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Abstract: The segmentation of abnormal regions is vital in smart manufacturing. The blurring
sauce-packet leakage segmentation task (BSLST) is designed to distinguish the sauce packet and
the leakage’s foreground and background at the pixel level. However, the existing segmentation
system for detecting sauce-packet leakage on intelligent sensors encounters an issue of imaging
blurring caused by uneven illumination. This issue adversely affects segmentation performance,
thereby hindering the measurements of leakage area and impeding the automated sauce-packet
production. To alleviate this issue, we propose the two-stage illumination-aware sauce-packet leakage
segmentation (ISLS) method for intelligent sensors. The ISLS comprises two main stages: illumination-
aware region enhancement and leakage region segmentation. In the first stage, YOLO-Fastestv2
is employed to capture the Region of Interest (ROI), which reduces redundancy computations.
Additionally, we propose image enhancement to relieve the impact of uneven illumination, enhancing
the texture details of the ROI. In the second stage, we propose a novel feature extraction network.
Specifically, we propose the multi-scale feature fusion module (MFFM) and the Sequential Self-
Attention Mechanism (SSAM) to capture discriminative representations of leakage. The multi-level
features are fused by the MFFM with a small number of parameters, which capture leakage semantics
at different scales. The SSAM realizes the enhancement of valid features and the suppression of
invalid features by the adaptive weighting of spatial and channel dimensions. Furthermore, we
generate a self-built dataset of sauce packets, including 606 images with various leakage areas.
Comprehensive experiments demonstrate that our ISLS method shows better results than several
state-of-the-art methods, with additional performance analyses deployed on intelligent sensors to
affirm the effectiveness of our proposed method.

Keywords: sauce-packet leakage segmentation; uneven illumination; multi-level feature fusion;
attention mechanism

1. Introduction

With the advancement of computer vision technology, abnormal region segmentation
has become crucial for intelligent industrial production [1–3]. Sauce-packet leakage seg-
mentation is a typical abnormal region segmentation task. Sauce-packet leakage is typically
due to improper machine settings on the production line. For example, inappropriate
temperature and time settings of the high-temperature sealing machine or mismatched
speed between the rotating shaft and the sauce-filling machine nozzles can lead to leakage
at the connection of the sauce packets. However, in actual sauce-packet production lines,
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the image quality is affected by blurring due to uneven illumination (i.e., overexposure or
insufficient illumination), which affects segmentation performance. The blurring sauce-
packet leakage segmentation task (BSLST) can alleviate uneven illumination, which aims to
identify the pixel-level leakage at the sauce-packet connection [4]. Traditional and most
deep learning algorithms have insufficient performance on the BSLST, due to challenges
in handling pixel-level classification under uneven illumination conditions, and those
algorithms lack sufficient granularity in capturing monotonous features [5–7]. The solving
of the BSLST can enhance the efficiency of sauce production in the catering industry, which
would reduce the miss rate of manual inspections and unleash economic vitality. Hence, to
facilitate the industrialization process, researching the BSLST is particularly important.

The leakage segmentation of sauce packets can be divided into traditional methods
and Convolutional Neural Network (CNN) methods [8]. Traditional methods rely on
expert experience. Songming et al. [9] developed an improved detector using the Canny
operator, which improves the computational efficiency and increases the precision of fiber
identification. Sharma et al. [10] used a Histogram of Oriented Gradient (HOG) and Support
Vector Machine (SVM) segmentation method, which integrates with a modified ResNet50
model for brain tumor detection to help clinicians. Similarly, Hongbin et al. [11] proposed
a segmentation method by HOG and Local Binary Pattern (LBP), which combines both
HOG and LBP features to accurately identify crack anomalies. Binwu et al. [12] developed
a secondary template-matching method, which extracted the Region of Interest (ROI) by
using the four-threshold algorithm. However, traditional methods rely on hand-crafted
features, and the generalization performance in real scenes is insufficient.

The CNN methods automatically extract discriminative features and do not rely
on expert experience. Wang et al. [13] proposed HRNet, which connects the high-to-
low-resolution convolution streams in parallel and repeatedly exchanges the information
across resolutions. Yu et al. [14] proposed BiseNetv2, which involves a detail branch
and a semantic branch. Xie et al. [15] proposed SegFormer, which unifies transformers
with lightweight multilayer perception decoders. Cao et al. [16] proposed Swin-Unet,
which designs a novel pure transformer-based U-shaped encoder–decoder for medical
image segmentation. Zhou et al. [17] presented a water leakage detection method under
insufficient illumination conditions and uneven illumination on the turbine layer, which
effectively detects water dripping and the leakage of turbine floor equipment by a wheel
inspection machine. Huang et al. [18] introduced tunnel lining surface crack and leakage
defect detection under uneven illumination conditions. Shen et al. [19] proposed a cofe-Net
to suppress global degradation factors under uneven illumination, image blurring, and
artifacts, while simultaneously preserving anatomical retinal structures and pathological
characteristics. Zhao et al. [20] proposed a shield tunnel lining leakage segmentation
approach to identify leakage areas and scaling images. Hai et al. [21] developed an R2RNet
to enhance images under low illumination, including image decomposition, denoising,
contrast amplification, and the meticulous preservation of intricate details. However, the
above methods have not been applied to the field of sauce-packet leakage segmentation.

To solve those problems, we propose the two-stage illumination-aware sauce-packet
leakage segmentation (ISLS) method. To the best of our knowledge, we found that our ISLS
method is the first to detect sauce-packet leakage under uneven illumination. Firstly, in the
illumination-aware region enhancement stage, an efficient localization algorithm [22] is
introduced to reduce the calculation of invalid areas. And we designed the uneven-light
image-enhancement (ULIE) method to alleviate the problems of blurred images under
uneven illumination conditions. Specifically, the ULIE method is built upon the retinex
model to enhance image clarity under insufficient illumination condition. And the ULIE
method utilizes contrast-limited adaptive histogram equalization to alleviate the leakage
details in overexposure images. Secondly, in the leakage region segmentation stage, to effec-
tively relieve the problem of missing information, we propose the multi-scale feature fusion
module (MFFM) for capturing multi-scale discriminative representation. Our MFFM fuses
a variety of feature maps from top to bottom. And the resulting fused feature map serves
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as the input to our proposed network decoder, thereby enhancing the decoder’s semantic
recovery performance. Finally, the Sequential Self-Attention Mechanism (SSAM) utilizes
a sequential structure, which combines the channel and spatial attention mechanisms,
thereby achieving the effective mining of salience information. In summary, our method
effectively relieves the impact of uneven illumination and improves the performance of
feature extraction for blurred images. Furthermore, our proposed ISLS method obtains
detailed leakage areas, further helping technical people to analyze the reasons for leakage
and adjust sauce-filling machines (e.g., sauce nozzles, high-temperature sealing devices,
and shaft rotation speeds).

Our main contributions can be summarized as follows:

(1) To alleviate blurred image issues caused by uneven illumination, we propose the
ULIE method via an illumination-aware mechanism to enhance the texture details of
leakage within the ROI.

(2) The MFFM is proposed to fuse multi-level features with a small number of parameters,
capturing multi-scale features to effectively relieve the issue of missing information.

(3) To alleviate the interference of invalid information, we introduce the SSAM by com-
bining spatial and channel attention mechanisms to enhance the discriminability of
valid features in the ROI.

(4) We generate a sauce-packet dataset to facilitate research. Furthermore, our method,
Mean Intersection over Union (mIoU), achieves 80.8% and Mean Pixel Accuracy (mPA)
reaches 90.1% on the self-built dataset, which are +0.9% and +0.9% higher than the
previous CNN method [23].

The rest of this paper is organized as follows: Section 2 describes the proposed method
in detail. Section 3 conducts the experiments based on the self-built dataset to verify the
effectiveness of the proposed method. Section 4 summarizes this paper.

2. Materials and Methods
2.1. Overall Architecture

We propose illumination-aware sauce-packet leakage segmentation (ISLS) for the
industrial production line, as illustrated in Figure 1. The ISLS method includes an NVIDIA
GPU and an intelligent sensor with a hardware accelerated EdgeAI development environ-
ment. We train the model on NVIDIA GPU and perform inference on intelligent sensors.
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The cameras capture images of sauce-packets and transfer the images to NVIDIA GPU
and intelligent sensors, where the images are stored as a raw dataset. The size of the raw
dataset is 888 × 1112 (height and width), comprising 606 sauce-packet leakage images
with varying degrees and shapes. The sauce-packet dataset is pre-processed using the
YOLO-Fastestv2 [22] detection algorithm to focus on the Region of Interest (ROI) and is
augmented by our proposed uneven-light image-enhancement (ULIE) method. We split the
raw dataset into training and validation sets in a 7:3 ratio for second-stage segmentation.
Notably, the input image size for ISLS is 888 × 1112, and the output size is 128 × 512.

The overall ISLS flow and the image size changes at different ISLS stages are shown
in Figure 2, providing a comprehensive view of the process from raw dataset acquisition
to segmentation.
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We train our proposed leakage segmentation network on the NVIDIA GPU. Sub-
sequently, we assess the robustness and generalization of our trained model by cross-
validation. The trained model is deployed on the NVIDIA Jetson TX2 intelligent sensors
for inference, where it is utilized to identify real-time leakage in images (i.e., highlight the
areas of leakage with bounding boxes).

We first introduce uneven-light image enhancement in our designed ISLS, including
the localization and ULIE method. Subsequently, we present the segmentation network,
proposing the multi-scale feature fusion module (MFFM) and the Sequential Self-Attention
Mechanisms (SSAMs). Detailed explanations of these components will be presented in
subsequent sections.

2.2. Uneven-Light Image Enhancement for Illumination-Aware Region Enhancement

The actual leakage segmentation of sauce packets is often influenced by uneven light
sources, which consist of insufficient illumination and overexposure. To relieve the problem
of image blurring caused by uneven illumination, we propose the uneven-light image-
enhancement (ULIE) method, employed in the illumination-aware region-enhancement
stage of ISLS. The ULIE method is inspired by the relevant image-enhancement algo-
rithms [24–26]. Our ULIE method can enhance the illumination of sauce-packet images
under insufficient illumination conditions and improve the image contrast and texture
details under overexposure conditions.

The input of ISLS is in a three-channel RGB format, where R, G, and B represent
the color space values of red, green, and blue, respectively. We utilize the mean function
in OpenCV to calculate the mean value of the RGB three channels in the ROI. Through
extensive experimental analysis, we define 115 and 180 as the thresholds for insufficient
illumination and overexposure, respectively. The implementation details of our ULIE
method are as follows:

In the case of insufficient illumination, the ULIE method is built upon the retinex
model [27,28]. The retinex model theory posits that a color image can be decomposed
into two primary components: the illumination component (lighting) and the reflection
component, as shown in Equation (1).

Li(x) = Tr(x) ◦ Re(x) (1)
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where Li(x) and Re(x) represent the input image and the image to be recovered, respectively.
Tr(x) represents the illumination-mapping image, and the ◦ operator represents the element-
wise multiplication.

Firstly, to simplify the computation of the ULIE method, it is commonly assumed
that the three channels of images share the same illumination map [29]. The ULIE method
calculates the maximum value among the RGB channels of the image to independently
estimate the illumination of each pixel x, obtaining the initial estimation:

Tr(x) = max
c∈{R,G,B}

Lic(x) (2)

where x represents individual pixel, c represents channels, and Lic(x) is the input image of
the maximum channel in the RGB.

Secondly, to ensure that the illumination map does not cause the enhanced image to
become overly saturated, the ULIE method modifies Re(x):

Re(x) =
Li(x)

Tr(x) + ϵ
(3)

where ϵ is a very small constant, to avoid denominating to zero.
Thirdly, the ULIE method employs the augmented Lagrangian multiplier optimiza-

tion method [30] to preserve the structural information and smooth texture details of
sauce-packet images. The ULIE method introduces the following optimization problem to
accelerate the processing speed of sauce-packet images:

min
Tr

∣∣∣∣T̂r − Tr
∣∣∣∣2

F + α||W ◦ ▽Tr||1 (4)

where ||·||F and ||·||1 represent the F norm and L1 regularization, and α is the coefficient
balancing the F norm and L1 regularization, respectively. Additionally, W is the weight
matrix, and ▽Tr represents a first-order derivative filter, encompassing both horizontal
and vertical directions.

Finally, the ULIE method iteratively updates according to the retinex model, being
solved to obtain the result image Re(x) in Equation (1). The ULIE method applies BM3D [31]
for the denoising optimization of the result image Re(x). To reduce the computation of the
denoising process in ULIE, the method transforms the RGB three channels of the result
image Re(x) into YUV three channels [32] and performs denoising only on the Y channel:

Y = 0.299R + 0.587G + 0.114B
U = −0.169R − 0.331G + 0.5B + 128
V = 0.5R − 0.419G − 0.081B + 128

(5)

where Y represents luminance, and U and V represent blue chrominance and red chromi-
nance, respectively.

In the case of overexposure, the ULIE method divides the image into blocks to obtain
overexposure regions (i.e., locally overexposed areas). Firstly, to obtain the illumination
information of the ROI, we convert the RGB color space into the YUV color space, as shown
in Equation (5). The ULIE method divides the input image into several small blocks and
performs Contrast-Limited Adaptive Histogram Equalization (CLAHE) [33] on each block
to enhance the clarity of the image. CLAHE clips and redistributes the histograms of
each sub-image, thereby limiting the degree of contrast enhancement. CLAHE prevents
the amplification of noise and excessive enhancement [34]. The ULIE method initially
divides the original image into several non-overlapping sub-images, each denoted as s.
We compute the frequency of pixel values ps(i), representing the data distribution of pixel
values i within each sub-image. The definition of ps(i) is given by Equation (6):

ps(i) =
ni

N
(6)
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where ps(i) represents the frequency of pixel values equal to i, ni represents the number of
pixels with a pixel value of i, and N represents the total number of pixels in the sub-image.

Secondly, the ULIE method computes the Cumulative Distribution Function (CDF)
cs(i) for each sub-image s in Equation (7), representing the cumulative frequency of pixel
values less than or equal to i:

cs(i) =
i

∑
j=0

ps(j) (7)

where cs(i) represents the CDF for the pixel value i, and ps(j) represents the frequency of
pixel values equal to j.

Thirdly, the ULIE method utilizes Equation (8) to compute the transformation function
Ts(i) for each sub-image s, representing the function that maps the original pixel value i to
a new pixel value:

Ts(i)= ⌊c s(i)⌋ (8)

where Ts(i) represents the transformed pixel value for the original pixel value i, L represents
the maximum range of pixel values, and ⌊·⌋ represents the floor function.

The ULIE method clips and redistributes ps(i) for each sub-image s, limiting the
degree of contrast enhancement, which prevents the amplification of noise and excessive
enhancement [33]. Finally, the ULIE method consolidates all transformed sub-images Ts(i)
into the final image and converts the image from YUV format back to RGB format.

The results of ULIE images are shown in Figure 3, where the left image is the non-
optimized image, and the right image is the optimized image. Figure 3a shows that the
image has improved overall illumination, with a clearer boundary between the leakage
and the background. The ULIE method effectively enhances the image contrast and clarity.
Figure 3b reveals that the illumination of the optimized image is more balanced. The ULEIE
method alleviates the phenomenon of local overexposure, which further proves that our
method effectively avoids gray jump [35]. We perform convolution and downsampling
operations on the yellow and red box regions, obtaining the corresponding feature maps
between non-optimized and optimized images. It is shown that the details of the optimized
feature map are more obvious. In summary, through the above process, our method can
effectively enhance the details and textures of sauce-packet images under insufficient
illumination and overexposure.
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2.3. ISLS Network Details for Leakage Segmentation

In the leakage region segmentation stage of the ISLS method, we propose our network
with the EdgeNext backbone, which comprises only 1.3 M parameters [36]. The EdgeNext
integrates the advantages of the Convolutional Neural Network (CNN) and vision trans-
former (ViT). The CNN extracts local features of images using convolution operation [37],
and the ViT [38] captures global contextual information of images. The network is an
end-to-end network, where the input channel dimension is 3 (i.e., RGB), and the input
image size is 128 × 512. Our overall network structure is shown in Figure 4, which includes
the encoder and decoder.
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The encoder fuses the local and global representation. Firstly, the n × n Conv encoder
consists of three modules. The n × n Conv encoder utilizes adaptive kernels to adjust the
size of convolutional kernels based on distinct network layers, which aims to decrease
computational complexity and enhance the receptive field [39]. Secondly, the SDTA encoder
combines spatial and channel information. The SDTA encoder utilizes deep transposed
convolution and adaptive attention mechanisms, which improve the performance of cap-
turing local and global representation. Thirdly, the information of deep- and shallow-layer
feature maps is fused by our MFFM, which improves the performance of encoder feature
extraction. Our MFFM structure is shown in Figure 5.

Specifically, we extract four feature maps of different sizes from the encoder, denoted
as x1, x2, x3, and x4. Firstly, the MFFM adjusts the channel number of the feature map
x1 to 512 through a 1 × 1 convolution and 4× downsampling. Next, the MFFM applies
similar operations with x1 to the feature map x2, with 2× downsampling, as illustrated in
Equation (9):

x
′
i= MaxPooling(Conv(xi)), i ∈ {1, 2} (9)

where MaxPooling represents the downsampling process through maximum-pooling oper-
ation, and Conv represents the convolution operator.
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Secondly, x3 has the same size as the output. Therefore, the MFFM only needs to
utilize a 1 × 1 convolution to adjust the channel number of the feature map x3 to 512, as
shown in Equation (10):

x
′
3= Conv(x3) (10)

Thirdly, the channel number of x4 is same with the output; therefore, the MFFM only
performs an Upsampling2 operation on the feature map x4 Upsampling2 is achieved using
nearest-neighbor interpolation, as depicted in Equation (11):

x
′
4 = Upsampling2(x4) (11)

where Upsampling2 represents 2× upsampling operation.
Through the above operations, the feature maps x

′
1, x

′
2, x

′
3, and x

′
4 are obtained. Finally,

we fuse the feature information of x
′
1, x

′
2, x

′
3, and x

′
4 to output the feature map x5, as shown

in Equation (12):

x5 =
4

∑
i=1

xi (12)

The reasons for the MFFM’s small parameter number is that the Conv operator em-
ploys a 1 × 1 convolution, the Upsampling2 operation uses nearest-neighbor interpolation,
and downsampling is achieved through Maxpooling. The 1 × 1 convolution operation only
increases a small number of parameters, and upsampling and downsampling operations
do not increase the number of parameters. Compared to the Feature Pyramid Network
(FPN) [40] and AF-FPN [41], the parameter number of our MFFM is relatively small. That
is, our MFFM has a parameter number of only 0.23 M, with only 3.05% of the FPN and
AF-FPN parameter number.

The decoder includes a skip connection and the SSAM. The SSAM in stage 1 of
the decoder aims to improve the identification of salient features. The SSAM keeps a
high resolution in both channel and spatial branches, which enhances the salient features
of the sauce-packet ROI. Specifically, the SSAM contains two modules, consisting of a
channel-only module and the spatial-only module, as shown in Figure 6. For the channel-
only module of the SSAM, the output yin is generated by fusing the feature map xin,
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obtained from both the skip connection and the channel attention mechanism. The specific
computational process for the channel attention mechanism is shown in Equation (13).

ych= S(Re(Conv(xin)))⊗ Re(Conv(xin))

y
′
ch= Sig

(
LN

(
Conv

(
ych

))) (13)

where xin and ych represent the input and output of the SSAM channel-only module. Conv
represents the convolution operator, Re represents reshape operator, and S represents the
softmax operator. Additionally, LN represents layer normalization, and Sig represents the
sigmoid function.
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The process of the SSAM spatial-only module is similar, with one part from the skip
connection, and the other part from the spatial attention mechanism, as shown in Equation
(14) for specific operations:

ysp= S(Re(GP(Conv(yin))))⊗ Re(Conv(yin))

yout = yin ⊙ Sig
(

LN
(

ysp

)) (14)

where yin and yout represent the input and output of the SSAM spatial-only module.
GP, S, and LN represent to the global pooling operator, softmax operator, and layer
normalization, respectively. ⊗ and ⊙ represent the tensor product and multiplication
operations, respectively.

Stages 2 to 5 of our proposed network decoder contain the SSAM and Concat operator.
The Concat operator concatenates feature maps of two branches in the channel dimension,
as shown in green box of Figure 3. Specifically, the one-branch feature map comes from
the SSAM output, which is upsampled 2×. The other branch feature map comes from skip
connections, which can avoid gradient vanishing and improve the training speed of the
network [42].

3. Experiments and Results
3.1. Dataset and Experiment Setting

Currently, there are almost no publicly available datasets for sauce-packet leakage
segmentation. Therefore, we generated a dataset at Nanjing University of Posts and
Telecommunications, captured by an industrial high-speed camera, namely the MER2-134-
90GC, and the Daheng Image industrial lens HN-P-1628-6M-C2/3. Our self-built dataset
comprises images with varying degrees of leakage. Specifically, it includes 315 images
under normal illumination conditions, 143 images under insufficient illumination, and
148 images with overexposure. Some examples from the self-built dataset are presented in
Figure 7.
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Figure 7. Partial sample of sauce-packet dataset. The yellow dotted boxes indicate the connection of
sauce-packet (i.e., ROI), and the blue dotted boxes indicate the main sauce.

The backbone of our proposed network is EdgeNext. Our experimental environment
is PyTorch 2.0.1. We divide the dataset into training and validation sets, containing 424
and 182 images, respectively. During the training phase, we employ the NVIDIA RTX
GPU 4060, while for inference, we deploy it to the NVIDIA Jetson TX2. Meanwhile, we
utilize the cross-validation strategy to verify the robustness of the model. During training,
we use DiceLoss [43] to measure the degree of similarity between the predicted results
and the ground truth. In addition, we employ FocalLoss [44] to relieve class imbalance
by emphasizing hard-to-classify examples, which makes the model pay more attention
to challenging pixels. During deployment, we utilize pruning technology to accelerate
our model.

3.2. Evaluation Indexes

To evaluate the performance of the method, we selected seven widely used evalua-
tion indices: Average Precision (AP), Mean Intersection over Union (mIoU), Mean Pixel
Accuracy (mPA), F1-Score, Params, Giga Floating Point Operations Per Second (GFLOPs),
and Frames per Second (FPS). AP is an evaluation index for YOLO-Fastestv2, with higher
values indicating stronger performance. Params is employed as the evaluation index for
the model parameters. GFLOPs is an index measuring a model’s computational complexity.
And FPS is the evaluation index for the inference speed of a model. The definitions are
shown in Equations (15)–(18):

mIoU =
1
n

n

∑
i=1

TP
TP + FP + FN

(15)

mPA =
1
n

n

∑
i=1

TP
TP + FP

(16)

F1 − score =
2 × precision × recall

precision + recall
(17)

AP =
∫ 1

0
P(R)dR (18)

where precision and recall represent TP/(TP + FP) and TP/(TP + FN), respectively, and
P(R) is the precision at a given recall rate R.

3.3. YOLO-Faststv2 Training

Segmenting the entire image increases the computational burden, and it is challenging
to differentiate between the connection and the main sauce, as shown in Figure 6, often
resulting in incorrect segmentation. Therefore, during the illumination-aware region-
enhancement stage of the ISLS, we employ YOLO-Fastestv2 for ROI cropping. The dataset
for YOLO-Fastestv2 is divided into a training set and a validation set with a ratio of 7:3.
The input image size for YOLO-Fastestv2 is set at 888 × 1112, while the output image
dimensions are resized to 128 × 512. The ROI images are enhanced by the ULIE method
and inputted into the leakage region segmentation stage of the ISLS. The training process
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and evaluation indexes of YOLO-Fastestv2 are illustrated in Figure 8. Significantly, YOLO-
Fastestv2 attained the AP of 99.95%, which can primarily be attributed to the simple and
uniform features of the sauce-packet connections.
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3.4. Experiment Analysis of ULIE

We employ the grid search method to explore the optimal illumination thresholds of
ULIE for insufficient illumination and overexposure. And the controlled variable method is
utilized to reflect trends in performance. In the case of insufficient illumination, to validate
the optimal threshold as 115, we maintain the overexposure threshold at 180. We adjust
the insufficient illumination threshold within the range of 75 to 145. The ISLS evaluation
indices (i.e., mIoU, mPA, Accuracy, F1-score) for different thresholds are shown in Figure 9.
We observe that the evaluation indices reach their optimum when the threshold is set
at 115.
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Simultaneously, to verify the optimal threshold for overexposure as 180, we maintain
the insufficient illumination threshold at 115. We adjust the overexposure threshold within
the range of 150 to 220. The ISLS evaluation indices for various thresholds are presented in
Figure 10. It is noted that the evaluation indices achieve their peak performance when the
threshold is set at 180.
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Figure 10. The evaluation indexes under different overexposure thresholds, with a fixed insufficient
illumination threshold of 115.

To verify the effectiveness of our proposed ULIE method, in addition to the aforemen-
tioned quantitative analysis, we also conduct the qualitative analysis. Figure 11 shows the
qualitative segmentation results with and without using the ULIE method.
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In summary, we define the thresholds of insufficient illumination and overexposure as
115 and 180, respectively.

3.5. Analysis of Ablation Study

In this paper, we propose the two stage illumination-aware sauce-packet leakage seg-
mentation (ISLS) method. The ISLS method consists of the uneven-light image-enhancement
(ULIE) method, the multi-scale feature fusion module (MFFM), and the Sequential Self-
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Attention Mechanism (SSAM). To assess the performance of ISLS, we conducted ablation
studies on each component.

Ablation for backbone: Our baseline employs a U-shaped segmentation network
that selects the EdgeNext feature extraction network as its backbone. To verify the su-
periority of EdgeNext as the backbone network for the U-shaped segmentation network,
we compare the performances of MobileViTv2 [45], MobileNetv3 [46], MobileOneS4 [47],
Regnetx [48], and EfficientNetv2s [49] as U-shaped segmentation networks’ backbones, as
shown in Table 1. When compared with MobileOneS4, our baseline achieves the mIoU of
75.6% (+0.3%) and the mPA of 85.6% (+2.0%), respectively. The parameters and GFLOPs
of EdgeNext are close to those of MobileViTv2 and MobileNetv3. And the parameters
of EdgeNext are only half of MobileOneS4 and EfficientNetv2s, with its GFLOPs being
inferior to both MobileOneS4 and EfficientNetv2s. MobileViTv2 employs lightweight
transformer modules to delve into the intricate relationships between leakage features,
encountering challenges in capturing the subtle textures and minor discrepancies in leakage
representation. MobileNetv3 and MobileOneS4 utilize depthwise separable convolutions
to reduce computational demands, which constrains the interaction capabilities among
features across different channels, resulting in an insufficient representation of leakage.
EdgeNext is adept at capturing the details and textures within images, which is crucial
when dealing with sauce packets that feature intricate textures and complex backgrounds.
Hence, the network architecture of EdgeNext is more suited to capturing the features of
sauce-packet leakage.

Table 1. Detailed performance comparison of ablation experiment without attention mechanisms.
Baseline: our proposed network without ULIE, the MFFM, and the attention mechanism; the back-
bone is EdgeNext. ULIE: uneven-light image enhancement method. MFFM: multi-scale feature
fusion module.

Methods UEIE FPN [40] AF-FPN [41] MFFM mIoU (%) mPA (%) F1-Score (%) Params (M) GFLOPS FPS

Baseline 75.6 85.6 85.2 11.333 36.671 71.2
With MobileViTv2 [45] 73.9 84.3 83.9 11.278 36.879 63.2
With MobileNetv3 [46] 75.0 84.8 85.1 11.091 36.488 71.3
With MobileOneS4 [47] 75.3 83.6 84.9 22.951 40.312 36.2

With Regnetx [48] 75.1 86.2 84.2 12.471 36.674 70.8
With EfficientNetv2s [49] 76.3 85.9 86.8 29.872 40.113 42.8

+ULIE ✓ 77.4 89.6 86.5 11.333 36.671 71.2
+R2RNet [21] 64.3 76.1 78.0 32.362 3007.287 0.6

+FPN ✓ 77.3 85.2 86.3 18.906 1692.381 14.0
+AF-FPN ✓ 75.3 83.6 84.8 18.908 1692.737 13.2
+MFFM ✓ 78.7 87.9 87.3 11.564 66.736 48.8

+ULIE +FPN ✓ ✓ 78.5 86.7 87.2 11.906 1692.381 14.0
+ULIE +AF-FPN ✓ ✓ 75.9 84.3 85.3 11.908 1692.737 13.2
+ULIE +MFFM ✓ ✓ 79.2 89.1 87.7 11.564 66.736 48.8

Ablation for ULIE: We propose ULIE to alleviate the problem of blurring images in
uneven illumination conditions. In Table 1, compared to the baseline, mIoU improves by
about 1.5% and mPA by about 3.9% after using ULIE. R2RNet [21] alleviates low-light
image degradation but struggles with blurring from uneven illumination on sauce packets,
failing to retain leakage texture. Moreover, the R2RNet’s high computational demand
makes it hard to satisfy real-time detection. The ULIE method enhances the visibility of
subtle leakage details by effectively boosting the local contrast and illumination of images,
thereby significantly improving segmentation performance. The ULIE method is not based
on deep learning, which relies on the adjustment and optimization of image illumination
and contrast. Hence, the ULIE method does not require any parameters to be trained.
Through Section 2.2, Methods and Formulas, the ULIE method adaptively enhances the
illumination and contrast of images.

Ablation for MFFM: The mIoU and mPA of the MFFM reach 78.7% and 87.9%, as
shown in Table 1. Compared with the baseline, the mIoU and mPA of the MFFM increase
by 3.1% and 2.3%. In comparison to other feature fusion modules, the MFFM exhibits
significantly fewer parameters than both the FPN and AF-FPN, with only 3.05% of those
of the FPN and AF-FPN. Additionally, the mIoU and mPA of the MFFM are 1.4% and
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2.7% higher than the FPN, and the mIoU and mPA of the MFFM are 3.4% and 4.3% higher
than the AF-FPN. Significantly, the FPN and AF-FPN structures are complex, and the
GFLOPs of the FPN and AF-FPN reach as high as 1655. However, the features of leakage
are monotonous, rendering the extraction of salient features less effective with the FPN
and AF-FPN. Compared to the FPN and AF-FPN, our proposed MFFM employs a more
efficient feature-integration mechanism, with only 30 GFLOPs.

Ablation for SSAM: We add the attention mechanism to ISLS to improve the perfor-
mance of feature extraction and compare it with Global Attention Mechanism (GAM) [50]
and the Simple, Parameter-Free Attention Module (SimAM) [51]. In Table 2, it can be
observed that utilizing the SSAM results in an improvement of about 2.4% in mIoU and
0.9% in mPA with the GAM. The GAM distributes attention weights across a global scope
with plenty of global pooling and fully connected layers, leading to high computational
complexity and failing to capture detailed local features adequately. The GFLOPs of the
SSAM are only 3.237, significantly lower than the approximately 52.613 GFLOPs for the
GAM. Additionally, Table 2 shows that BUM with the SSAM improves the values by about
3.7% in mIoU and 3.5% in mPA compared to BUM with the SimAM. Although the SimAM
does not increase the computational load and inference time, the SimAM exhibits limited
performance when addressing complex and subtle leakage features. In summary, our
introduced SSAM enhances the identification of salient features, which improves the focus
on details and textures of leakage.

Table 2. A detailed performance comparison of ablation experiments involving attention mechanisms.
BUM represents the baseline with ULIE and the MFFM.

Methods GAM [50] SimAM [51] SSAM [52] mIoU (%) mPA (%) F1-Score (%) Params (M) GFLOPS FPS

BUM 79.2 89.1 87.7 11.564 66.736 48.8

+GAM ✓ 78.4 89.2 87.7 20.273 119.349 3.6
+SimAM ✓ 77.1 86.6 86.2 11.564 66.736 48.8
+SSAM ✓ 80.8 90.1 88.8 12.266 69.973 35.2

To further analyze the effectiveness of our method, we use the Grad-cam [53] to
visualize the attention heatmap. As shown in Figure 12, the redder the heatmap, the more
the attention mechanism focuses on the feature.
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Figure 12c exhibits strong capabilities for global feature extraction but shows insuffi-
cient performance in capturing local information. Figure 12b,d do not fully focus on the
leakage regions, and the problem of attention divergence exists. Our ISLS method with the
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SSAM effectively alleviates interference from invalid information, which results in more
focus on leakage regions, as shown in Figure 12e.

The leakage segmentation results of sauce packets with different attention mechanisms
are shown in Figure 13. Our method with the SSAM achieves more refined leakage bound-
ary segmentation for sauce packets by employing spatial- and channel-adaptive weighting.
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Our proposed ISLS achieves 4 FPS on the NVIDIA Jetson TX2. Our ISLS meets the
real-time requirements for industrial applications, which demand a minimum of 3 FPS.
Figure 14a illustrates the CPU utilization of the ISLS method. The GPU utilization of the
leakage segmentation stage is illustrated in Figure 14b.
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Before optimization, the GPU utilization often approached 100% (green line), posing
risks of system crashes or failures. To ensure system stability and device reliability, we
optimized the ISLS method by integrating L1 unstructured pruning technology [54], with a
reduction of 20% in the model’s parameter. Performing fine-tuning training while pruning
can effectively mitigate the performance degradation caused by pruning, with almost no
decrease in accuracy. The GPU utilization after optimization decreases to a certain extent
(red line), accelerating model inference while simultaneously decreasing GPU load and
enhancing system stability.

Figure 14c illustrates the comparison between the FPS before optimization (green
line) and after optimization (red line). The experimental results demonstrate a significant
improvement in the performance of our method after optimization. Compared with the
unoptimized method, the optimized method improves the FPS by 2.7 times.
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Experimental results demonstrate that ISLS performs well under uneven illumination
conditions. We deploy the ISLS on intelligent sensors, and the system fulfills the real-time
requirements of industrial applications.

3.6. Comparison with Other Segmentation Methods

In this section, we compare ISLS with several state-of-the-art (SOTA) semantic seg-
mentation networks, including HRNet [13], BiseNetv2 [14], SegFormer [15], PSPNet [55],
DeepLabv3 [56], and LIEPNet [23]. The evaluation results are shown in Table 3. The
design advantage of our model alleviates the negative impact of uneven illumination
and effectively captures semantic features of multi-level leakage. Consequently, we
achieve the highest accuracy, with mIoU, mPA, and F1-score reaching 80.8%, 90.1%, and
88.8%, respectively.

Table 3. Evaluation results of our ISLS and the SOTA CNN methods.

Methods mIoU (%) mPA (%) F1-Score (%) Params (M)

HRNet [13] 77.7 83.0 85.5 9.637
BiseNetv2 [14] 75.5 79.1 85.6 5.191
SegFormer [15] 76.5 80.8 85.1 3.715

PSPNet [55] 63.4 67.6 75.4 46.707
DeepLabv3 [56] 78.4 83.6 86.2 54.709

LIEPNet [23] 79.9 89.2 87.5 3.271
ISLS (Ours) 80.8 90.1 88.8 12.266

In the task of sauce-packet leakage detection, other semantic segmentation networks
such as HRNet, BiseNetv2, SegFormer, PSPNet, and DeepLabv3 exhibit limited general-
ization performance in the current field. The limited generalization performance is due
to the low contrast and unclear textures of leakage under uneven illumination conditions.
Additionally, sauce-packet leakage detection demands the capability of networks to handle
features across various scales to identify leakages ranging from small to large sizes and
shapes. Although HRNet and PSPNet have multi-scale feature fusion mechanisms, their ca-
pability to extract monotonous leakage features is limited. The generalization performance
of HRNet and PSPNet is insufficient under uneven illumination conditions.

For practical production line applications, detection speed is crucial. Networks like
DeepLabv3 and SegFormer, despite their high accuracy, have high computational demands,
making them unsuitable for real-time scenarios. After multiple downsampling and pooling
operations, LIEPNet leads to a loss in spatial representation. Meanwhile, LIEPNet employs
the SimAM module, which encounters difficulties in effectively distinguishing between the
foreground and background under uneven illumination conditions.

Additionally, we compare ISLS with several classical traditional segmentation meth-
ods, including template matching [57], Canny edge segmentation [58], contour segmenta-
tion [59], PCA segmentation [60], and iForest segmentation [18]. The evaluation results of
traditional leakage segmentation algorithms are shown in Table 4.

Table 4. Evaluation results of our ISLS and the traditional methods.

Methods mIoU (%) mPA (%) F1-Score (%)

Template matching [61] 40.9 59.8 54.0
Canny edge segmentation [57] 32.5 44.5 43.6

Contour segmentation [58] 32.5 44.5 43.6
PCA segmentation [59] 36.6 58.6 50.4

iForest segmentation [60] 48.0 59.1 58.8
ISLS (ours) 80.8 90.1 88.8
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The performance of traditional methods is insufficient in the sauce-packet leakage
segmentation, as shown in Figure 15. On the one hand, some traditional algorithms
mistakenly identify sealing imprints on the sauce packet and the black blocks, as shown in
Figure 16. On the other hand, these algorithms are significantly affected by uneven lighting
conditions. These above problems of traditional algorithms result in lower accuracy in
sauce-packet leakage segmentation.
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3.7. Generalization Performance Validation

To further verify the generalizability of our proposed ISLS method, we compare ISLS
with CNN methods on the Medical Dermoscopic Image dataset ISIC [62] and the rail
surface defect dataset RSDDs [63]. The experimental results on the ISIC dataset are shown
in Table 5, and the results on the RSDDs dataset are presented in Table 6. Our ISLS method
exhibits certain advantages in the current scenario. For example, ISLS achieves an AUC
of 93.2% on the ISIC dataset and 88.4% on the RSDDs dataset, exceeding the L-SVM [62]
by 0.6% and NDD-Net [64] by 0.2%, respectively. Although CCEANN [65] achieves an
F1-score of 92.0%, its parameter size is as high as 167.28 M, which far exceeds our ISLS
method. Consequently, CCEANN fails to satisfy the real-time processing demands of edge
sensor devices.

Table 5. The ISIC dataset generalizability validation of our ISLS and the SOTA methods.

Methods mIoU (%) mPA (%) F1-Score (%) AUC (%) Params (M)

HRNet [13] 78.4 86.6 88.2 91.6 9.637
BiseNetv2 [14] 76.9 84.1 86 89.4 5.191
SegFormer [15] 79.4 86 89.3 88.8 3.715

PSPNet [55] 76.4 83.3 86.9 89.1 46.707
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Table 5. Cont.

Methods mIoU (%) mPA (%) F1-Score (%) AUC (%) Params (M)

DeepLabv3 [56] 75.8 85.1 85.8 85.0 54.709
LIEPNet [23] 79.7 85.6 89.0 91.8 3.271
AVGSC [62] - - - 91.3 -
L-SVM [62] - - - 92.6 -

NL-SVM [62] - - - 90.4 -
Unext [66] 81.7 89.7 1.470

DoubleU-Net [67] 82.1 - 91.1 - -
E-SegNet [68] 83.4 - 85.3 - -
ISLS (Ours) 89.3 94.7 94.2 93.2 12.266

Note: The evaluation index information in Tables 4 and 5 is provided in the related papers. Unfortunately, these
related works do not have open-source code. We are unable to obtain the other evaluation indexes (indicated
by ‘-’).

Table 6. The RSDDs dataset generalizability validation of our ISLS and the SOTA methods.

Methods mIoU (%) mPA (%) F1-Score (%) AUC (%) Params (M)

HRNet [13] 73.0 80.0 81.5 75.9 9.637
BiseNetv2 [14] 71.2 73.7 74.3 63.4 5.191
SegFormer [15] 65.7 70.1 71.3 66.8 3.715

PSPNet [55] 70.0 74.6 75.2 65.3 46.707
DeepLabv3 [56] 72.1 81.6 75.7 71.2 54.709

LIEPNet [23] 74.4 82.5 82.8 78.9 3.271
MLC + PEME [63] - - 75.7 - -

CFE [63] - - 85.1 - -
NDD-Net [64] - - - 88.2 -
CCEANN [65] - - 92.0 - 167.280
PFCNN [69] - - 82.9 - 5.000
ISLS (Ours) 75.8 85.0 85.2 88.4 12.266

Notably: The evaluation index information in Tables 4 and 5 is provided in the related papers. Unfortunately,
these related works do not have open-source code. We are unable to obtain the other evaluation indexes (indicated
by ‘-’).

These improvements can be attributed to several key factors: (1) The first-stage ULIE of
the ISLS method effectively reduces noise caused by insufficient illumination and mitigates
the blurring due to overexposure. The ULIE method can effectively extract discriminative
features in images under uneven illumination conditions, enhancing the feature and texture
details. (2) Our MFFM module efficiently integrates features from different levels, capturing
texture features while preserving edge detail. (3) Introducing the SSAM module within
the ISLS method improves the representation capabilities in both the channel and spatial
dimensions, resulting in significant performance enhancements.

3.8. Discussion

The results presented above show that our proposed ISLS method is essential for
blurring sauce-packet leakage image segmentation.

The image classification CNN model lacks the capacity to precisely localize leakage
areas and quantify the extent of leakage. The traditional image-processing algorithms make
it hard to capture the representation of leakage under uneven illumination conditions,
leading to the mistaken identification of sealing imprints on sauce packets and black blocks.
The object location algorithms (e.g., YOLO) struggle to accurately capture information
regarding the area and shape of irregular leakage regions. For the current task, employing
detection algorithms to label irregular leakage is unreasonable and fails to capture specific
leak areas accurately.

However, our ISLS method alleviates the above problems. Our ISLS method consists
of the illumination-aware region-enhancement stage and the leakage region segmentation
stage. The first stage of the ISLS method reduces the computational load and alleviates
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the image blurring problem. The second stage enhances the ability to capture leakage
through the MFFM, SSAM, and our proposed U-shaped network. Our MFFM shows
superior capability in capturing monotonous leakage features, while its computational load
is significantly lower than that of FPN and AF-FPN. Our SSAM improves the ability to
focus on the details and textures of the leakage.

Furthermore, to verify our ISLS method, we compare various algorithms’ performance
with ISLS on medical dermoscopic image datasets and rail surface defect datasets. Our
ISLS achieves the best balance between accuracy and speed. These datasets have similar
blurring problems from uneven illumination. Our ULIE method reduces image noise under
insufficient illumination, avoids the gray jump phenomenon under overexposure, and
improves feature capture capability in uneven lighting conditions.

Overall, our proposed two-stage ISLS method achieves strong performance on the
blurring sauce-packet leakage segmentation task and is applicable to other general domains.
Furthermore, we built a sauce-packet leakage dataset, which is the first dataset in the
BSLST. The ISLS method alleviates the leakage detection of transparent sauce packets
where uneven illumination is caused by shaking. For opaque-material packets, other
morphological recognition methods are needed for leakage detection, which will be our
future research.

In addition, we will further focus on model parameter compression and precision
tuning. Meanwhile, we will contemplate the deployment of the state-of-the-art SAM
large model on the edge to augment the quality inspection rate of industrial sauce-packet
products, thereby enhancing the efficacy of quality control processes.

4. Conclusions

In this paper, our objective is to address the issue of detecting leakage in blurred images
under uneven illumination conditions. We propose the illumination-aware sauce-packet
leakage segmentation (ISLS) method, consisting of illumination-aware region enhancement
and leakage region segmentation stages. The first stage of ISLS reduces redundant computa-
tions of image enhancement processing and alleviates the image blurring caused by uneven
illumination, which effectively enhances image details and textures. In the second stage of
ISLS, we design a leakage segmentation network. In our proposed network, the multi-scale
feature fusion module (MFFM) efficiently fuses the shallow- and deep-layer features with a
small number of parameters, which improves the feature extraction performance. Addi-
tionally, the Sequential Self-Attention Mechanism (SSAM) achieves feature enhancement
in both channel and spatial dimensions, improving the identification of salient features.
Extensive experiments on our self-built dataset demonstrate that our method effectively
alleviates the blurred sauce-packet imaging issue and outperforms existing algorithms.
And the generalizability experiments on the ISIC and RSDDs datasets illustrate that our
method possesses certain advantages. Furthermore, our method improves the stability
and reliability of industrial systems and reduces the waste of production resources. The
performance testing of the intelligent sensors also validates the suitability of our ISLS
method for the current scenario.
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