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Abstract: Based on the decorrelation calculation of diffusion ultrasound in time-frequency domain,
this paper discusses the repeatability and potential significance of Disturbance Sensitive Zone (DSZ) in
time-frequency domain. The experimental study of Barely Visible Impact Damage (BVID) on Carbon
Fiber Reinforced Polymer (CFRP) is carried out. The decorrelation coefficients of time, frequency,
and time-frequency domains and DSZ are calculated and compared. It has been observed that the
sensitivity of the scattered wave disturbance caused by impact damage is non-uniformly distributed
in both the time and frequency domains. This is evident from the non-uniform distribution of the
decorrelation coefficient in time-domain and frequency-domain decorrelation calculations. Further,
the decorrelation calculation in the time-frequency domain can show the distribution of the sensitivity
of the scattered wave disturbance in the time domain and frequency domain. The decorrelation
coefficients in time, frequency, and time-frequency domains increase monotonically with the number
of impacts. In addition, in the time-frequency domain decorrelation calculation results, stable and
repetitive DSZ are observed, which means that the specific frequency component of the scattered
wave is extremely sensitive to the damage evolution of the impact region at a specific time. Finally, the
DSZ obtained from the first 15 impacts is used to improve the decorrelation calculation in the 16-th to
20-th impact. The results show that the increment rate of the improved decorrelation coefficient is
10.22%. This study reveals that the diffusion ultrasonic decorrelation calculation improved by DSZ
makes it feasible to evaluate early-stage damage caused by BVID.

Keywords: diffusion ultrasound; BVID; CFRP; nondestructive detection

1. Introduction

Diffuse waves in plate are guided waves resulting from multi-scattering of elastic
waves in heterogeneous media, highly sensitive to any structural disturbances [1]. Eval-
uating the damage level is an effective method based on the decorrelation between the
disturbance signal and the reference signal [2].

Many studies have discussed many scattering wave indicators to evaluate the damage
level. Pomarède et al. [3] analyze changes in relative wave velocity and the correlation
of signals between reference and damage states to detect microcracks in Carbon Fiber
Reinforced Polymer (CFRP) caused by the four-point bending test. Wojtczak et al. [2] uses
the decorrelation of the coda signal in the time domain and frequency domain to evaluate
the damage of the concrete cube under splitting conditions. Gao et al. [4] performed disbond
detection of an aeronautical honeycomb composite sandwich by calculating windowed
cross-correlation in time domain and local power spectral density in frequency domain for
direct wave and coda wave. Spytek et al. [1] used synthetic time-reversal of diffuse Lamb
waves for the mean wavenumber estimation algorithm and used ultrasonic coda waves to
perform damage imaging on aluminum and CFRP plates. However, the contribution of the
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vibration components at different frequencies is undetermined. Spalvier et al. [5] utilized
various features extracted from the cross-correlation function of multiple scattering signals
to monitor the stress state in concrete pillars. These features include signal energy, cross-
correlation amplitude, cross-correlation time and cross-correlation symmetry. Liu et al. [6]
used Taylor series expansion to perform low-time-consuming cross-correlation calculations
to analyze concrete cylinders’ relative wave velocity changes under compression conditions.
He et.al. [7] established a physics-based model for the relative velocity change of coda wave
subject to the stress variation for multi-layer structures. Niederleithinger et al. [8] devised a
step-wise coda wave interferometry method for tracking stress change and distribution in
concrete beams. Her et al. [9] uses the normalized coda wave energy of a single piezoelectric
ceramic transducer to monitor the bolt connection. Furthermore, mode conversion [10] can
also be used as damage indicators to evaluate structural integrity.

The scattering wave has different sensitivity to different positions on the specimen at
different times [11]. The scattering wave sensitive kernel model can be used to estimate the
distribution of sensitive areas in time domain and space domain [12]. The defect detecting
and imaging can be realized by combining the decorrelation of signals between reference
and damage states with the scattering wave sensitive kernel model [13,14]. However, it is
difficult to establish a sensitive kernel model for a small-sized heterogeneous specimen,
as the real fiber distribution is affected by processing, making it hard to obtain a complete
multiple scattering model [15].

Impact damage in CFRP usually forms inside, including intra-layer matrix cracking,
inter-layer cracking and fiber breakage [16,17]. Impact damage on composites is commonly
referred to as Barely Visible Impact Damage (BVID) [18]. As damage accumulates, the
stiffness of CFRP decreases and this degradation occurs in three stages. Initially, there is
a rapid stiffness decrease due to matrix cracks, followed by a more gradual and slower
degradation that typically accounts for the majority of the fatigue life. In the last part
of the fatigue life, the material properties are drastically reduced and the stiffness loss is
accelerated [19,20]. Currently, there is a lack of research on the distribution of sensitive areas
of scattered waves in the time-frequency domain and the use of a Disturbance Sensitive
Zone (DSZ) to improve detection sensitivity.

In this paper, the impact fatigue damage on CFRP is taken as the research object, and
the change of time-frequency domain decorrelation of scattering wave under different im-
pact times is discussed. The repeatability of time-frequency domain DSZ of scattering wave
and the possibility of improving subsequent damage monitoring are also discussed. The
improved decorrelation calculation results are compared with the decorrelation calculation
results in time domain, frequency domain and time-frequency domain. This work will
provide an experimental basis for the evaluation of the BVID based on scattering wave
time-frequency domain decorrelation calculation methods improved by DSZ.

The rest of this paper is organized as follows. Section 2 introduces the experimental
steps and the specimens used. Section 3 analyzes the experimental results, compares the
decorrelation DC in time domain, frequency domain and time-frequency domain, and
verifies the feasibility of using a prior DSZ to improve DC in the time-frequency domain.
Finally, Section 4 concludes the study.

2. Materials and Methods

In order to produce different level of impact fatigue damage in specimen, a stainless
steel iron ball with a mass of m = 0.905 kg and a diameter of D = 60 mm was used to impact
the specimen. It is feasible to use ball to impact the specimen to produce different level of
impact fatigue damage [21]. Single impact energy greater than 8 J. The specimen is CFRP
with a size of 200 × 40 × 3 mm. The main properties of the specimen are shown in Table 1,
and the supplier provides these property values. The impact ball falls freely from a height
of H = 1000 mm and moves away quickly after it bounces up. During each impact process,
only one contact occurs between the specimen and the impact ball. The impact process was
carried out in a PVC guide tube with a length of L = 1000 mm and an inner diameter of
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Dpipe = 66 mm. The schematic diagram of the impact process and the diffusion ultrasonic
propagation path is shown in Figure 1. The impact region is located in the center of the
specimen. There is no obvious impact pit and damage on the surface of the impact region,
and there is BVID on the back of the impact region. BVID was observed by X4D-Z03B042-D
1600× optical microscope (OM) produced by RIEVBCAU, as shown in Figure 2.

Table 1. The main properties of the specimen.

Property Specification

Model T300
Number of fiber filaments 3 K

Filament Diameter 7 um
Density 1.76 g/cm3

Size 200 × 40 × 3 mm
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Figure 2. BVID was observed under an optical microscope. (a) Low magnification observation.
(b) High magnification observation.

The setup of the experiment is shown in Figure 3a, and the equipment wiring is
shown in Figure 3b. Two PZT5A piezoelectric ceramics with a diameter of 10 mm and a
thickness of 4 mm were fixed on the specimen using 801 chloroprene glue (AILIKE/801), as
shown in Figure 3c. The wiring of the experiment process is shown in Figure 3d. A signal
generator (Tektronix AFG3052C, Beverton, OR, USA) is used to generate a sweep signal of
200~400 kHz with a duration of 0.4 ms. The sweep signal is amplified by a power amplifier
(Falco Systems WMA-300, Katwijk aan Zee, The Netherlands) and connected to the emitter
probe. The receiver probe is connected to the oscilloscope (Tektronix MDO4034C). The
signal is collected at a sampling rate of 500 MHz and filtered by an average of 128 times to
remove the influence of random noise. The control specimen did not carry out the impact
test, but the other steps were consistent with the experimental specimen, and the signal of
the receiving probe was collected synchronously with the experimental specimen. A total
of 20 impact tests were carried out. The ambient temperature was between 20.8 ◦C and
21.2 ◦C during the first 15 impact tests. During the 16-th to 20-th impact tests, the ambient
temperature was between 20.6 ◦C and 20.8 ◦C. The change of ambient temperature is small,
so its influence can be excluded.
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3. Results

The signal collected by the receiver probe is shown in Figure 4. According to the
propagation time, the signal can be divided into direct wave, coda wave (multiply scattered
wave) and noise. The ultrasonic wave attenuates rapidly when propagating in CFRP, and
the coda wave is very short. Therefore, the decorrelation calculation of the signal part
before noise (0~0.62 ms) is considered.
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The wavelength of the ultrasonic signal is in the same order of magnitude as the
thickness of the specimen. The shear wave and the longitudinal wave will be reflected
and superimposed between the upper and lower surfaces to form a special stress wave,
namely Lamb wave. Carbon fiberboard is an anisotropic composite material. The speed of
the ultrasonic wave propagating inside carbon fiberboard is related to the direction, and its
true dispersion curve is complex [22]. Taking the shear wave velocity of 3 km/s and the
longitudinal wave velocity of 5 km/s as examples, the dispersion curve of the isotropic
plate with a thickness of 3 mm is drawn as shown in Figure 5a. S0 and S1 represent the
0th and 1st order symmetric mode Lamb waves, A0 and A1 represent the 0th and 1st
order antisymmetric mode Lamb waves. The propagation velocity of the Lamb wave
changes with the change in the frequency-thickness product. In this paper, Figure 5a is
only used to illustrate the dispersion characteristics of Lamb propagation, which is not
the real dispersion curve of ultrasonic wave in carbon fiber plate. The distribution of the
disturbance sensitive zone in the time-frequency domain is related to the dispersion of
Lamb, impact damage location and the distance between transducers, etc. The spectrum
of S1(t) is shown as Figure 5b. Multiple peaks can be observed in the figure and they are
related to the resonant frequency of the piezoelectric ceramic and specimen. The frequency
range of the excitation signal is 200~400 kHz, so according to Figure 5a, we can assume
that the expected modes are A0 and S0, where direct waves could be respectively S0 at
0.03~0.04 ms and A0 at about 0.06 ms. The second part of the signal mainly consists of the
reflected waves (S0, A0) on edges and coda waves. The frontier between the second and
third parts is more difficult to explain, but in the end of the signal we could supposed that
there are mostly scattered waves. So we could supposed the third part as “Coda Waves”.
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3.1. Time Domain Decorrelation

The decorrelation calculation method of coda wave interferometry is used to calculate
the collected signals. The reference signal is the signal S1(t) corresponding to the first
impact, and the disturbance signal is the signal SN(t) corresponding to the N-th impact. In
the time domain, the decorrelation coefficient DCt(m,N) of the m-th window of the N-th
impact is calculated as follows:

DCt(m, N) = 1 −
∫ tm+TW

tm
S1(t)SN(t)dt√∫ tm+TW

tm
S2

1(t)dt
∫ tm+TW

tm
S2

N(t)dt
(1)

where DCt(m,N) is the decorrelation coefficient corresponding to the m-th window of the
N-th impact in the time domain. tm is the starting time corresponding to the m-th window
and t0 = 0, TW = 6 us is the window length, the window overlap rate O = 50%, and the time
domain calculation range is between 0~0.62 ms. The DC distribution in the time domain is
shown in Figure 6a, where Figure 6b is the result of DCt(m,15) − DCt(m,1).
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3.2. Frequency Domain Decorrelation

The Fourier transform of the signal is as follows:

XN( f ) =
∫ Te

0
SN(t)e−iwtdt (2)

The end point of calculation Te = 0.8 ms. XN(f ) is the spectrum of the signal correspond-
ing to the N-th impact. In the frequency domain, the decorrelation coefficient DCf(m,N) of
the m-th window of the N-th impact is calculated as follows:

DC f (m, N) = 1 −

∫ fm+ fW
fm

X1( f )XN( f )d f√∫ fm+ fW
fm

X2
1( f )d f

∫ fm+ fW
fm

X2
N( f )d f

(3)

fm is the starting frequency corresponding to the m-th window and f 0 = 200 kHz,
f W = 25 kHz is the window length, the window overlap rate O = 95%, and the frequency
domain calculation range is between 200~400 kHz. The DC distribution in the frequency
domain is shown in Figure 6c, where Figure 6d is the result of DCf(m,15) − DCf(m,1).

It can be seen from Figure 6 that DC is not non-uniform distributed in both time domain
and frequency domain, and there is a sensitive area where DC value rises rapidly. There are
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multiple discrete sensitive zones in the time domain DCt. There are two obvious sensitive
zones in the frequency domain DCf, which are near 260 kHz and 350 kHz respectively.
Many factors, such as damage location, probe position, resonant frequency of piezoelectric
ceramics and specimens, etc cause the non-uniform distribution of DC in time domain and
frequency domain.

3.3. Time-Frequency Domain Decorrelation

The short-time Fourier transform of the signal is as follows:

Fm,N( f ) =
∫ ∞

−∞
SN(t)g(t − mts)e−j2π f tdt (4)

where g(t − mts) is a rectangular sliding window with a length TW = 500 us, and its position
is determined by mts. ts = 200 ns is the sliding step size, m = 1, 2, 3, . . ., k. Fm,N(t,f )
is the complex amplitude of the signal SN(t) between ts and ts+ TW on each frequency
component. For the complex value Fm,N(t,f ) of the frequency component f at time t, the form
is Fm,N(t,f ) = a + bi, absolute value of amplitude A = sqrt(a2 + b2), phase p = arctan(b/a).
Therefore, the amplitude of each frequency component is restored as follows:

HN(t, f ) =
2A

Nsum
cos(2π f t + P) (5)

where Nsum is the total number of sampling points, and HN(t,f ) is the N-th impact signal
amplitude of the frequency component f at time t. The calculation of decorrelation DCt,f
in time-frequency domain is shown in Figure 7. The short-time Fourier transform and
amplitude conversion of the reference signal S1(t) (Figure 7a1) and the disturbance signal
SN(t) (Figure 7a2) are performed to obtain H1(t,f ) and HN(t,f ) as shown in Figure 7b. The
time-frequency domain decorrelation DCt,f is calculated by a kernel as follows:

DCt, f = 1 −

∫ f+ fh
f− fh

∫ t+th
t−th

H1(t, f )HN(t, f )dtd f√∫ f+ fh
f− fh

∫ t+th
t−th

H2
1(t, f )dtd f

∫ f+ fh
f− fh

∫ t+th
t−th

H2
N(t, f )dtd f

(6)

where th = 2 us is half of the length in the kernel time axis direction, and fh = 2 kHz is half of
the length in the kernel frequency axis direction. The calculated DCt,f is shown in Figure 7c.
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turbation signal (SN(t)). (b) Convolution process of H1(t,f ) and HN(t,f ). (c) DCt,f .

3.4. Disturbance Sensitive Zone

Taking the signal of the 1-st impact as the reference signal, the DCt,f of 1-st to 15-
th impact is calculated according to the calculation process shown in Figure 7, and the
results are shown in Figure 8. DCt,f increases with the increase of the number of impact.
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The increase of DCt,f is non-uniformly distributed in the time-frequency domain. DCt,f
rises rapidly in some regions, and the position of these regions in the time-frequency
domain is relatively stable. Changes of time-domain decorrelation DCt, frequency-domain
decorrelation DCf, time-frequency domain decorrelation DCt,f with the number of impacts
in the experimental and control specimens are shown in Figures 9 and 10. Compared with
DCt and DCf, DCt,f is more sensitive to impact fatigue damage and can better evaluate the
evolution of impact fatigue damage. In order to further discuss the region where DCt,f
rises rapidly in the time-frequency domain, the region that deviates from most values in
DCt,f is regarded as the DSZ.
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Figure 10. Control specimen DC in time domain, frequency domain and time-frequency domain.

The calculation flow chart of DSZ is shown in Figure 11a. The value of the upper
quartile region deviates from the distribution of most values, which means that the DCt,f
in this region rises rapidly when the disturbance occurs. After the morphological closed
operation and open operation of the upper quartile region, the DSZ is obtained. DCt,f
before processing is shown in Figure 11b,c is the upper quartile region of DCt,f , Figure 11d
is the result of morphological closed operation of Figure 11c,e is the result of morphological
open operation of Figure 11d. Figure 11c–e are binary graph, where the red area is the
target area.

The DSZ of 2-nd to 15-th impact is superimposed, and the distribution of the number
of overlaps NDSZ in the time-frequency domain is shown in Figure 11f. The region of
NDSZ = 14 in the figure means that DCt,f in these regions rises rapidly in all the disturbance
signals from the 2-nd impact to the 15-th impact. These regions are stable and highly
repeatable DSZs in the time-frequency domain.

It can be seen from Figure 6c that the sensitive region can be divided into two
parts in the frequency domain. The disturbance-sensitive zone DSZl (frequency range
200~300 kHz, time 0~0.62 ms) and DSZh (frequency range 300~400 kHz, time 0~0.62 ms)
were divided by 300 kHz as the dividing line for analysis. In order to further analyze the
change of the distribution characteristics of DSZ with the increase of the number of impact,
LDSZ(N) = (CPf, CPt, N) is used as the weighted average position of DCt,f in the DSZ of
the N-th impact. CPt and CPf are calculated as Equation (7) and Equation (8), respectively.

CPf =

∫ fe
fs

∫ te
ts

f · DCt, f dtd f∫ fe
fs

∫ te
ts

DCt, f dtd f
(7)
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CPt =

∫ te
ts

∫ fe
fs

t · DCt, f d f dt∫ te
ts

∫ fe
fs

DCt, f d f dt
(8)

For DSZl, fs = 200 kHz, fe = 300 kHz, ts = 0, te = 0.62 ms. For DSZh, fs = 300 kHz,
fe = 400 kHz, ts = 0, te = 0.62 ms. The weighted center positions of DSZl and DSZh are
LDSZl(N) and LDSZh(N), respectively. The distribution of the 2-nd to 5-th impact of
LDSZl(N) and LDSZh(N) is shown in Figure 12.
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LDSZ(N) can characterize the distribution characteristics of DCt,f|DSZ in time-frequency
domain. LDSZl(N) and LDSZh(N) are projected onto the time domain to obtain CPl(t) and
CPh(t), and LDSZl(N) and LDSZh(N) are projected onto the frequency domain to obtain
CPl(f ) and CPh(f ). The variations of CPl(t), CPh(t), CPl(f ) and CPh(f ) with the increase of
the number of impact are shown in Figure 13, where the confidence level of confidence
ellipse is 95%. A confidence ellipse can show the distribution of data points. As the
correlation between the two variables increases, the confidence ellipse will be elongated
toward greater correlation. The equation of the confidence ellipse of the variables x and y is
shown as follows:

(x − x)2

σ2
x

− 2ρ
(x − x)(y − y)

σxσy
+

(y − y)2

σ2
y

= c (9)

where x and y are the mean values of x and y, respectively, σx and σy are the standard
deviations of x and y, and ρ is the correlation coefficient of x and y. c is the confidence level
determined by the chi-square distribution, and c = 5.991 when the confidence interval is
95%. The confidence ellipse in this paper is drawn using Origin 2022 software.
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Observe the scatters and confidence ellipses in Figure 13, as the number of impact
increases, the DSZ shifts slightly backward in the time domain, which means that as the
number of impact increases, the response of the signal part with longer propagation time
to the disturbance is strengthened. As the number of impacts increases, DSZl approaches
260 kHz in the frequency domain, and DSZh approaches 350 kHz in the frequency domain,
consistent with the distribution of decorrelation-sensitive areas in the frequency domain
observed in Figure 6.

3.5. DC Improving by Prior DSZ

DSZ2-15 is the region in the DSZ of the 2-nd to 15-th impact that is stably repeated
14 times (stably repeated each DSZ), where NDSZ = 14. The DCt,f in DSZ2-15 is extremely
sensitive to the damage evolution of the impact area. Therefore, the DCt,f in DSZ is
analyzed, where DCt,f |DSZ represents the DCt,f value in DSZ.

The 16–20 th impact is the later stage of the continuous impact experiment. This part
of the impact experiment can be used to discuss whether the DSZ obtained in the previous
impact experiment can be used to improve the detection of the subsequent evolution of the
impact damage. The impact fatigue damage on CFRP is divided into three stages [18]. The
impact fatigue damage at the initial stage of life and after the life of 70% increases rapidly
with the increase of the number of impact. The damage evolution in the second stage is
gentle and not obvious. Therefore, the decorrelation between the 16-th and 20-th impact
can be expected to change small. Taking the signal S16(t) of the 16-th impact as the reference
signal, the calculation results of decorrelation DC for the signals of the 17-th to 20-th impact
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are as shown in Table 2. Time domain DCt, frequency domain DCf, time-frequency domain
DCt,f , prior DSZ improved DCt,f |DSZ2-15 are as shown in Figure 14.

Table 2. The calculation results of decorrelation DC.

Number of Impact DCt DCf DCt,f DCt,f |DSZ2-15 Increase Rate IR

17 9.88314 × 10−4 1.31597 × 10−6 0.00436 0.00469 7.5688%
18 8.40645 × 10−4 2.88991 × 10−6 0.00548 0.00609 11.1314%
19 8.26131 × 10−4 4.10172 × 10−6 0.00606 0.00668 10.2310%
20 9.84513 × 10−4 8.63983 × 10−6 0.00869 0.00973 11.9678%
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It can be seen from Figure 14 that the use of a priori stable and repeatable DSZ
can further improve the monitoring of subsequent DC changes. The increase rate IR is
calculated as follows:

IR =
DCt, f

∣∣∣DSZ1−15 − DCt, f

DCt, f
(10)

The results show that using the prior DSZ to improve the subsequent DC can obtain
higher sensitivity, which is helpful in further detecting the evolution of impact fatigue
damage on CFRP. The improved time-frequency domain DCt,f increase rate is 10.22%
on average.

4. Conclusions

The evaluation of impact fatigue damage on CFRP using scattering waves was studied.
The scattered wave signals under different the number of impact are used as reference
signals and disturbance signals. The time domain, frequency domain and time-frequency
domain decorrelation calculations are performed to evaluate the evolution of impact
damage. The distribution characteristics of the disturbance sensitive zone in the time-
frequency domain and the feasibility of using the disturbance sensitive zone to improve the
subsequent decorrelation calculation are discussed. The following conclusions are obtained:

(1) The DC in time domain, frequency domain and time-frequency domain increases
with the increase of the number of impact, which indicates that DC in time domain, fre-
quency domain and time-frequency domain can be used to evaluate the evolution of
impact damage. In addition, the DC in the time-frequency domain shows higher sensi-
tivity to the damage evolution of the impact region than the DC in the time domain and
frequency domain.

(2) The sensitive region where DC rises rapidly is observed in both time domain and
frequency domain. The sensitive region where DC rises rapidly can also be observed in the
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time-frequency domain, and its distribution characteristics LDSZ is consistent with those
observed in the time domain and frequency domain.

(3) Based on the prior stable and highly repetitive disturbance sensitive zone, the
decorrelation calculation of the time domain DCt, frequency domain DCf, time-frequency
domain DCt,f and the prior DSZ improved DCt,f |DSZ2-15 of the 16-th to 20-th impact signals
is carried out. The results show that the prior DSZ can further improve the sensitivity of the
time-frequency domain DC to the damage evolution of the impact region, and the average
increase rate reaches 10.22%.

The research results of this paper show that there are disturbance-sensitive zones
which are extremely sensitive to the damage evolution of the impact region and are stable
and repeatable in the time-frequency domain of the scattered wave. Using these DSZ to
improve the calculation of time-frequency domain decorrelation DCt,f is helpful to study
the evolution of impact fatigue damage on CFRP. Further research will be carried out on
different types of composite materials in the future.
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