcome the problem of
inaccurate local approximation or even the inability to converge due to the initial value not being set
near the optimal solution in the process of solving the UWB position by the least-squares method, the
Levenberg–Marquardt algorithm (L–M) is adopted to optimally solve the UWB position. Secondly,
because UWB and IMU information are centrally fused, an adaptive factor is introduced to update
the measurement noise covariance matrix in real time to update the observation noise, and the fading
factor is added to suppress the filtering divergence to achieve an improvement for the traditional CKF
algorithm. Finally, the performance of the proposed combined localization method is verified by field
experiments in line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios, respectively. The results
show that the proposed method can maintain high localization accuracy in both LOS and NLOS
scenarios. Compared with the Extended Kalman filter (EKF), unbiased Kalman filter (UKF), and CKF
algorithms, the localization accuracies of the proposed method in NLOS scenarios are improved by
25.2%, 18.3%, and 11.3%, respectively.

Keywords: ultra-wide band; non-line-of-sight; Levenberg–Marquardt; cubature Kalman filter

1. Introduction

With the rapid development of wireless network technology as well as communication
technology, there is an increasing demand for positioning services, especially in the fields of
indoor pedestrian navigation, robot positioning, and drone positioning. Robot localization
plays an indispensable role. However, despite years of research, robot localization is
still a challenging problem in practice. In outdoor environments, robots can rely on
GPS for high-precision localization [1–3]. However, in indoor environments, complex
signal propagation environments and building occlusions impose limitations on high-
precision robot localization. For this reason, scholars have conducted extensive research
on indoor localization technology, which has promoted the rapid development of indoor
localization technology.

At present, the commonly used indoor localization techniques include Wi-Fi local-
ization, Bluetooth localization, ultra-wide band (UWB) localization, inertial navigation
localization, and visual localization [4–7]. Compared to several other positioning methods,
UWB positioning technology has many advantages. UWB refers to a pulse radio technology
with a high bandwidth ratio, which is usually able to provide sub-centimeter positioning
accuracy and has a good anti-multipath effect as well as high immunity against interfering
signals due to its wide-bandwidth characteristics [8–11]. Therefore, UWB positioning
technology is widely used in indoor positioning. Nevertheless, UWB positioning for indoor
complex environments still has shortcomings. The occlusion of indoor buildings interferes
with or blocks the transmission of wireless signals, resulting in large non-line-of-sight
(NLOS) errors, which makes the positioning performance degradation or even positioning
failure. The Inertial Navigation System (INS) adopts kinematic sensors and carries out
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autonomous localization through its own integrated accelerometers and gyroscopes [12–14],
and the localization accuracy is not affected by the external environment. However, due to
the long-term drift of accelerometers and gyroscopes, the error grows with time. For this
reason, some scholars have extensively studied the information fusion scheme of inertial
navigation and UWB technology. Peisen et al. [15] provides a UWB/INS loose-combination
localization scheme, which employs two parallel Kalman filter (KF)-based models to pro-
vide distance estimation by weighted fusion of the filtering results based on the different
distance error characteristics of line-of-sight (LOS) and NLOS states. The positioning accu-
racy of this loose-combination localization system mainly depends on the UWB positioning
accuracy, and the algorithm is highly redundant. In the NLOS case, the ability to deal
with nonlinear noise through the KF is limited, and the localization results are not good.
Zou et al. [16] preprocessed the original UWB measurements using a KF to suppress the
UWB distance mutation values and fused the UWB and IMU measurements using an
extended Kalman filter (EKF) to adjust the system’s measurement noise covariance matrix
in real time, which suppressed the interference of the NLOS effect to a certain extent and
improved the localization performance. Narasimhappa et al. [17] designed an improved
Sage–Husa adaptive KF, a first-order autoregressive model was used to model the random
error of the gyroscope, and the model was used to initialize the transition matrix of the
Sage–Husa adaptive KF, and finally, simulations were performed to validate the filter’s per-
formance, which was superior to the KF in removing noise. Li et al. [18] proposed a fusion
localization scheme for UWB and IMU based on complementary KF, which utilizes the least-
squares method to calculate the localization residuals of UWB observations, determines
the robustness factor of the observations, and dynamically sets the observation weights by
comparing the magnitude of the robustness factor with the predefined thresholds, which
efficiently estimates the observation errors and improves the accuracy of the localization
system. Leethter et al. [19] designed an EKF-based fusion localization scheme for UWB
and IMU, which simultaneously estimates the systematic error of IMU sensors and corrects
the localization error and derived an EKF design for a three-degree-of-freedom planar
motion tracking platform, under a specific state of motion; the proposed fusion solution
improves 100% over the UWB sensor-based localization scheme in terms of the localization
performance. He et al. [20] combined traditional KF with cubature Kalman filtering (CKF)
to realize the fusion positioning of UWB and IMU, which makes full use of the characteristic
that the measurement equation of the system is linear and uses KF instead of CKF for the
computation of the measurement update, which reduces the amount of computation while
ensuring the positioning accuracy. Feng et al. [21] performed data fusion of UWB and IMU
based on the unscented Kalman filter (UKF) algorithm for single-base station observation
and the EKF algorithm for three-base station observation, which reduces the complexity
of base station deployment and proposes two approximate motion models to make the
localization results smoother, but the proposed fusion algorithms are based on the known
statistical properties of the systematic noise and the measurement noise and do not take
into account the effect of time-varying noise. Krishnaveni [22] et al. designed an indoor
three-dimensional fusion localization system based on UWB and IMU is designed, and the
localization data of UWB are solved iteratively by using the time-of-arrival (TOA) method,
and the fusion effects of two filtering algorithms, EKF and UKF, are compared, and it is
believed that the UKF algorithm can obtain higher localization accuracy in a nonlinear
system. However, during the experimental process, the noise distributions of the known
statistical characteristics are selected, and the localization performance of the filtering algo-
rithms is not analyzed under the influence of the time-varying noise. In order to solve the
non-line-of-sight problem in ultra-wideband ranging of the UWB single-system algorithm,
the method of discarding the NLOS information is often adopted, and the disadvantage of
this method is that it needs to lay a large number of base stations, which leads to high costs.
In the INS single system algorithm, tracking the target for a long period of time leads to the
accumulation of drift errors, making the localization fail [23–25]. The existing combined
UWB and IMU navigation algorithm is based on the processing of UWB outliers when the
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statistical properties of the noise are known, seldom considers the effect of time-varying
noise on the localization system, and does not analyze the localization performance of the
system’s filtering algorithm under the influence of time-varying noise.

The environment in which the robot operates is variable, and localization is very
challenging due to the presence of indoor buildings and obstacles. First, to address the
problem that the initial value is limited during the traditional UWB localization solving
process using least-squares, an L–M algorithm is used to optimally solve the UWB position.
In addition, considering the adverse effects of measurement noise and NLOS noise on the
positioning accuracy, a combined UWB/IMU positioning method with improved CKF is
designed. By calculating the residuals between the real measurements and the predicted
values, introducing an adaptive factor to update the measurement noise at each moment,
and adding a fading factor to suppress the filter divergence, the localization accuracy of the
combined indoor robot system is effectively improved.

2. UWB Indoor Localization Models and Algorithms

UWB positioning is an indoor high-precision positioning method that achieves accu-
rate position estimation by exploiting the characteristics of ultra-wideband signals [26].
UWB has the advantages of wide bandwidth, narrow pulse, and high time resolution,
which are mainly reflected in the TOA-based measurement. Among them, the UWB po-
sitioning technique based on TOA of the received signal is widely researched by virtue
of its ranging accuracy and high technical feasibility, which basically achieves sub-meter
positioning accuracy [27,28]. It calculates the distance by measuring the signal transmission
time between the tag and the base station BS1, BS2, and BS3 and then draws a circle centered
on the base station to determine the position, as shown in Figure 1.
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Figure 1. Trilateral positioning method.

In practice, however, due to indoor NLOS effects and measurement noise, multiple
circles do not intersect at a single point, but rather intersect in a region where the position
of the label is in the region. In this case, probabilistic reasoning algorithms and geometric
reasoning algorithms are usually used, considering that probabilistic reasoning algorithms
require complex mathematical models and dependence on a priori information. In this
study, geometric reasoning is used to determine the optimal solution by minimizing the
positional differences between multiple circles and labels to obtain the best positional
estimate of the labels.

2.1. UWB Indoor Localization Model

The channel is an important part of the wireless communication system, and the
performance of the wireless communication system depends on the characteristics of the
channel. The signal will be affected by the building obstruction during the propagation
process, which causes the phenomenon of reflection and refraction of the signal. This
results in different times and paths for the signal to reach the receiving end [29]. Therefore,
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it becomes very important to establish a reliable ultra-wideband model. The commonly
used indoor localization models are Poisson model, S-V model, dual-cluster model, and
IEEE 802.15.4a channel model. The indoor localization model in this paper adopts the IEEE
802.15.4a channel model, which is characterized by low power consumption, long distance,
and high positioning accuracy [30].

For the indoor localization system model, consider that there are N pcs UWB base
stations and one tag, the location of the tag is (x, y), and the location of the UWB base
station is (xi, yi); this study will consider the measurement noise as well as the NLOS effect
on indoor localization, modeled as follows:

Ri = di + ηi + bi = cτi, i = 1, 2, . . . , N (1)

di =

√
(x − xi)

2 + (y − yi)
2 (2)

where Ri is the measured distance between the tag and the base station, di is the true
distance between the tag and the base station, bi is the measurement noise, which is
modeled here as a zero-mean Gaussian distribution, and ηi is the positive distance bias
introduced by the NLOS effect. The measurement error caused by NLOS in different
environments follows gaussian, exponential, and uniform distributions with randomness,
non-negativity, and independence [31,32]. Indoors, a mixture of LOS/NLOS generally
exists, and in order to reduce the positive distance bias caused by NLOS and improve the
accuracy of indoor localization, it has to be taken into account in the modeling process.

2.2. UWB Indoor Positioning Algorithms

In the UWB wireless positioning system, according to whether the distance mea-
surement is required for positioning, the positioning methods can be divided into the
positioning based on the distance measurement value and the positioning without the
distance measurement value. Among them, the positioning methods based on distance
measurements are mainly divided into two categories: one is the coordinate position mea-
surement method, which is divided into the trilateral measurement technique, triangulation
technique, and great likelihood estimation method; the other is the positioning methods
related to position parameters, which is divided into the positioning methods based on
the signal arrival TOA, the time difference of arrival (TDOA), based on angle of arrival
(AOA) and based on Received Signal Strength Indication (RSSI) [33,34]. TOA can make
full use of the characteristics of high time resolution of ultra-wideband signals to detect
the signal delay and thus estimate the distance between the node to be located and the
reference base station at the receiving end and then calculate the coordinates of the node
to be located according to the basic UWB positioning algorithm. In practice, due to the
indoor NLOS effect and measurement noise, multiple circles do not intersect at one point,
but intersect in a region. Therefore, the problem can be dealt with by the least-squares
method to minimize the impact of errors in the ranging process on the localization accuracy.
In addition, the Levenberg–Marquardt (L–M) algorithm is an optimization algorithm for
nonlinear minimization problems that combines the features of the most rapid descent and
the Gaussian Newton method, and it has wide applications in nonlinear regression and
parameter estimation problems, the steps of the algorithm are described in Algorithm 1.
The method is an improvement on the Gaussian Newton method, which overcomes the
problem of inaccurate local approximation or even the failure to converge due to the
initial parameters not being set near the optimal solution when solving the traditional
least-squares problem.
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Algorithm 1: L–M algorithm

Goal: For a functional relation x = f (p), given f (·) with a noise-laden observation vector x,
estimate p.

Calculation steps:
Step 1: Take the initial point p0, terminate the constant ε, and compute ε0 =||x − f (p0)||

(which can also be any other number greater than 1).
Step 2: Compute the Jacobi matrix Jk, compute Nk = JT

k Jk + λk I, and construct the
incremental regular equation Nk · δk = JT

k εk.
Step 3: Solve the incremental regular equation to obtain δk.
(1) If ||x − f (pk + δk)||< εk , then let pk+1 = pk + δk, if ||δk||< ε , stop the iteration and output

the result; otherwise, let λk+1 = λk/ν, go to step 2.
(2) If ||x − f (pk + δk)||≥ εk , then let λk+1 = γ · λk, resolve the regular equation to obtain δk

and return to step (1).

In this study, we express the ranging error of the circular distance between the function
label and the corresponding base station of the first base station as

fi(x, y) =
√
(x − xi)

2 + (y − yi)
2 − Ri (3)

Function fi(x, y) denotes the ranging error of the circular distance between the tag and
the corresponding base station of the ith base station. The distance vector F is defined as
F = [ f1(x, y), f2(x, y), · · · , fN(x, y)]T . Each element in the F vector represents the distance
to a circle around the UWB base station, and the Jacobi matrix of F representing the
differential increment in the position is defined as the gradient of the function:

J = ∇x,y[F] =


∂ f1(x,y)

∂x
...

∂ fN(x,y)
∂x

∂ f1(x,y)
∂y
...

∂ fN(x,y)
∂y

 (4)

In this study, by defining a cost function ε(x, y) and then using the L–M algorithm to
find its minimum value, the method is an improvement made on the basis of Gaussian
Newton’s method, which overcomes the problem of inaccurate local approximation or even
inability to converge, caused by the fact that the initial parameter is not set near the optimal
solution when traditionally solving the least-squares problem.

ε(x, y) = min

{
1
2

N

∑
i=1

βi

[√
(x − xi)

2 + (y − yi)
2 − Ri

]2
}

(5)

If one starts at any position Un = [xn yn]
T , then the position of Un+1 is

Un+1 = Un − (JT
n J + βdiag(JT

n Jn))
−1

JT
n Fn, β ≥ 0 (6)

where β is the damping factor, and β > 0 ensures that the iteration proceeds in the direction
of descent. When β is very large, it is close to the most rapid descent method; when β is
small, it is close to the Gaussian Newton method.

In order to test the performance of the L–M algorithm, the following simulation
experiment is designed: Three base stations in a 30 m × 30 m room with coordinates
(10 m, 10 m), (0 m, 15 m), (−5 m, 5 m) are assumed. Where the distance of the UWB mobile
tag from these three UWB localization base stations are 15, 10, and 5 m, respectively, using
the IEEE802.15.4a channel in which CM4 is implemented as NLOS channel and CM3 is
implemented as LOS channel, an exponentially distributed NLOS deviation with a mean
value of 2 ns is established for one of the base stations, and the rms delay extension of
NLOS satisfies the lognormal distribution with a mean value of 0.021 m and a variance of
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0.00178 m. Based on multiple measurements, the thresholds are set to δ1 = 0.3, δ2 = 0.5.
Finally, the initial position is set to (5 m, 2 m). In summary, this simulation experiment
constructs two UWB base stations receiving signals for LOS and one UWB base station
receiving signals for NLOS, which is more in line with the actual indoor localization
scenario. Finally, the L–M algorithm is used to solve it. The simulation results of the L–M
algorithm are shown in Figure 2.
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The final solution of (−4.5, 6.3) is obtained through eight iterations. Compared with
the actual position, the error is only 0.036, so the position estimation of the UWB tag can
be accurately obtained after optimization by L–M algorithm, which further improves the
accuracy of the UWB positioning system. Next, the stability of the indoor positioning
system will be improved by a fusion filtering algorithm to fuse the positioning information
of UWB and IMU.

3. UWB/IMU Tight Combination Localization Method

The principle of the combined positioning system scheme in this paper is shown in
Figure 3, in which the UWB positioning system consists of four base stations with known
coordinates and one tag with unknown coordinates, and the IMU consists of a three-axis
accelerometer and a three-axis gyroscope. The acceleration and angular velocity data
of the IMU are subjected to an integration operation to obtain the position and velocity
information of the IMU. Taking the ranging value of UWB and the yaw angle φ of IMU as
observation quantities, the improved CKF algorithm is used to centrally fuse the data of
UWB and IMU to obtain the velocity and position of the robot.
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3.1. Combined UWB/IMU Localization Models

Firstly, we define the motion model and observation model of the combined IMU
and UWB localization system. The UWB localization model uses the environment to build
a coordinate system, and obtains the absolute position information of the UWB tag and
the base station through multiple base stations and a single tag, which is called global
localization; on the other hand, the IMU localization model builds a coordinate system
according to its own motion and uses the data from accelerometers and gyroscopes to
obtain the position information of the IMU relative to the robot, which is called local
localization. Since the acceleration and angular velocity data of IMU can be obtained by
measurement, the state vector of the system is defined as X =

[
xk yk

.
xk

.
yk θk

]T . This
includes the position, velocity, and heading angle of the robot in the global coordinate
system, and the state equation of the system considering the process noise is

xk = xk−1 +
.
xk−1∆t + 1

2 ax,k−1∆t2 + w1k

yk = yk−1 +
.
yk−1∆t + 1

2 ay,k−1∆t2 + w2k
.
xk =

.
xk−1 + ax,k−1∆t + w3k

.
yk =

.
yk−1 + ay,k−1∆t + w4k

θk = θk−1 + wk−1∆t + w5k

(7)

where ∆t is the time interval between the robot’s motion from the previous moment to
the current moment, θ is the angle between the robot’s human motion direction and the
x-axis in the global coordinate system, ax,k−1 = abx,k−1 cos θk−1 − aby,k−1 sin θk−1 is the
robot’s acceleration along the x-axis of the global coordinate system, and abx,k−1 and aby,k−1
are the robot’s acceleration along the x- and y-axis of the carrier coordinate system at
the k – 1 moment, respectively. Similarly, ay,k−1 = abx,k−1 sin θk−1 − aby,k−1 cos θk−1 is the
acceleration of the robot along the y-axis of the global coordinate system at moment k – 1.
W1k, w2k, . . ., w5k for the process noise, the noise vector Wk =

[
w1k w2k w3k w4k w5k

]T

is defined, and Equation (7) is further expressed as

Xk = FXk−1 + BUk−1 + Wk (8)

where

F =


1 0 ∆t 0 0
0 1 0 ∆t 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

, Uk−1 =

abx,k−1
aby,k−1
wk−1

, B =



1
2 cos θk−1∆t2 − 1

2 sin θk−1∆t2 0
1
2 sin θk−1∆t2 1

2 cos θk−1∆t2 0

cos θk−1∆t − sin θk−1∆t 0

sin θk−1∆t cos θk−1∆t 0

0 0 ∆t


where Xk−1 is the system state at moment k – 1, F is the state transfer matrix, B is the control
input matrix, which is a time-varying matrix based on the heading angle θ, Uk−1 is the IMU
measurement vector, and Wk ∼ N(0, Qk), Qk are the system noise variance matrices.

The nonlinear discrete system is denoted as

Xk = f (Xk−1, Uk−1) + Wk (9)

Zk = h(Xk) + Vk (10)

where Xk denotes the state vector at moment k, Zk denotes the observation vector at moment
k, h(·) is the measure function, measurement noise Vk ∼ N(µ, Rk), where µ is the mean
and Rk is the measurement noise variance matrices.
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3.2. Combinatorial Localization Algorithm Based on Improved CKF

(1) Initialize the state estimates Xk and the error covariance matrix Pk.
(2) Calculate the volume points:

Pk = UΣUT =
(

U
√

Σ
)(

U
√

Σ
)T

= SkST
k (11)

X j
k = Skξ j + X̂k, j = 1, 2, . . . , m (12)

where m is the total number of volume points, according to the ball-radial volume law,
m = 2n, where n is the dimension of the state volume. Σ = diag(λ1, λ2, . . . λn) is the
diagonal matrix consisting of the eigenvalues. ξ j is the volume point, set to

ξ j =

{ √
nIj, j = 1, 2, . . . , n

−
√

nIj j = n + 1, n + 2, . . . , 2n
(13)

where Ij denotes the jth column of the unit matrix, and the weights of the volume points
are set to wj = 1/m.

(3) By nonlinear state transformation, the volume point is:

X j
k|k−1 = f (X j

k−1, uk−1)j = 1, 2, . . . , m (14)

(4) The predicted state and error covariance is calculated as follows:

X̂k|k−1 =
2n

∑
j=1

wjX
j
k|k−1 (15)

Pk|k−1 =
2n

∑
j=1

wjX
j
k|k−1(X j

k|k−1)
T
−X̂ j

k|k−1(X̂ j
k|k−1)

T
+ Qk (16)

(5) Noise update: Since UWB is subject to uncertain statistical characteristics during
ranging and localization, the Sage–Husa noise estimator can estimate and correct the
statistical characteristics of the system noise in real time. The Sage–Husa noise estimator
can estimate and correct the statistical characteristics of the system noise in real time. When
the statistical characteristics of the system noise changes are small, it is necessary to update
the measurement noise, so the Sage–Husa noise estimator is used to update the UWB
measurement noise as a volume measurement to realize an accurate estimation of the
fusion positioning system. The specific steps are as follows:

Denote the measurement prediction for the jth sample as

Xi
k|k−1 = h(Xi

k|k−1) (17)

Calculate the predicted value of the measurement at moment k:

Ẑk|k−1 =
2n

∑
j=1

wjXk|k−1 (18)

Create prediction error vectors for measurements:

Z̃k = Zk − Ẑk|k−1 (19)

Use the measurement noise estimator considering Sage–Husa filtering based on CKF
algorithm characteristics:

R̂k = (1 − δk)R̂k−1 + δk(Z̃kZ̃T
k − HkPx,k|k−1HT

k ) (20)
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where δk is the adaptive factor for Sage–Husa filtering. Since the structural parameter matrix
Hk does not exist in the CKF algorithm, and since the state vector is high-dimensional in
this paper, (1 − δk) is rewritten as (I − Dk), which leads to:

R̂k = R̂k−1(I − Dk) + (Z̃kZ̃T
k − Px,k|k−1)Dk (21)

where I is the unit matrix and Dk is the adaptive factor matrix, as specified in the expression
Dk = diag(dk1, . . . , dki, . . . , dkn), i = 1, 2, . . . , n, where the diagonal elements are:

dki =
1 − bi

1 − bk+1
i

(22)

where dki is the adaptive factor, bi is the forgetting factor—which is used to limit the memory
length of the filter, where the value range is generally (0.95, 0.99)—and the subscript n
represents the state dimension. When the statistical characteristics of the noise change
quickly, the forgetting factor takes a large value, and when the change is slow, it takes
a small value. When the filter converges, the error covariance matrix Px,k will gradually
become smaller, and accordingly, Px,k|k−1 will also gradually become smaller and eventually
converge to 0; then, the measurement noise covariance matrix R̂k becomes

R̂k = R̂k−1(I − Dk) + Z̃kZ̃T
k Dk (23)

(6) Measurement Updates:
When the UWB localization is in a NLOS scenario, a large variation in the measure-

ments may cause filter divergence. Specifically, if the inequality relation equation holds,
the filtering converges and vice versa, then the filtering diverges.

Z̃
T
k Z̃k ≤ ρ × tr

[
2n

∑
j=1

wj(X j
k|k−1 − Ẑk|k−1)(X j

k|k−1 − Ẑk|k−1)
T
+ R̂k

]
(24)

where tr(·) is the trace operation of the matrix and ρ ≥ 1 is the adjustable factor [35]. If
the filtering diverges, the introduction of the asymptotic cancellation factor φk corrects
the one-step prediction covariance matrix Pz,k|k−1 of the quantitative measurements and
induces the filtering to converge. The correction is made by multiplying by the asymptotic
factor φk [36]. The corrected expression is

Pz,k|k−1 = φk

2n

∑
j=1

wj(X j
k|k−1 − Ẑk|k−1)(X j

k|k−1 − Ẑk|k−1)
T
+ R̂k (25)

φk = max
{

1, tr(Z̃kZ̃T
k )/tr(Pz,k|k−1)

}
(26)

When the UWB localization is in the LOS scenario, the fading factor φk = 1; only the
adaptive matrix Dk needs to be adjusted to fit the noise statistics of different sensors. When
the UWB localization is in the NLOS scenario and the filtering dispersion, the fading factors
φk > 1 and Pz,k|k−1 increase, and the filtering gain decreases, which means that the filtering
process “trusts” the predicted estimates less, and the filtering results tend to be more in
favor of the estimated value of the system state, so as to reduce the impact of the UWB
anomalies on the filtering results in the NLOS scenario.

After applying the fading factor correction, the interaction covariance matrix between
the state space and the measurement space is expressed as

Pxz,k|k−1 = φk

2n

∑
j=1

wj(X j
k|k−1 − X̂k|k−1)(X j

k|k−1 − Ẑk|k−1)
T

(27)

The filter gain is
Kk = Pxz,k|k−1P−1

z,k|k−1 (28)
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The estimate of the state of the system at the current k moments is

X̂k = X̂k|k−1 + Kk(Zk − Ẑk|k−1) (29)

The a posteriori estimate of the updated error covariance matrix is

Px,k = φkPx,k|k−1 − KkPz,k|k−1KT
k (30)

In summary, when performing data fusion, the adaptive factor and the fading factor
need to be set appropriately to effectively balance the contributions of the state estimates and
the actual measurements to the filtered estimates. The above steps (2) to (6) are repeated to
obtain the optimal state estimation of the system, and the overall flow is shown in Figure 4.
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4. Experimental Verification
4.1. Experimental Scenario and Equipment

In this section, the proposed combinatorial localization method is further validated
through field experiments based on the modeling in the previous section. As shown in
Figures 5 and 6, the LOS and NLOS experiments are conducted in a large conference room
and a laboratory, respectively. In the LOS scenario, the localization area is kept empty,
and no obstacles are placed. In the NLOS scenario, two cardboard boxes were placed in
the localization area; in order to make the experiment more closely resemble a real indoor
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NLOS scenario, we placed five 10-cm-thick wooden boards in one of the cardboard boxes.
In the other cardboard box, multiple bricks of concrete material were placed, totaling about
50 cm in thickness. During the experiments, in the LOS environment, the robot moves
along a preset rectangular trajectory and collects UWB and IMU localization information to
verify the localization accuracy of several filtering algorithms. In the NLOS environment,
static and dynamic experiments are performed separately. In the static experiments, the
robot is placed in the center of the localization area and remains stationary, and obstacles
randomly block the propagation of UWB wireless signals. In the dynamic experiments,
the robot does not preset the walking trajectory and moves around the obstacles in the
localization area, taking the localization data collected by the high-precision LiDAR as the
reference trajectory. Finally, several filtering algorithms are used to obtain the combined
UWB and IMU localization trajectories in static and dynamic environments, respectively, to
verify the performance of the algorithms.
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Figure 6. NLOS experimental scenarios.

In this paper, the proposed method is tested using an ultra-wideband model based on
IEEE 802.15.4a [29]. The UWB device is a DW1000 chip from DecaWave in Dublin, Ireland,
which is used to collect the position information of the robot, and the built-in IMU sensor
with model number ICM-42605 (TDK-InvenSense co., San Jose, CA, USA) is used to collect
the acceleration and angular speed information of the robot. The UWB and IMU devices
selected for the experiment are shown in Figure 7a, and the mobile robot is shown in
Figure 7b. The sampling frequencies of UWB and IMU are 50 Hz and 200 Hz, respectively.
Before the experiment, the ranging data of UWB are pre-filtered once, and the zero bias of
the IMU are recorded to compensate for the sampled values of subsequent IMUs.
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Figure 7. Experimental equipment. (a) UWB base stations and tags. (b) Mobile robot.

4.2. LOS Scenario Experiments

The experimental environment is a large conference room of 20 m × 40 m, with no
obstacles blocking it, which can be regarded as a LOS environment. Before the experiment,
we recorded the zero-bias value of the IMU, in order to compensate for the subsequent
sampling data and reduce the effect of accelerometer drift on the IMU positioning error.
For long-time positioning, we calibrated the accelerometer and Gyroscope periodically,
which can eliminate part of the error accumulation and improve the measurement accuracy.
The robot moves at a speed of 0.06 m/s, and four UWB base stations simultaneously
range the robot’s trajectory points. The real trajectory of the robot is a rectangular area of
13 m × 27 m, and the robot moves according to the preset trajectory during the experiment.
The initial position coordinates of the robot are (2.5, 6), and the motion planning of the
robot is realized by the spatial programming of the robot operating system under the
Ubuntu system, which outputs the rectangular trajectory, and the four vertices of the
motion trajectory area have the coordinates of (2.5, 6), (15.5, 6), (2.5, 33), (15.5, 33). Finally,
the position information of the UWB and IMU is measured separately, and their localization
trajectories are shown in Figure 8.
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Figure 8 shows the localization trajectories of IMU and UWB in an indoor LOS envi-
ronment. In the LOS environment, the UWB localization trajectory is close to the actual 
trajectory, and the localization accuracy is very high; the IMU has a very high accuracy at 
the initial stage of localization, and there is no significant difference compared with the 
UWB. Over time, the positioning accuracy of IMU decreases. We visualize the relevant 
parameters of the accelerometer and gyroscope in the IMU. From Figure 9, it can be seen 
that there is a small drift in the acceleration and angular velocity information obtained in 
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be generated after the integration operation, and the positioning accuracy will be de-
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accuracy of the UWB and assisting the UWB positioning by using the feature of the IMU 
that is not affected by the environment. 

Figure 8. Localization trajectories for UWB and IMU in LOS environments.

Figure 8 shows the localization trajectories of IMU and UWB in an indoor LOS envi-
ronment. In the LOS environment, the UWB localization trajectory is close to the actual
trajectory, and the localization accuracy is very high; the IMU has a very high accuracy at
the initial stage of localization, and there is no significant difference compared with the
UWB. Over time, the positioning accuracy of IMU decreases. We visualize the relevant
parameters of the accelerometer and gyroscope in the IMU. From Figure 9, it can be seen
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that there is a small drift in the acceleration and angular velocity information obtained in
the accelerometer and gyroscope, and with the passage of time, the cumulative error will
be generated after the integration operation, and the positioning accuracy will be degraded.
Therefore, the filtering algorithm can be used to combine the UWB and IMU for positioning,
correcting the position of the IMU by using the feature of high positioning accuracy of the
UWB and assisting the UWB positioning by using the feature of the IMU that is not affected
by the environment.
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In order to verify the localization performance of the proposed improved CKF algo-
rithm in indoor LOS environments, we conducted combined localization experiments, 
and the experimental site is shown in Figure 5. The mobile robot carries UWB tags and 
IMUs along the preset trajectory and fuses the position information of UWBs and IMUs 
using EKF, UKF, CKF, and improved CKF algorithms, respectively. The combined locali-
zation trajectory is shown in Figure 10. 
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As can be seen from Figure 10, EKF has the largest localization error, followed by 
UKF. Compared to these two algorithms, CKF has a lower localization error; this is due 
to the fact that CKF uses cubic coordinate transformations to deal with the nonlinear sys-
tem, by averaging in a higher-dimensional space, avoiding the process of linearization of 
the nonlinear function. CKF is similar to UKF in that it deals with the nonlinear system by 
mapping the sampling points to a higher dimensional space, but CKF chooses cubic roots 
as sampling points, which are more characteristic compared to the Sigma points of UKF; 
therefore, CKF is more rigorous and stable than UKF. Consistently, in the LOS scenario, 
the velocity error and position error of the improved CKF algorithm in the x- and y-axis 
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Figure 9. Parameters related to accelerometers and gyroscopes in IMUs. (a) Acceleration bias in the
x-axis. (b) Acceleration bias in the y-axis. (c) Yaw angle error. (d) Gyroscope bias in z-axis.

In order to verify the localization performance of the proposed improved CKF algo-
rithm in indoor LOS environments, we conducted combined localization experiments, and
the experimental site is shown in Figure 5. The mobile robot carries UWB tags and IMUs
along the preset trajectory and fuses the position information of UWBs and IMUs using
EKF, UKF, CKF, and improved CKF algorithms, respectively. The combined localization
trajectory is shown in Figure 10.
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to the fact that CKF uses cubic coordinate transformations to deal with the nonlinear sys-
tem, by averaging in a higher-dimensional space, avoiding the process of linearization of 
the nonlinear function. CKF is similar to UKF in that it deals with the nonlinear system by 
mapping the sampling points to a higher dimensional space, but CKF chooses cubic roots 
as sampling points, which are more characteristic compared to the Sigma points of UKF; 
therefore, CKF is more rigorous and stable than UKF. Consistently, in the LOS scenario, 
the velocity error and position error of the improved CKF algorithm in the x- and y-axis 
directions are always within a small range, which has certain advantages compared with 
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As can be seen from Figure 10, EKF has the largest localization error, followed by
UKF. Compared to these two algorithms, CKF has a lower localization error; this is due
to the fact that CKF uses cubic coordinate transformations to deal with the nonlinear
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system, by averaging in a higher-dimensional space, avoiding the process of linearization
of the nonlinear function. CKF is similar to UKF in that it deals with the nonlinear system
by mapping the sampling points to a higher dimensional space, but CKF chooses cubic
roots as sampling points, which are more characteristic compared to the Sigma points
of UKF; therefore, CKF is more rigorous and stable than UKF. Consistently, in the LOS
scenario, the velocity error and position error of the improved CKF algorithm in the x- and
y-axis directions are always within a small range, which has certain advantages compared
with the EKF and UKF algorithms, and its ability of predicting the noise and suppressing
the error is stronger compared with the CKF algorithm. In addition, the improved CKF
method proposed in this paper is closest to the real trajectory, smoother than the localization
trajectory of the CKF algorithm, and has the highest localization accuracy.

4.3. NLOS Scenario Experiments

UWB can satisfy the high-precision localization of indoor robots in LOS environments,
but in complex indoor environments, UWB will be affected by factors such as building
occlusion, which produces serious NLOS effects and leads to increased localization errors
or even failure. In order to verify the localization effect of the proposed improved CKF
combinatorial localization algorithm in complex indoor environments, robot localization
and navigation experiments are conducted. The experimental setup is consistent with the
NLOS experimental scenario described in Section 4.1. In the NLOS scenario, static and
dynamic experiments were conducted separately. Here, a “static” experiment refers to one
where the robot does not move during the whole data acquisition process, and several
filtering algorithms are used to fuse the position information from the UWB and IMU
under the condition of maintaining a stationary state. The scatter plot in Figure 11a is a 2D
visual representation of the performance comparison of the four localization algorithms
in a static scenario. To be more intuitive, the reference position of the static tag is moved
to the coordinate origin (0, 0). In this static scene, it can be observed that the localization
errors of several algorithms are all within 0.1 m, among which the localization results of
EKF algorithm and UKF algorithm have a larger deviation from the real value, while the
localization results of CKF algorithm and the improved CKF algorithm are closer to the
origin of the coordinates, and the localization errors are smaller.
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In order to better compare the localization results of the algorithms, Figure 11b shows
the root-mean-square error (RMSE) of the four algorithms for 700 localization samples in a
complex indoor environment, which is about 0.032 m for UKF, 0.05 m for EKF, 0.023 m for
CKF, and 0.009 m for the improved CKF algorithm. The experimental results show that the
proposed improved CKF algorithm has higher localization accuracy in static scenarios and
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can better meet the requirements of indoor robot localization. Table 1 gives the maximum
and average errors of several algorithms in the x-direction and y-direction.

Table 1. Comparison of localization errors in static scenes.

Algorithm
x-Direction y-Direction

Maximum Error Average Error Maximum Error Average Error

Improved CKF 0.049 0.005 0.061 0.004
CKF 0.057 0.01 0.057 0.02
UKF 0.067 0.03 0.056 0.024
EKF 0.106 0.042 0.056 0.036

To verify the localization performance of the proposed algorithm in dynamic envi-
ronments, we conducted experiments using a mobile robot. The robot carries UWB tags
and IMU to move in the localization area and obtains the combined localization trajec-
tories using EKF, UKF, CKF, and modified CKF algorithms. The localization trajectories
are shown in Figure 12a. From the figure, it can be seen that the localization errors of
EKF and UKF are larger in dynamic environments. When the NLOS effect is severe, the
localization accuracy of the EKF, UKF, and CKF algorithms decreases even more. The
improved CKF algorithm filters the whole trajectory more closely to the real trajectory and
can still maintain good localization accuracy even when the localization results of other
algorithms change drastically. This indicates that when the residual difference between the
predicted value and the actual value of the observed quantity is too large, the improved
CKF algorithm reduces the weight of the measured value, and the influence of the NLOS
error on the estimation of the system is reduced by reasonably controlling the gain. The
improved CKF algorithm’s trajectory is smoother than that of the CKF algorithm, which
overall better balances the contributions of the state and quantity measurements to the
filtered estimation.
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(a) Positioning track. (b) RMSE.

In order to better compare the localization results of several algorithms, the root-mean-
square error of each algorithm is given in Figure 12b. The RMSE error of the EKF algorithm
is about 0.38 m, the RMSE error of the UKF algorithm is about 0.35 m, the RMSE error of
the CKF algorithm is about 0.25 m, and the RMSE error of the improved CKF algorithm
is about 0.13 m. Among these algorithms, the root-mean-square error of the CKF tight
combination algorithm is less than several other algorithms. Table 2 gives the maximum
localization error and the average error of each algorithm in the x-direction and y-direction.
It can be seen that in complex indoor environments, the localization errors of the CKF
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tight combination algorithm are significantly smaller than those of the other algorithms in
both the x- and y-directions. In the indoor NLOS environment, the localization accuracy
is improved by 25.2%, 18.3%, and 11.3% compared to the EKF, UKF, and CKF algorithms,
respectively. It can be seen that the improved CKF algorithm can effectively control the
ranging error and ranging outliers in the NLOS scenario of UWB.

Table 2. Comparison of localization errors in dynamic scenes.

Algorithm
x-Direction y-Direction

Maximum Error Average Error Maximum Error Average Error

Improved CKF 0.37 0.13 0.62 0.14
CKF 0.69 0.24 0.61 0.22
UKF 0.76 0.34 0.85 0.34
EKF 0.89 0.35 0.74 0.33

5. Conclusions

In this paper, taking an indoor mobile robot as the research object, UWB and IMU
information were effectively fused, the L–M algorithm was used to optimally solve the
UWB position, and an improved CKF combinatorial localization algorithm based on real-
time updating of measurement noise was designed. The Sage–Husa filter is used to estimate
the statistical characteristics of the updated noise, the noise statistical characteristics of
different sensors are adaptively updated, and the fading factor is introduced to prevent
filter dispersion and improve filtering speed, which realizes the precise positioning of the
mobile robot. Finally, the combined localization performance of this paper’s algorithm
is analyzed and evaluated through experiments. The experimental results show that the
improved CKF algorithm stabilizes the localization error within 0.1 m and 0.3 m in LOS
and NLOS scenarios, respectively. In the NLOS scenario, the localization accuracies of the
improved CKF algorithm are 25.2%, 18.3%, and 11.3% higher than those of the EKF, UKF,
and CKF algorithms, respectively. The improved CKF algorithm shows a more obvious
advantage both in the LOS scenario and in the NLOS scenario.

Our future work will focus on the following aspects:

(1) Specific engineering practice often exists in a variety of noise, when the system process
noise is complex and exhibits time-varying effects; at this time, it is necessary to
comprehensively consider the system process noise and time-varying effects on the
fusion localization system, in order to obtain a more accurate position estimation.

(2) For UWB and IMU, the localization data were collected under relatively stable motion
processes of the mobile robot, and for more complex motion modes, such as rapid
acceleration and emergency stop, a better motion state model is needed to fit the tested
motion modes. Therefore, it is worthwhile to further investigate how to design a state
model that is applicable to motion in multiple modes.
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