A Rapid Localization Method Based on Super Resolution Magnetic Array Information for Unknown Number Magnetic Sources
Abstract
:1. Introduction
2. Methodology
2.1. Proposed Method
2.2. Magnetic Field Super-Resolution Neural Network
2.3. 3D Rough Positioning
2.4. Precise Positioning Based on TRR Optimization Algorithms
3. Results and Discussion
3.1. Super-Resolution Network Training and Testing
3.2. Multi-Targets Inversion in Field Tests
3.3. Rough Positioning Performance Evaluation
3.4. End-to-End Inversion Performance Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Su, S.; Zeng, X.; Song, S.; Lin, M.; Dai, H.; Yang, W.; Hu, C. Positioning Accuracy Improvement of Automated Guided Vehicles Based on a Novel Magnetic Tracking Approach. IEEE Intell. Transp. Syst. Mag. 2020, 12, 138–148. [Google Scholar] [CrossRef]
- Tian, Z.X. Underwater Magnetic Surveillance System for Port Protection. In Proceedings of the 2011 IEEE 2nd International Conference on Computing, Control and Industrial Engineering, Wuhan, China, 20–21 August 2011; pp. 282–285. [Google Scholar]
- Ma, Y.; Mao, Z.-H.; Jia, W.; Li, C.; Yang, J.; Sun, M. Magnetic Hand Tracking for Human-Computer Interface. IEEE Trans. Magn. 2011, 47, 970–973. [Google Scholar] [CrossRef]
- Sebkhi, N.; Bhavsar, A.; Anderson, D.V.; Wang, J.; Inan, O.T. Inertial Measurements for Tongue Motion Tracking Based on Magnetic Localization With Orientation Compensation. IEEE Sens. J. 2021, 21, 7964–7971. [Google Scholar] [CrossRef] [PubMed]
- Baldoni, J.A.; Yellen, B.B. Magnetic Tracking System: Monitoring Heart Valve Prostheses. IEEE Trans. Magn. 2007, 43, 2430–2432. [Google Scholar] [CrossRef]
- Wang, M.; Song, S.; Liu, J.; Meng, M.Q.-H. Multipoint Simultaneous Tracking of Wireless Capsule Endoscope Using Magnetic Sensor Array. IEEE Trans. Instrum. Meas. 2021, 70, 7502510. [Google Scholar] [CrossRef]
- Song, S.; Wang, S.; Yuan, S.; Wang, J.; Liu, W.; Meng, M.Q.-H. Magnetic Tracking of Wireless Capsule Endoscope in Mobile Setup Based on Differential Signals. IEEE Trans. Instrum. Meas. 2021, 70, 4005208. [Google Scholar] [CrossRef]
- Tiryaki, M.E.; Elmacıoğlu, Y.G.; Sitti, M. Magnetic Guidewire Steering at Ultrahigh Magnetic Fields. Sci. Adv. 2023, 9, eadg6438. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhang, S.; Luan, X.; Liu, Z. Improved Differential Evolution Algorithm for Multi-Target Response Inversion Detected by a Portable Transient Electromagnetic Sensor. IEEE Access 2020, 8, 208107–208119. [Google Scholar] [CrossRef]
- McFee, J.; Das, Y. Determination of the Parameters of a Dipole by Measurement of Its Magnetic Field. IEEE Trans. Antennas Propagat. 1981, 29, 282–287. [Google Scholar] [CrossRef]
- Ge, H.; Song, S.; Wang, J.; Meng, M.Q.-H. Multi-Magnet Tracking Method Using Extended Kalman Filter. In Proceedings of the 2021 IEEE Sensors, Sydney, Australia, 31 October 2021; pp. 1–4. [Google Scholar]
- Chen, S.; Zhu, M.; Zhang, Q.; Cai, X.; Bo, X. Accurate Magnetic Object Localization Using Artificial Neural Network. In Proceedings of the 2019 15th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN), Shenzhen, China, 11–13 December 2019; pp. 25–30. [Google Scholar]
- Liang, K.; Xie, H.; Wang, G. Multiple Underwater Magnetic Targets Location Method Based on Neural Network. In Proceedings of the 2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE), Changsha, China, 26–28 March 2021; pp. 740–743. [Google Scholar]
- Song, S.; Hu, C.; Li, M.; Yang, W.; Meng, M.Q.-H. Two-Magnet-Based 6D-Localization and Orientation for Wireless Capsule Endoscope. In Proceedings of the 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO), Guilin, China, 19–23 December 2009; pp. 2338–2343. [Google Scholar]
- Yang, W.; Hu, C.; Li, M.; Meng, M.Q.-H.; Song, S. A New Tracking System for Three Magnetic Objectives. IEEE Trans. Magn. 2010, 46, 4023–4029. [Google Scholar] [CrossRef]
- Taylor, C.R.; Abramson, H.G.; Herr, H.M. Low-Latency Tracking of Multiple Permanent Magnets. IEEE Sens. J. 2019, 19, 11458–11468. [Google Scholar] [CrossRef]
- Lv, B.; Qin, Y.; Dai, H.; Su, S. Improving Localization Success Rate of Three Magnetic Targets Using Individual Memory-Based WO-LM Algorithm. IEEE Sens. J. 2021, 21, 21750–21758. [Google Scholar] [CrossRef]
- Chang, S.; Lin, Y.; Zheng, Y.R.; Fu, X. Simultaneous Detection of Multiple Magnetic Dipole Sources. IEEE Trans. Magn. 2020, 56, 1–11. [Google Scholar] [CrossRef]
- Li, Q.; Li, Z.; Shi, Z.; Fan, H. Application of Helbig Integrals to Magnetic Gradient Tensor Multi-Target Detection. Measurement 2022, 200, 111612. [Google Scholar] [CrossRef]
- Ding, X.; Li, Y.; Luo, M.; Chen, J.; Li, Z.; Liu, H. Estimating Locations and Moments of Multiple Dipole-Like Magnetic Sources From Magnetic Gradient Tensor Data Using Differential Evolution. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Li, Q.; Li, Z.; Shi, Z.; Fan, H. Multi-Target Magnetic Positioning Using SAFCM Clustering and Invariants-Improved Tilt Angle. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5924015. [Google Scholar] [CrossRef]
- Zheng, X.; Tian, Y.; Wang, B. A Magnetic Gradient Tensor Based Method for UXO Detection on Movable Platform. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5905709. [Google Scholar] [CrossRef]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a Deep Convolutional Network for Image Super-Resolution. In Computer Vision–ECCV 2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Swizterland, 2014; Volume 8692, pp. 184–199. ISBN 978-3-319-10592-5. [Google Scholar]
- Lim, B.; Son, S.; Kim, H.; Nah, S.; Lee, K.M. Enhanced Deep Residual Networks for Single Image Super-Resolution. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017; pp. 1132–1140. [Google Scholar]
- Dai, T.; Cai, J.; Zhang, Y.; Xia, S.-T.; Zhang, L. Second-Order Attention Network for Single Image Super-Resolution. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15 June 2019; pp. 11057–11066. [Google Scholar]
- Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y. Image Super-Resolution Using Very Deep Residual Channel Attention Networks. In Computer Vision—ECCV 2018; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Swizterland, 2018; Volume 11211, pp. 294–310. ISBN 978-3-030-01233-5. [Google Scholar]
- Chen, X.; Chu, L. Simple baselines for image restoration. In European Conference on Computer Vision; Springer Nature: Cham, Switzerland, 2022; pp. 17–33. [Google Scholar]
- Liang, J.; Cao, J.; Sun, G.; Zhang, K.; Van Gool, L.; Timofte, R. SwinIR: Image Restoration Using Swin Transformer. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada, 11–17 October 2021; pp. 1833–1844. [Google Scholar]
- Hu, S.; Tang, J.; Ren, Z.; Chen, C.; Zhou, C.; Xiao, X.; Zhao, T. Multiple Underwater Objects Localization With Magnetic Gradiometry. IEEE Geosci. Remote Sens. Lett. 2019, 16, 296–300. [Google Scholar] [CrossRef]
- Nara, T.; Suzuki, S.; Ando, S. A Closed-Form Formula for Magnetic Dipole Localization by Measurement of Its Magnetic Field and Spatial Gradients. IEEE Trans. Magn. 2006, 42, 3291–3293. [Google Scholar] [CrossRef]
- Coleman, T.F.; Yuying, L. An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 1996, 6.2, 418–445. [Google Scholar] [CrossRef]
Parameter | Value Range | Parameter | Value Range |
---|---|---|---|
Target number | [1, 6] | θ/° | [−90, 90] |
x/m | [0, 0.35] | φ/° | [−180, 180] |
y/m | [0, 0.35] | M/A·m2 | [0.01, 0.05] |
z/m | [0.03, 0.1] | Training set | 5 × 104 |
Validating set | 1 × 104 | Testing set | 1 × 104 |
Algorithms | PSNR (dB)/SSIM/MAE (nT) | ||
---|---|---|---|
X | Y | Z | |
BiCubic | 19.88/0.521/65.0 | 19.88/0.519/64.9 | 19.67/0.559/84.2 |
EDSR | 38.99/0.987/12.1 | 39.14/0.988/15.5 | 39.81/0.990/21.2 |
SAN | 36.74/0.989/39.2 | 36.69/0.989/40.6 | 37.41/0.991/58.9 |
RCAN | 38.79/0.992/44.3 | 38.91/0.992/35.9 | 39.09/0.993/33.2 |
SwinIR | 39.87/0.995/29.5 | 39.85/0.989/26.3 | 40.41/0.994/62.3 |
NAFSR | 41.56/0.996/8.1 | 42.90/0.995/6.4 | 43.37/0.996/20.6 |
No. | x/m | y/m | z/m | θ/° | φ/° | M/A·m2 | |
---|---|---|---|---|---|---|---|
Prearranged | 1 | 0.05 | 0.30 | 0.05 | - | - | 0.015 |
2 | 0.15 | 0.25 | 0.05 | - | - | 0.02 | |
3 | 0.30 | 0.25 | 0.05 | - | - | 0.02 | |
4 | 0.10 | 0.10 | 0.05 | - | - | 0.02 | |
5 | 0.25 | 0.10 | 0.05 | - | - | 0.015 | |
Estimated | 1 | 0.051 | 0.301 | 0.052 | −87.41 | −180.00 | 0.017 |
2 | 0.151 | 0.251 | 0.049 | 87.30 | 42.91 | 0.021 | |
3 | 0.301 | 0.251 | 0.049 | 87.89 | −21.17 | 0.021 | |
4 | 0.100 | 0.101 | 0.050 | 84.91 | 30.10 | 0.021 | |
5 | 0.249 | 0.101 | 0.049 | 88.92 | −180.00 | 0.017 |
No. | 3D Position (cm) & Total Magnetic Moment (A·m2) | ||||
---|---|---|---|---|---|
Target 1 | Target 2 | Target 3 | Target 4 | Target 5 | |
1 | (10, 25, 5), 0.02 | (25, 25, 5), 0.02 | (18, 12, 5), 0.02 | / | / |
2 | (15, 22, 5), 0.02 | (18, 12, 5), 0.02 | (29, 22, 5), 0.02 | / | / |
3 | (10, 20, 5), 0.02 | (20, 10, 5), 0.02 | (25, 20, 5), 0.01 | / | / |
4 | (10, 30, 5), 0.02 | (20, 25, 5), 0.02 | (15, 15, 5), 0.02 | (25, 10, 5), 0.02 | / |
5 | (10, 25, 5), 0.02 | (25, 25, 5), 0.02 | (15, 10, 5), 0.02 | (30 10, 5), 0.02 | / |
6 | (10, 25, 5), 0.02 | (25, 25, 5), 0.01 | (15, 10, 5), 0.02 | (30, 10, 5), 0.01 | / |
7 | (10, 25, 5), 0.02 | (20, 25, 5), 0.02 | (30, 25, 5), 0.02 | (20, 15, 5), 0.02 | (20, 5, 5), 0.02 |
8 | (5, 20, 5), 0.02 | (20, 26, 5), 0.02 | (20, 20, 5), 0.02 | (15, 10, 5), 0.02 | (30, 15, 5), 0.02 |
9 | (5, 30, 5), 0.015 | (15, 25, 5), 0.02 | (30, 25, 5), 0.02 | (10, 10, 5), 0.02 | (25, 10, 5), 0.015 |
10 | (5, 30, 5), 0.015 | (15, 25, 5), 0.02 | (30, 25, 7), 0.02 | (10, 10, 7), 0.02 | (25, 10, 7), 0.015 |
Position Error (mm) | Magnetic Moment Error (%) | Running Time (s) | |
---|---|---|---|
PSO-LM | 8.64 | 9.70 | 1.009 |
IMWO-LM | 5.13 | 8.23 | 0.861 |
SRMGT-TRR | 1.83 | 6.29 | 0.294 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, L.; Zhang, T.; Zuo, C.; Chen, Z.; Yang, X.; Ouyang, J. A Rapid Localization Method Based on Super Resolution Magnetic Array Information for Unknown Number Magnetic Sources. Sensors 2024, 24, 3226. https://doi.org/10.3390/s24103226
Miao L, Zhang T, Zuo C, Chen Z, Yang X, Ouyang J. A Rapid Localization Method Based on Super Resolution Magnetic Array Information for Unknown Number Magnetic Sources. Sensors. 2024; 24(10):3226. https://doi.org/10.3390/s24103226
Chicago/Turabian StyleMiao, Linliang, Tianyi Zhang, Chao Zuo, Zijie Chen, Xiaofei Yang, and Jun Ouyang. 2024. "A Rapid Localization Method Based on Super Resolution Magnetic Array Information for Unknown Number Magnetic Sources" Sensors 24, no. 10: 3226. https://doi.org/10.3390/s24103226
APA StyleMiao, L., Zhang, T., Zuo, C., Chen, Z., Yang, X., & Ouyang, J. (2024). A Rapid Localization Method Based on Super Resolution Magnetic Array Information for Unknown Number Magnetic Sources. Sensors, 24(10), 3226. https://doi.org/10.3390/s24103226