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Abstract: Dissolved Oxygen (DO) in water enables marine life. Measuring the prevalence of DO
in a body of water is an important part of sustainability efforts because low oxygen levels are a
primary indicator of contamination and distress in bodies of water. Therefore, aquariums and
aquaculture of all types are in need of near real-time dissolved oxygen monitoring and spend a lot of
money on purchasing and maintaining DO meters that are either expensive, inefficient, or manually
operated—in which case they also need to ensure that manual readings are taken frequently which is
time consuming. Hence a cost-effective and sustainable automated Internet of Things (IoT) system for
this task is necessary and long overdue. DOxy, is such an IoT system under research and development
at Santa Clara University’s Ethical, Pragmatic, and Intelligent Computing (EPIC) Laboratory which
utilizes cost-effective, accessible, and sustainable Sensing Units (SUs) for measuring the dissolved
oxygen levels present in bodies of water which send their readings to a web based cloud infrastructure
for storage, analysis, and visualization. DOxy’s SUs are equipped with a High-sensitivity Pulse
Oximeter meant for measuring dissolved oxygen levels in human blood, not water. Hence a number
of parallel readings of water samples were gathered by both the High-sensitivity Pulse Oximeter and
a standard dissolved oxygen meter. Then, two approaches for relating the readings were investigated.
In the first, various machine learning models were trained and tested to produce a dynamic mapping
of sensor readings to actual DO values. In the second, curve-fitting models were used to produce a
successful conversion formula usable in the DOxy SUs offline. Both proved successful in producing
accurate results.

Keywords: Aquaculture Technology; Dissolved Oxygen (DO) Monitoring; Internet of Things (IoT);
Pragmatic Resource Optimization (PRO); Sustainable Automation; Water Quality Testing

1. Introduction

Oxygen from the atmosphere dissolves into rivers, lakes, and oceans and is consumed
by aquatic animals for respiration [1]. Dissolved oxygen (DO) is hence considered to be the
most important variable in water quality as marine life will suffocate if its concentration
in water gets too low. Therefore, aquaculture industries monitor the water circulating
through their systems as even slight changes in water quality can have severe negative
effects on their crops. For instance, poor oxygen management in aquaculture systems can
lead to physiological damage and substandard growth in the aquatic organisms being
cultured [2–4] with most organisms sustaining damage when their ambient concentration
of dissolved oxygen drops below ∼5% [5]. As such, proper management of DO levels is
imperative and requires diligence in taking DO measurements.

Another reason why DO is such a critical environmental variable is how dynamic
it is: over a matter of hours or even only minutes, dissolved oxygen levels can change
from optimal to lethal [6] Therefore, since the response time for taking corrective mea-
sures is typically short, it is necessary to have a rapid and reliable method of continuously
monitoring DO concentrations so that water facilitators can be proactive in improving
the water’s quality [6]. There are numerous issues with the current standard methods of
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measuring DO in water though, including affordability, maintainability, and environmental
safety—especially with chemical-based meters. Thus, research was conducted on the use
of infrared technology as a means to measure DO in water and it was found that infrared
sensors were capable of performing this task while addressing the lack of affordability,
difficulty of maintenance, and potential environmental safety issues with the current stan-
dard of measuring methods. The preliminary findings were reported in a short 2020 paper
with the same title that was presented at the 2020 IEEE Global Humanitarian Technology
Conference (GHTC) and published as part of its proceedings [7]. This paper, in part, serves
as an extended version of that paper but goes far beyond it.

Section 2 details existing methodologies for measuring dissolved oxygen and Section 3
reports on existing research and commercial products. Section 4 delineates how DO was
measured in this research as well as how the sensors were calibrated. Section 5 provides the
technical setup of the DOxy hardware and software followed by Section 6 which reports
on the results from DOxy’s field testing. Finally, Sections 7 and 8 respectively provide the
current work in progress by the team and some closing remarks.

2. Methodologies for Dissolved Oxygen Sensing

Two general methodologies for measuring dissolved oxygen in water exist: Electro-
chemical and Optical. A Short explanations of the two and the issues associated with each
follow below.

2.1. Electrochemical
2.1.1. Methodology

There are two types of electrochemical dissolved oxygen sensors: galvanic and polaro-
graphic. Both methods utilize two polarized electrodes with differences in reactivity in
an inert electrolyte solution that is not part of the reaction. A semi-permeable membrane
separates the electrodes and the electrolyte solution from which oxygen diffuses across.
dissolved oxygen is reduced at the cathode which causes an electrical current that is car-
ried by the ions in the electrolyte to the anode. The measured electrical current provides
information on the concentration of dissolved oxygen due to their direct relation [8]. Both
methods work in a similar manner except for that in the galvanic method, there is no
need to allocate warm-up time due to the self-polarization of the dissimilar metals used
as the anode and cathode, such as zinc and silver. However, in the polarographic method,
warm-up time is essential to polarize the electrodes as the metals used, such as gold and
silver, do not have a large difference in reactivity [8].

2.1.2. Problems

Although both electrochemical methods have advantages and can return a result
quickly, there are a number of inconveniences encountered. Since the electrodes em-
ployed in both methods consume oxygen, the electrochemical method requires constant
maintenance and thus recalibration every two to eight weeks and thus introduces a high
maintenance cost while reducing efficiency and reliability, thus making it problematic to
employ over sustained intervals [9]. For the polarographic electrochemical method specif-
ically, the electrolyte needs to be replaced, and in the galvanic electrochemical method,
the anode needs to be replaced as they are used up in the internal reactions [10]. This
results in costly sensors with a short lifespan. Furthermore, the measurement accuracy
of these electrochemical sensors may be lowered due to interference by certain chemical
compounds such as hydrogen sulfide found in some bodies of water that may infiltrate
the membrane.

2.2. Optical
2.2.1. Methodology

The set up of an optical sensor consists of a semi-permeable membrane, a sensing
element, a light-emitting diode, and a photodetector. The sensing element contains a
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luminescent dye that is immobilized in sol-gel. The dye becomes excited and emits light
when exposed to the blue light emitted by the LED in the presence of DO [8]. The intensity
and luminescence of the dye when exposed to blue light and the wavelength of the emitted
light is dependent on the amount of dissolved oxygen in the water sample. The intensity
of the returned luminescence is measured by a photodetector and is used to calculate the
dissolved oxygen concentration [8].

2.2.2. Problems

Optical dissolved oxygen sensors usually require more power and take 2–4 times
longer to take a measurement than the electrochemical method [8]. These sensors are also
heavily dependent on ambient conditions because of the luminescent dye’s sensitivity to
temperature. Additionally, the luminescent dye eventually degrades. To maintain this
type of sensor, one or two calibrations per year and a replacement cap every 18 months
is needed [11]. Although the optical sensor has a lower maintenance cost, it has a greater
acquisition cost which fish farmers and others small producers in the aquaculture industry
may not be able to easily afford.

3. Related Works
3.1. Academic Research
3.1.1. Utilization of Light Waves for Measuring DO in Water

Concerned with the use of nonrenewable transition metal complexes in quenching
DO sensors, Silva et al. [12] derived transition metal complexes from kale using extraction,
acidification, and complexation techniques to target chlorophyll A molecules in the kale
and substitute magnesium with zinc ions. The extracted transition metal chlorophyll-
zinc complexes were immobilized in a thin film of sol-gel, as per standard procedure for
the construction of quenching DO complexes. The thin film was put over the surface
of a sample of water and an LED emitted blue light at it which was then detected by a
photodiode. The characteristic wavelength of chlorophyll-zinc complexes was measured
to be 635 nm. When the DO concentration was made homogeneous across the analyte
with a stirrer, the R2 of the zinc chlorophyll complexes, when were used for DO sensing,
was 0.98282.

In a different approach, Zhao et al. used light in fluorescence quenching to measure
DO [13] by coating an optical fiber with a fluorophore, Trisaminomethane Ruthenium (II)
Complex Dichloride, that quenched in the presence of DO. Light was sent down the fiber
and the returning light was measured and used to derive the partial pressure of DO in the
solution using the stern-volmer equation. To compensate for the brightness fluctuation
inherent in the light source, the team coated the tip of the optic fiber with CdSe/ZnS
quantum dots, allowing them to quantize the fluctuation and to calibrate their results. The
collected data, when regressed onto the line predicted by the stern-volmer equation, was
able to achieve an R2 of 0.9957.

In order to enable the measurement of even lower levels of DO in water, Yu et al. [14]
created a quenching-based DO sensor specifically for the measurement of DO in the range
of 1 µm and below. Since they were also concerned with the common use of transition
metal complexes in DO sensing due to their high cost and toxicity, Yu et al. chose to use
metal-free organic phosphors, which, just like transition metal complexes, have long decay
times. A challenge was the inundation of room temperature fluorescence in metal-free
organic phosphors, since this requires particular conditions. The team ended up creating
shell-core nanoparticles. The core was comprised of the metal-free phosphors embedded
in a matrix of polystyrene (chosen because of its oxygen permeability). Poly(2-Methyl-
2-Oxazoline) was chosen as the outer shell for its water solubility and biocompatibility.
Upon testing, the nanoparticles were found to be particularly sensitive to the presence
of oxygen. When dispersed within water containing DO and exposed to UV light, the
nanoparticles exhibited very little fluorescence. As the water was sparged with nitrogen,
the nanoparticles gradually became more fluorescent.
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More broadly, Miura et al. [15] studied the absorbance levels of DO for different
wavelengths. Tests were conducted on both tap water and seawater, with samples from
each type of water brought to 100% DO through aeration and 0% DO through reduction by
sodium-sulfate. From the 108 samples of sea water and tap water tested on, they found that
the greatest variance in absorbance occurred in the blue and infrared wavelengths of light
and likely to be most detectable under blue light. The researchers then built a prototype
sensor and conducted three tests on it. In the first test, both the LED and the photodiode
were exposed to saline water. The researchers found that in this case, contact with the
saline water significantly effected experimental results. For the second and third tests, one
component was kept dry while the other was exposed to saline water. In the second and
third tests, where only the LED and only the photodiode were exposed to saline water
respectively, only a small effect on the results was noted. The researchers thus concluded
that it was important to separate the water being measured from touching the sensor.

3.1.2. Use of Machine Learning in Calibration of DO Sensing

Zhang et al. [16] investigated the use of machine learning in the calibration of DO
sensors. The team built an apparatus for sensor calibration, a chamber filled with ultrapure
water in which an oxygen sensor, to be calibrated, and a reference sensor were suspended.
The design of the apparatus allowed for the control of the DO concentration, the salinity,
the temperature, and the pressure within the chamber. A small tube brings water from the
chamber as an analyte for winkler iodometric titration analysis in order to allow for constant
monitoring of the DO concentration. The collected data is then fed to a backpropagation
neural network, which is run for a thousand iterations. When the calibrated model was
finished, the team compared the accuracy of a quenching DO sensor to that of winkler
analysis. The R2 of the model was 0.99971, while the R2 of traditional winkler analysis
was 0.99839. When its performance was compared with that of an Anderaa sensor, the
quenching DO sensor was found to produce results that were reliably similar.

In a different approach, Michelucci et al. [17] applied machine learning directly to
the quenching O2 sensing. Typically, the magnitude of the quenching is related to O2
concentration with the stern-volmer equation which needs precisely calibrated sensors at
one or more known concentrations, but the team instead trained a machine learning model
to notice the correlation between the sensor inputs and O2 concentration values. The team
utilized a commercial Pt-TFPP quenching-based sensor in a thermally controlled chamber
in which the O2 concentration could be varied and homogenized across the chamber. The
authors used a feedforward neural network to relate several variables within the chamber
to the O2 concentration within it. Because of the paucity of extensive empirical datasets
with respect to dissolved oxygen sensing, the team was forced to procedurally generate
data with theoretical knowledge. The neural network was ran for three different network
architectures and the mean absolute error (MAE) was calculated over each of them as they
were given more layers and neurons, thus increasing in complexity. Two of the neural
networks approached a minimum MAE of 0.012% on account of most of the data being
theoretically generated. The third network stabilized at an MAE of 0.5%.

3.1.3. IoT DO Sensing

Yunfeng et al. [18] noticed a trend in oxygen-controlling equipment for aquaculture:
they were black boxes that did not transmit data to their users. To remedy this, the team
developed an IoT platform to support the real-time monitoring of DO levels in fish ponds.
The team deployed several sensors with each unit endowed with an electrochemical DO
sensors, a temperature sensor, and a narrowband sending system. The device transmits
data at intervals before returning to low-power mode.

In a much more sophisticated, yet still electromechanical DO Sensing approach, Stine
et al. [19] developed a system for gathering real-time data on the topology of oxygen
distribution within a bioreactor. To achieve this they designed DO-measuring IoT sensors
to be dispersed through the aqueous contents of a bioreactor. The sensors were designed
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to contain electrochemical DO detectors. Each sensor contained a potassium chloride
electrolyte with a thin-film gold working electrode, a gold counter electrode, and a silver
reference electrode. The researchers communicated with the device network using a
smartphone app, Silicon Labs, which allowed them to turn all the devices in the network
to a low energy setting, calibrate the devices, and had the devices make intermittent
measurements. A pod was placed in a 10 L bioreactor filled with De-ionized (DI) water
in order to test it. Oxygen and nitrogen gas were pumped into the DI water before it
was stirred with an impeller. A cyclic voltammogram found that cathodic current was
maximized when the potential was between −0.4 and −0.6 V. Using a value in this range,
−0.42 V, the researchers used chronoamperometry to determine that there was an average
difference of 2.5 µA in current between when the solution was diluted with gas and when it
was sparged with nitrogen gas. Tethering the pod to a 3.3 V power supply, the researchers
calibrated the pod on −0.5 V every 30 s at several different oxygen levels. Using this
data, the researchers were able to obtain a calibration plot mapping the oxygen levels
in the solution to the voltage outputted by the pod. The correlation between the two
quantities was found to have an R2 of 0.98, a sensitivity of 37.5 nA/DO%, and a limit
of detection of 8.26 DO%. Finally, the researchers tested the pod while the bioreactor
ran a fermenter in order to more closely simulate a working environment. The voltage
outputted by the pod was found to increase linearly and inversely proportionally with DO%
concentration, showing that it had been successfully implemented. Some problems still
remained, however. For the first 45 min of the test, the difference between measurements
by the pod and a polarographic DO sensor, which had been introduced into the bioreactor
as a control, was less than four percent. As the bioreactor continued to operate, however,
the difference began to shift, which the researchers suspected was due to the degradation of
the reference electrode after continual usage. In response the researchers fitted the sensors
with several design improvements. Since the inaccuracy grew linearly with time, they
applied a correction factor to multiply the pod output with in order to refactor the results
back down to under the four percent range.

Using a completely different approach, Hu et al. [20] observed that many aquacul-
turists monitored DO levels by observing fish behavior rather than using sensors. Even
though this approach seemed cheaper it could only be done after the fish had been affected
by deleteriously low levels of DO. To remedy this, they engineered a Radial Basis Function
Neural Network and trained it on data from aquaculture ponds in Zhenjiang, China so
that it could observe and thus predict the trend of the DO ahead of time. To optimize the
Neural Network, a genetic algorithm was run on it. When compared with real data, the
model showed high prediction accuracy.

3.2. Existing Products

Currently, the existing dissolved oxygen meters on the market are expensive, have
high maintenance costs, or do not have wireless communication integrated into the device
to enable continued remote monitoring of the dissolved oxygen levels.

For instance, Cole-Parmer which is a well known scientific and industrial instrument
distributor has an array of costly dissolved oxygen Meters ranging from $265 to $2459 [21]
at the time of this writing. Additionally, although their products have advantages such
as features that allow calibration and measurement data to be stored with a timestamp,
the meters have high maintenance costs due to replacements of the chemical solutions,
membranes, and caps of the measurement probes. And most importantly, the devices
offered are handheld and do not provide continuous monitoring in real time.

A similar company, Hanna Instruments, offers dissolved oxygen monitors with costs
ranging from $220 to $1450 [22] at the time of this writing. Their products are also high
maintenance as the solutions, membranes, and probe caps need to be replaced. Because
wireless communication is not offered, testing on site is required and the device can not
provide continuous monitoring.



Sensors 2024, 24, 3253 6 of 22

Such devices that do not include long range wireless communication, hinder fish
farmers from having the ability to detect variations in oxygen levels instantly and con-
tinuously. Therefore the farmers need to manually measure the dissolved oxygen levels
several times per day which increases the amount of manual labor and reduces efficiency.
Manual measurements are not only time consuming, they may also be inaccurate especially
if the meters used are not calibrated and maintained correctly. Another advantage of an
automated system would be the continues calibration and monitoring of individual sensors
within the system which can also alert users to the malfunctioning of a sensor and or even
diagnose the problem with the sensor(s) so that the technicians can repair or replace the
faulty sensor(s).

4. Measuring Dissolved Oxygen (DO)
4.1. Data Collection

Various water solutions of differing dissolved oxygen levels were created and used
to gather IR readings using a Maxim Integrated MAX30102 (San Jose, CA, USA), High-
Sensitivity Pulse Oximeter sensor which has a red light wave range sensitivity of 650–670 nm
and an IR light wave range sensitivity of 870–900 nm [23]. The sensor is capable of sampling
received red/IR light waves in a 50 to 3200 samples per second (sps) range and reports the
measured range in terms of h1Analog to Digital Converter (ADC) counts which are a count
of how many Samples were detected per one second. The solution concentrations were
selected in a random order in order to avoid bias in the readings due to time. A Milwaukee
MW600 Portable Dissolved Oxygen Meter (Rocky Mount, NC, USA) with a DO measuring
range of 0.0 to 19.9 mg/L [24] was used to measure the dissolved oxygen content of each
water solution in parallel in order to equate the IR and DO readings.

4.1.1. Water Sample Creation

At first, various local tap, bottled water, and deionized water supplies were used.
After some experimentation, deionized water was determined to perform the best due to
being free of any substances that could absorb the infrared wave of the Oximeter and thus
result in inaccurate readings. A zero dissolved oxygen solution was created by mixing
deionized water with sodium sulfite as it acts as an ‘oxygen scavenger’. Sodium sulfite
reacts with the dissolved oxygen and forms sodium sulfate as seen in Equation (1), which
does not affect readings of the infrared sensor.

2Na2SO3 + O2 −→ 2NaSO4 (1)

Thus, multiple different samples between 0% and 100% were created by simply using
the ratio of 2 molecules of sodium sulfite to 1 molecule of dissolved oxygen. Furthermore,
as the dissolved oxygen content of the solution increased gradually by being exposed to
the open air over the course of ten days at room temperature, more readings were taken
at various intervals by both the Maxim Integrated MAX30102 sensor and the Milwaukee
MW600 meter.

4.1.2. Data Gathering Process

The Maxim Integrated MAX30102 High-Sensitivity Pulse Oximeter sensor is not
waterproof. Hence, thin plexiglass [25] with a thickness of 1/32 of an inch was utilized to
create a barrier between the sensor and water samples. To hold the sensor and plexiglass
firmly together, a 3D-printed apparatus was designed and utilized, as can be seen in
Figure 1.
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(a) Top–down view (b) Inside view

(c) Zoomed-in view of cap (d) Side view

Figure 1. DOxy testing setup.

The sensor is attached to a threaded component that screws into the plexiglass com-
ponent so that the sensor would not move while gathering readings, and to prevent any
air from being trapped in between the sensor and the plexiglass. Then one of the water
solutions was poured into the pale until the water completely submerged the plexiglass
chamber, ensuring that the sensor’s light would be solely transmitted through the plexiglass
and water. Next the 2.5 mm cap was screwed on the side of the plexiglass, to create a
chamber with a set distance for the sensor’s light to reflect back from. Screwing in the cap
after the water was set ensured that there were no air bubbles in the chamber to interfere
with readings. Lastly, the pale was covered in order to prevent any interference from
ambient light and IR. Then, the red LED and infrared ADC counts (which are the number
of red/IR samples recorded by the sensor’s photodiod per each second) were collected.

This method was used for each of the water solutions with differing dissolved oxygen
content and compiled into a spreadsheet to be used for analysis and regression.

4.2. Data Analysis and Machine Learning

The compiled tabulated dataset includes data collected via MAX30102 sensor from
multiple batches of samples at each DO level. The columns of the dataset consisted of the
dissolved oxygen content, in mg/L obtained from the MW600 meter readings, the red LED
reading from the MAX30102 sensor, and the infrared reading obtained from the MAX30102
sensor. The size of the dataset was 800 samples, comprising 100 readings from each of the
DO levels. Upon plotting the relationship between the red LED readings and DO levels,
it was found that, generally, as the red LED value increased so did the DO level, but in a
step-wise fashion as can be seen in Figure 2. Since the DO values were fixed in the water
samples, they are displayed on the X-axis and the amount of red LED light reflected and
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measured by the sensor is then depicted on the y-axis. Most importantly though, there
were noticeable overlaps between the red LED values that had differing DO levels.

Figure 2. Scatter plot of Red LED data.

Plotting the relationship between the infrared readings and DO levels revealed a
similar trend where as the infrared values increased, the DO levels also increased in
a step-wise fashion, but with no overlapping of the same DO levels having different
infrared reflection levels, as portrayed in Figure 3. These results also correlate with and
further support the findings of Miura et al. [15] who measured the absorbance of different
wavelengths of light on 108 samples of sea water and tap water.

Figure 3. Scatter plot of infrared data.

The dataset was then split into 70% for training and 30% for testing various machine
learning regression models. The models used were sklearn’s linear regression [26], support
vector machine regression (SVR) [27] with a radial basis function (RBF) kernel [28], and
scipy’s orthogonal distance regression (ODR) [29]. The first two models were trained once
with red LED data, once with the infrared data, and once with both red LED and infrared
data, to determine which of the sensor data performs the best for converting to DO content.
But since the Red LED Data had significant DO level overlaps, as can be seen in Figure 2,
and the fact that Miura et al. [15] found that the infrared wavelength was one of the best
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light wavelengths for measuring DO absorption levels, the ODR model was trained on the
infrared data only. A 10-fold cross validation was used on the training data for all of the
regression models. The SciPy library’s curve_fit [30] was also utilized with quadratic, cubic,
and quartic equations in an attempt to obtain an equation that could easily be visualized,
unlike SVM with an RBF kernel.

4.3. Formulation and Results

Upon analysis from the 10-fold cross-validation for the linear regression and SVM
models, linear regression only outperformed the SVM model on the dataset using both
red LED and infrared data, with a root mean squared error (RMSE) of 0.476, compared
to SVM’s poor RMSE of 0.969, as depicted in Figure 4a. Figure 4b shows the RMSE on
the solely red LED dataset, where linear regression and SVM performed decently having
RMSEs of 0.498 and 0.312 respectively. The best-performing model was however derived
from the infrared dataset, shown in Figure 4c, where linear regression performed poorly
with an RMSE of 0.905 but SVM had an outstanding RMSE of 0.115. These results are also
shown in tabular form in Table 1 for easier comparison.

(a) Red & Infrared RMSE (b) Red RMSE (c) Infrared RMSE

Figure 4. RMSE visualizations.

Table 1. Linear regression vs. SVM RMSE values for red and infrared data.

Red/Infrared Data Linear Regression SVM

Red and Infrared 0.476 0.969

Red 0.498 0.312

Infrared 0.905 0.115

The 10-fold cross validation results for the ODR regression model was also carried out
on the infrared dataset, and takes into account the existence of errors across both the x and y
variables. The cross validation was run across linear, cubic, quartic, and sigmoidal functions.
The linear function had an average RMSE of 0.909 and an average Orthogonal Distance
Error (ODE) of 0.7827. The cubic function had an average RMSE of 0.389 and an average
ODE of 0.324, while the quartic function had an average RMSE of 0.389 and an average
ODE of 0.331. The sigmoidal function had an average RMSE of 0.186 and an average ODE
of 0.174. Overall, the best performance here was produced by the sigmoidal function.

For the curve_fit functions, as expected, the higher degree functions had a lower RMSE
and higher R2 The quadratic, cubic, quartic, and sigmoidal functions had RMSE of 0.3954,
0.384, 0.111, and 0.186, and R2 scores of 0.979, 0.980, 0.998, and 0.995 respectively. While the
quartic function performs well, it likely would not generalize well to outside data as its
function likely overfits to the training dataset used here. It would be more practical to use
the quadratic or cubic functions as they would likely generalize better to outside data.

The Orthogonal Distance Regression (ODR), which also provides fit graphs, had some
differences from the curve_fit function. ODR provides its goodness of fit using residual
variance, where values closer to 0 indicate a better fit and a value of 0 indicates a perfect fit.
Both the residual variance and the R2 values are provided here and in Figure 5 to provide
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additional context. For the quadratic function, an RMSE of 0.395, an R2 value of 0.979 and
a residual variance of 0.1596 was observed. For the cubic function, an RMSE of 0.388, an
R2 of 0.98799, and a residual variance of 0.155 were observed. For the sigmoidal (logistic)
function, an RMSE of 0.979, an R2 of 0.995, and a residual variance of 0.030 were observed.

(a) Sigmoidal Infrared (b) Quadratic Infrared (c) Cubic Infrared

Figure 5. ODR visualizations.

The curve was only fit up until 8 mg/L, which is sufficient for interpolation of DO
readings in the existing test-bed in the research lab on campus as well as in aquaculture
settings. The first real world application of DOxy is the fish farming industry where the
concentration of 5 mg/L DO is recommended for optimum fish health. Overall, most
species of fish are at risk when DO levels fall to around 2–4 mg/L [31]. The United States
Environmental Protection Agency (EPA) generally consider DO levels below 3 mg/L as
inhabitable environments for fish and DO levels below 1 mg/L as “hypoxic and usually
devoid of life” [32] a.k.a. Dead zones [33].

5. DOxy Meter

Using the aforementioned derived formulas, an IoT meter named DOxy (short for
Dissolved Oxygen) was constructed and tested in both the lab and real world settings.
DOxy leverages the quenching effect that dissolved oxygen has on the fluorescence of a
beam of light fired at water, an approach that allows DOxy’s Sensing Units (SU)s to be
small and cost-effective as well as passive with respect to observed systems, promoting its
long-term deployment.

5.1. Electronics

DOxy was created in tandem with the Modular IOT Platform reported on in [34]. There
are two versions of DOxy’s electronics, one that can be used as a standalone product and
the other that can be plugged into existing products. The standalone version is powered
by a Wisen Whisper Node [35] micro-controller with an on-board LoRa (Long Range) [36]
communication module [37] with 3DBI Omni-directional long range external antenna [38],
a DHT11 Temperature and Humidity Sensor [39], a TP4056 battery charge controller [40], a
5 W lithium battery pack, and a 5 V 100 mAh solar panel. Using a solar panel makes the
system more flexible with regards to where it can be deployed, as it does not require hard-
lined power in order to work. The standalone version contains a MicroSD card adapter
module [41] to enable local storage of data and resilience in the case of network or even
device failure. This also allows for storage of things like a device ID or other information
about the system. A schematic of the standalone hardware can be seen in Figure 6.
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Figure 6. Standalone DOxy schematic.
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The Plug and Play (PnP) version is similar to the standalone version, but instead is
powered by a Arduino Nano micro-controller [42] and connects to the host device using a
Cat-6 cable with an RJ45 Connector. The PnP version does not contain a battery module nor
an ambient temperature sensor. A schematic of the PnP hardware can be seen in Figure 7.

Figure 7. Plug and Play DOxy schematic.

5.2. 3D Printed Casing

The DOxy device is housed in a PolyEthylene Terephthalate Glycol-modified
(PETG) [43–45] 3D printed casing prototyped and tested first in [7] and then enhanced as
shown in Figure 8a, which keeps the device buoyant and waterproof by utilizing the best
practices described in [46]. A primary gasket also 3D printed in PETG is used to waterproof
the connection between the case’s lid and main body. The hole in the top of the case’s lid
holds a cable gland for the communication and power cables that connect to the antenna
and solar panel respectively. The section under the lid is a specialized compartment that
houses the PCB and waterproofs it with another gasket that connects it with the lid of
the case. A secondary cable gland protrudes from the bottom of the PCB compartment to
waterproof the sensor cable and direct it into the sensor housing.

The sensor housing consists of three main sections as shown in Figure 8b. The first
section holds the sensor, with 3 small screw holes on the bottom to ensure the sensor is
firmly secured. The sensor holder is then threaded into the plexiglass lens housing to ensure
the sensor is completely parallel to the lens. The plexiglass and plexiglass lens housing are
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needed in order to ensure the separation of the sensor’s electronics from the water and thus
avoiding damage to the sensor by keeping it dry at all times. The lens housing has the lens
inserted at the very bottom where the threading ends internally. A gasket is inserted into
a rim near the bottom of the lens housing to ensure the sensor assembly is waterproofed.
And the final section provides a backdrop for the light wave from the sensor to reflect off
of and return to the sensor’s collector. This backdrop section is screwed on to the external
threading of the lens housing and has large opening along three of its sides in order to
ensure no air bubbles get caught in between the lens and the backdrop as that would effect
the refraction of the emitted light by the sensor.

(a) (b)

Figure 8. 3D-printed casing: (a) top section (W158 mm × D108 mm × H112 mm); (b) lens housing
(D35 mm × H46.6 mm).

5.3. Communication

The standalone DOxy system SUs are capable of transmitting their measurements to
the web based dashboard in several different ways which is dependent on the environment
they are being set up in.

5.3.1. Single-Hop Communications

For instance, if they are set up in a facility with ample WiFi availability or in the back
yard of a home hydroponic system within the home WiFi signal range, then the SUs can
use an ESP8266-01 WiFi module [47] to send a POST request containing JSON sensor data
to the web server through the internet. But if for instance the SUs are in a remote location
where maybe only Cellphone service is available, then they can be quipped to utilize the
GSM network instead.

5.3.2. Multi-Hop Communication

For bigger or more remote operations where WiFi and/or GSM are not available or
suitable, the SUs could send data to a Base Station (BS) responsible for compiling various
sensor data from multiple SUs in one or several sites and relaying this information to the
web dashboard, and/or handling any actuation capabilities the system may be configured
to perform given the various possible DO level readings. In this scenario, numerous wireless
communication technology can be utilized between the SUs and the BS such as Zigbee, nrf,
LoRa, or even WiFi based on their distance, line of site, and other environmental factors.

For handling this type of communication, the DOxy system uses an in house built
Energy Aware Communication Protocol (EACP) named Âb [48]. ÂB is a responsibility
protocol which sits between layers 2 and 3 of the TCP-IP communication stack and thus
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provides layer 2 agnostic end-to-end communication capable of utilizing the low energy
sleep mode of all the network hops and not only the initial transmitter and/or final receiver
of the data packets. ÂB is currently in use in the Hydration Automation (HA) system [49]
and Smart Tanks [50]. where LoRA is utilized to transmit the water level of water tanks in
use for agricultural purposes to a pumping station; as well as in another implementation of
DOxy in both a deeply forested area necessitating many short range Zigbee hops from a
river in Malaysia to a near by research lab at a school [51] and a Remotely Operated Vehicle
(ROV) in a lake communicating to the shore and then from there to a research facility using
the Message Queue Telemetry Transport (MQTT) protocol [52]. These two usages of DOxy
and Âb in Malaysia have thus provided international specifications and considerations to
the system.

5.4. Web Based User Dashboard

In order to effectively collect and present data from DOxy SUs, a comprehensive
dashboard system was developed. The dashboard is composed of a data access layer
(backend) composed of a database and an Application Programming Interface (API) for
posting/fetching values to/from the database, along with a presentation layer (frontend)
Graphical User Interface (GUI). The SUs report their measurements to a base station, which
then makes an HTTP request to the backend API in intervals configurable by the user.
The various sensor readings are stored in the database and the frontend allows for easy
visualization and analysis of that data with clear and concise graphs and charts.

5.4.1. Tech Stack: Data Access Layer (Backend)

The backend API is built using Node.js [53] which is a popular and efficient JavaScript
platform for building server-side applications. Node.js allows for fast and scalable network
applications, making it an ideal choice for DOxy and IoT systems in general. The back-
end of the system is launched as multiple independently maintainable and expandable
microservices using Docker [54] in order to add flexibility and scalability to the system. To
facilitate communication between the sensors or the base station, and the dashboard, the
backend uses both an HTTP request and a WebSocket. The HTTP protocol allows for the
transmission of data between the backend and frontend, while the WebSocket connection
allows for live data display and receiving information from the base station.

The database used in the system is TimescaleDB [55], which is a time-series database
optimized for storing and querying large amounts of time-stamped data. It is built on top
of PostgreSQL and can handle high read and write loads, making it well-suited for storing
data from IoT sensors that generate large amounts of data over time. The database consists
of tables with user IDs that store sensor data for each user, with a schema for each type
of sensor (DO, temperature, etc.). The schema defines the structure of the data stored in
the table, including the names and data types of the columns, as well as any constraints
or indexes on the data. By using a schema for each type of sensor, we can ensure that the
data from each sensor is stored in a consistent and organized manner. The database is
pseudo-schema-less in that an external command-line interface (CLI) tool built with Rust
is used to add new schemas to the database when new sensors (such as for measuring
atmospheric pressure—as discussed in Section 7) are added to the system. This means that
new sensors can be added to the system without having to modify the underlying database
schema, which is a more flexible and scalable approach.

The backend service was deployed on an Amazon Web Services (AWS) EC2 instance
as a Docker container, orchestrated by Docker Compose. EC2 is a cloud computing service
offered by AWS that allows users to run applications on virtual machines in the cloud in
order to abstract away all of the setup and maintenance needs for the backend environment,
and docker Compose is a tool that allows the definition and execution of multi-container
Docker applications, making it easier to manage and deploy the service.
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5.4.2. Tech Stack: Presentation Layer (Frontend)

For the frontend, the svelte [56] JavaScript web framework was utilized, along with
Chart.js [57], in order to create a user-friendly interface for displaying sensor readings.
Svelte is a modern framework that provides an efficient and reactive way to build user
interfaces with responsive layouts, allowing for seamless use on various devices with
various screen sizes. Chart.js is a powerful JavaScript library that allows for the creation of
visually appealing and interactive charts, allowing users to easily analyze the data from
the sensors. Technically though, Svelte has a Server-Side Renderer (SRR) which is set up as
another microservice in the backend. SRR is a technique that renders the generated HTML
on the server rather than in the client’s browser which improves the performance of the
web application, as the rendered HTML can be sent to the client faster than the client’s
browser could render the HTML code itself.

The authentication system supporting login functionalities with Google accounts as
well as phone number login were added in order to separate and secure user data. When a
user logs in with their Google account or phone number, the system verifies their identity
and grants them access to the dashboard based on their credentials. Figure 9a shows an
example of the post authentication welcome screen. The dashboard also allows for easy
navigation and filtering of data, allowing users to focus on specific aspects of the data.
For instance, the user can navigate to any of their sensors in order to see data from the
sensors displayed in clear and concise graphs and charts as depicted in Figure 9b. Each
sensor object on the dashboard has a set of instructions on how to display its data. For
example, a sensor may display water oxygen levels as a line chart when in focus, and as
a pie chart with a percentage when minimized. This allows for the customization of the
visual representation of data based on the specific needs and characteristics of each sensor.

(a) Welcome screen (b) Dashboard

Figure 9. Dashboard GUI.

6. Results

Through a number of parallel readings of DO levels in water samples by both DOxy’s
High-sensitivity Pulse Oximeter and a standard dissolved oxygen meter, two approaches
were investigated: One, in which various machine learning models were trained and
tested to produce a dynamic mapping of sensor readings to actual DO values in the lab as
discussed in Section 4.3 in detail. And another in which curve-fitting models were used
to find the best fitting curve for producing a successful conversion formula that was then
programmed into the DOxy SUs to be used offline. The DOxy SUs were repeatedly tested
in lab produced beakers of carefully controlled water samples as well as buckets filled
with tap water, random water fountains on Santa Clara University’s main campus, and
a nearby lake, all with accurate DO readings as confirmed with parallel readings from
the Milwaukee MW600 DO meter. Table 2 lists the side by side results of measurements
of DO in water samples with the same DO levels by the commercial Milwaukee MW600
DO meter and the DOxy sensing unit equipped with the Maxim Integrated MAX30102
Oximeter sensor.
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Table 2. Side-by-side readings from Milwaukee MW600 meter and DOxy sensing unit.

Meter Reading DOxy Reading

7.7 7.723882

7.7 7.725791

7.7 7.724597

7.7 7.725791

7.7 7.723737

7.7 7.725791

7.7 7.722496

7.7 7.724383

7.7 7.723665

7.7 7.72381

5.6 5.582961

5.6 5.55312

5.6 5.595675

5.6 5.546694

5.6 5.59779

5.6 5.51872

5.6 5.589324

5.6 5.527349

5.6 5.589324

5.6 5.512235

0.3 0.333782

0.3 0.320689

0.3 0.333782

0.3 0.332493

0.3 0.355979

0.3 0.337677

0.3 0.355522

0.3 0.356437

0.3 0.359197

0.3 0.346044

In all cases, the sensor oscillated and then settled down on the correct reading once in
the water for a few seconds. As an example, Figure 10 shows the oscillation and subsequent
settling down on the constant reading of 8 mg/L of DO when the SU was placed in one of
the water fountains on the SCU campus.
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Figure 10. DOxy results displayed on the dashboard.

7. Work in Progress

Several theoretical and technical directions for improving measurements are under
exploration and development as reported on in this section.

7.1. Effects of Temperature on DO Measurements

Variance in temperature can effect the concentration of dissolved oxygen in water [33].
The colder the water is the higher concentration of dissolved oxygen it can hold [33] thus the
temperature and dissolved oxygen concentration are inversely proportioned. As displayed
in Figure 11 there is a significant drop of concentration of dissolved oxygen between colder
months and warmer months.
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Figure 11. USGS Sample chart showing the effect of temperature on dissolved oxygen concentration
in a body of water [33].

Because the data collection performed to build the machine learning models used in
DOxy was done at room temperature (20–22 °C), it is necessary to account for the tempera-
ture variation when applying the models to real-world scenarios. By understanding the
relationship between temperature and dissolved oxygen concentration, the measurements
can be adjusted in order to reflect the conditions of the surrounding environment.

To convert the room temperature DO measurement to the DO concentration at the
surrounding temperature, an oxygen solubility chart can be utilized in order to supply the
solubilities for the van’t Hoff equation [58]. The van’t Hoff Equation (2) is a thermodynamic
equation that relates the solubility of a gas in a solvent to temperature. It provides an
approximation of how the solubility of a gas changes with temperature under certain
assumptions. In the context of dissolved oxygen in water, the van’t Hoff equation can
be used to estimate the change in solubility of oxygen as the temperature changes. The
equation allows the calculation of a scaling factor that represents the relative change in
solubility between two temperatures.

ln
(

S2

S1

)
=

∆H
R

(
1

T1
− 1

T2

)
(2)

where:

• S1 is the solubility of oxygen at temperature T1;
• S2 is the solubility of oxygen at temperature T2;
• ∆H is the heat of solution (usually a constant for a particular gas);
• R is the gas constant;
• T1 and T2 are the respective temperatures in Kelvin.

To scale the dissolved oxygen values from room temperature (T1) to the desired
temperature (T2), a scaling factor can be calculated by isolating the solubility of oxygen at
the two temperatures and multiplying it into the room temperature DO values in order
to obtain the adjusted DO values for the desired temperature. The scaling factor can be
calculated by isolating S1

S2
from Equation (2) as seen in Equation (3), then it is plugged into

Equation (4) to obtain the final DO value.
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S2

S1
= e(

∆H
R )

(
1

T1
− 1

T2

)
(3)

Adjusted DO values = Room temperature DO values × scaling factor (4)

7.2. Effects of Atmospheric Pressure on DO Measurements

Atmospheric Pressure can effect the concentration of dissolved oxygen in water. The
calculation for the concentration after taking atmospheric pressure into account can be
done by using Henry’s law [59]. The dissolved oxygen concentration is proportional to the
percent of oxygen in the air above it as can be seen in Equation (5), where C is the scaled
concentration of dissolved oxygen in water, k is Henry’s law constant, and P is the percent
of oxygen in the air above the water.

C = k · P (5)

There are two ways the scaling of the DO concentration value according to the atmo-
spheric pressure can be accommodated for within the DOxy system: Either an additional
atmospheric pressure sensor can be added to the DOxy SUs, or public API’s of atmospheric
pressure data can be used to perform the calculations within the dashboard’s backend once
the sensor readings have been received.

7.3. Sensor Enhancement

As the present research has shown, using purely the infrared data from the MAX30102
sensor, the DO content in water can be measured accurately. Which is in line with, the
findings of Miura et al. [15] that shows the greatest variance in absorbance occurs in the
blue and infrared light wavelengths in water. Wibowo et al. however, set up a fluorescence-
quenching dissolved oxygen sensor, running it first with a red LED and then with a blue
LED, finding that a blue light was more sensitive to dissolved oxygen levels [60]. Hence,
for future implementation, research is being conducted on the effectiveness of the blue light
for measuring dissolved oxygen in water both by itself, and in combination with data from
infrared light. Based on those results, the sensor used in DOxy SUs may change or maybe
even a completely new sensor is developed.

7.4. Range Extension

Since the measurement of DO is not a practice limited to fish farming alone, the range
of DOxy will be extended well beyond its current rage. DOxy will be able to be utilized to
measure DO levels in bodies of water for environmental purposes such as overall water
quality testing (usually along with temperature, ph levels, and other metrics), discovering
dead zones (DO levels below 1 mg/L) [33], and determining if it is healthy for human
consumption (DO levels above 6.5–8 mg/L) [61,62] as well as how it will taste.

7.5. Actuation

Without loss of generality, it can be seen that a DOxy sensor can be used to control
various environmental factors in an aquaculture setup. For instance, if the measured level
of dissolved oxygen falls below a set certain level in a tank, the DOxy sensor readings could
trigger the opening of oxygen valves or even the turning on of oxygen pumps that push
more oxygen into the water until the DOxy readings show a restoration of the DO levels.

8. Conclusions

Measuring dissolved oxygen levels in water is achievable with use of none chemical
based optical sensors. However, most current work in this area is academic and not market-
ready. DOxy is a low-cost, accessible, and sustainable optical DO metering system which
will transform the aquaculture industry in this respect. Given the importance of monitoring
DO levels, an IoT solution such as DOxy has the potential to reduce labor and thus improve
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the efficiency and productivity of aquaculture via automation. A strong correlation between
values produced by DOxy and values produced by a DO meter show the viability and
accuracy of DOxy’s approach at measuring DO in water. Furthermore, DOxy utilizes a
web-based user-friendly dashboard to help users effectively visualize and analyze the data
collected from sensors in the field. But most importantly, such aquacultural automation
allows for early detection of changing water conditions and hence increases the quality of
life for marine life as well as those who care for or whose livelihood depends on marine life.
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