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Abstract: Ferromagnetic pipes are widely used in the oil and gas industry. They are subject to cracks
due to corrosion, pressure, and fatigue. It is significant to detect cracks for the safety of pipes. A
residual magnetic field testing (RMFT) system is developed for crack detection in ferromagnetic
pipes. Based on this background, a detection probe based on an array of tunneling magneto-resistive
(TMR) sensors and permanent magnets is exploited. The probe is able to partially magnetize the pipe
wall and collect magnetic signals simultaneously. First, a theoretical analysis of RMFT is presented.
The physics principle of RMFT is introduced, and a finite element model is built. In the finite element
simulations, the effects of the crack length and depth on the RMFT signal are analyzed, and the signal
characteristics are selected to represent the crack size. Next, the validated experiments are conducted
to demonstrate the feasibility of the proposed RMFT method in this paper.

Keywords: residual magnetic field; magnetization; crack detection; tunneling magneto-resistive
(TMR); ferromagnetic pipes

1. Introduction

Steel pipes are widely used in oil and gas transportation due to their excellent per-
formance, such as high strength, pressure resistance, and good impact toughness [1]. In
steel pipes, carbon steel has ascendancy over stainless steel owing to low cost. However,
carbon steel is a ferromagnetic material, which has relatively weak corrosion resistance
compared with stainless steel [2]. Therefore, as a joint result of corrosion, pressure, and
fatigue, carbon steel is more prone to cracks as time goes on. If these cracks cannot be
found in time, many serious accidents, such as leakages, fires, and even explosions, will be
caused by the propagation of these defects [3].

It is necessary to locate and evaluate the cracks in pipes for the safety of energy
transportation, lives, and property. Previously, cracks in pipes have been successfully
detected by some non-destructive testing (NDT) technologies. For instance, Piao et al.
reconstructed the 3D profile of a defect in a Q235B steel pipe using magnetic flux leakage
(MFL) signals [4]. However, the pipe wall is magnetized to saturation, which is the
precondition in MFL testing [5]. As a consequence, the device for MFL is bulky and
requires high-power consumption to produce a large enough magnetic field [6]. Wu et al.
used ultrasonic waves to inspect the cracks with different inclined angles in a pipe [7].
Nevertheless, the coupling agent is indispensable in the ultrasonic testing (UT) method [8].
Eddy current testing (ECT) [9] and alternating current field measurement (ACFM) [10] are
also applied to assess the defects in metal pipes. However, with respect to ferromagnetic
pipes, the signals of deep defects are a weakness of the two technologies, due to skin
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effects [11]. In a word, there are inherent limitations to these mentioned technologies,
which are used to detect defects in ferromagnetic pipes.

All aforementioned NDT methods acquire the characteristic signal of a defect by
various sensors. In particular, coil is a frequently used scheme in electromagnetic NDT
technologies, but it relies on the changing frequency of inducing a magnetic field to collect
the signal [12]. So, the signal-to-noise ratio (SNR) in response to the signal is very low
at low frequency [13]. Furthermore, winding the coil is complicated and onerous. In
addition to coils, magnetic sensors based on the Hall effect [14], anisotropic magnetoresis-
tance (AMR) [15], giant magnetoresistance (GMR) [16], and tunneling magnetoresistance
(TMR) [17] are widespread in defect detection. Among these magnetic sensors, TMR has the
largest magnetoresistance (MR) ratio, which can reach 472 and 804%, at room temperature
and 5 K, respectively [18]. The sensitivity of TMR is at least 10 times that of AMR and GMR,
let alone the Hall sensor, which processes the smallest sensitivity. The other key parameter
of sensors is background noise, which determines the limits of detection. This indicator can
achieve 150 pT/

√
Hz at f = 1 Hz in TMR sensors [19]. Certainly, the linear range of TMR is

narrower than coils and Hall sensors, which limits its application in strong magnetic fields.
Residual magnetic field testing (RMFT) represents an electromagnetic NDT technology

capable of defect detection for ferromagnetic metals [20]. Similar to MFL, RMFT relies on a
permanent magnet or exciting coil to magnetize a sample. However, the magnetized effects
in the two methods are different. Namely, saturation magnetization is a precondition to
using MFL technology, while RMFT requires only partial magnetization for the detected
sample. In addition, some highly sensitive magnetic sensors, such as GMR and TMR, are
hard to utilize in MFL [3]. The reason is that the saturated magnetic field is usually beyond
the linear range of these sensors. Nevertheless, there are no limitations in RMFT, due to the
weak magnetic field.

The contributions of this paper are as follows:

(1) An RMFT system is developed to detect the cracks in ferromagnetic pipes. An array
of permanent magnets and TMR sensors are applied to build a detection probe, which
can implement pipe for magnetization and signal acquisition simultaneously.

(2) An experiment is conducted using the designed RMFT system. The characteristics
∆Bx and lx in RMFT signals can be used to express the crack size (length and depth),
which validates the feasibility of the RMFT method.

The rest of the paper is organized as follows: First, in Section 2, the physical principles
and a simulation model of RMFT for crack detection are introduced. Second, the RMFT
system, the experimental results that verify the feasibility of the RMFT method, and the
discussion are presented in Section 3. Finally, in Section 4, conclusions are drawn and
future work is considered.

2. Theoretical Analysis
2.1. Physics Principle

From the perspective of a magnetized curve, the saturated magnetization of ferromag-
netic material can be divided into five distinct phases [21]. First, the external magnetic field
H is steadily applied from 0 to the positive maximum value Hm. Second, H is gradually
decreased from Hm to −Hc, which is denoted as the negative coercive field strength. At
this moment, the magnetic flux density in the ferromagnetic material is 0. Third, the H is
sequentially reduced from −Hc to the negative maximum value −Hm. Fourth, the external
magnetic field is reversely enhanced from −Hm to Hc. Finally, H is further strengthened
and goes back to Hm. The five processes form a closed curve (a–b–c–b), which is denoted
as the saturated hysteresis curve, as shown in Figure 1. Correspondingly, the variation of
the magnetic flux density in ferromagnetic material also has five stages. (1) The magnetic
flux density B is increased with H from 0 to the positive saturation Bm. (2) B is gradually
attenuated to the residual flux density Br, and its direction is positive. (3) B is declined once
more, and its value is changed from Br to the negative saturation −Bm. (4) The magnetic
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flux density is augmented, and the value of B is varied from −Bm to −Br. (5) B is ulteriorly
increased and goes back to Bm.
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Figure 1. Magnetized curve of ferromagnetic material.

In terms of the unsaturated magnetization, the waveform of the hysteresis curve is
similar with the saturated magnetization. However, the area of the hysteresis curve in
unsaturated magnetization is clearly smaller than that in saturated magnetization. The
rose-red line in Figure 1 denotes the hysteresis curve in unsaturated magnetization. The
magnetized process is also accompanied by the reciprocating conversion of the external
magnetic field (H). The arrival points of H are a, d, e, and d, successively. Correspondingly,
the values of H are 0, Ht

m, −Ht
c,−Ht

m, Ht
c, Ht

m, respectively, where Ht
m and Ht

c denote the
maximum magnetic field and the coercive field strength in the unsaturated hysteresis curve,
respectively. Similarly, the magnetic flux density (B) is varied in order of the hysteresis
curve (0–Bt

m–Bt
r–−Bt

m–−Bt
r–Bt

m). Bt
m and Bt

r refer to the maximum value and the residual
value of magnetic flux density, respectively.

The principle of RMFT for crack detection in ferromagnetic pipes is shown in Figure 2.
The pipe wall is partially magnetized by a moving permanent magnet. Then, the magnet is
removed, and the residual magnetic density is retained. As for the pipe wall, there is an
in-and-out motion of the permanent magnet, namely, the increasing and decreasing process
of the external magnetic field. Therefore, the residual magnetic flux density Bt

r (or −Bt
r) can

be stored in the pipe wall. When it is in the presence of a crack, the magnetic return path
forms in the crack. Simultaneously, the magnetic line of force is first leaked into the air
and then goes back to the pipe. Subsequently, a magnetic sensor scans the pipe to sense
the variation of a magnetic field, which is further analyzed. Finally, the identification and
judgment of cracks are achieved based on the RMFT signal.
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2.2. Finite Element Model

To explore the variations in the RMFT signal with the crack size, a finite element model
is built by COMSOL 6.0 software, as shown in Figure 3a. The model consists of an air
domain, a ferromagnetic pipe with a magnetized domain, and a crack. Furthermore, an
infinite element domain (IED) is introduced to simulate the far-field in the model, which can
improve solution precision. With respect to the material, the ferromagnetic pipe, including
the magnetized domain, is carbon steel, and all remaining components in the model are air.
The materials and relative permeabilities of the finite element model are listed in Table 1.
The residual magnetic flux density of the magnetized domain is uniformly assumed to be
300.00 Gs, which can simplify the simulation model and reduce the solving time. With
respect to dimensions, the diameter, length, and thickness of the pipe are 200.00, 500.00,
and 8.00 mm, respectively. The dimension of the crack is varied to investigate its effect on
the residual magnetic field. In detail, the length (L) is changed from 5.00 to 40.00 mm, with
an increment of 5.00 mm. Meanwhile, the depth (D) is increased from 1.00 to 8.00 mm, with
a step of 1.00 mm. The lateral dimension of the crack, namely, the width (W), is fixed at
1.00 mm, and the detailed dimensions and position of the crack are represented in Figure 3b.
The dimensions of different domains in the finite element model are summarized in Table 2.
The free tetrahedral element is selected to mesh all domains in the finite element model.
The maximum element size of the crack domain is 0.10 mm, and the other domains are
automatically meshed at a finer level by COMSOL software. When L = 30.00 mm and
D = 5.00 mm, 283,946 elements are generated in the model.
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Table 1. Materials and electromagnetic parameters of finite element model.

Model Material Relative Permeability Residual Magnetic Flux Density (Gs)

Infinite element domain Air 1 -
Magnetized domain Carbon steel 1000 [22] 300.00

Pipe Carbon steel 1000 -
Crack Air 1 -
Others Air 1 -

Table 2. Dimensions of finite element model.

Model Diameter (mm) L (mm) W (mm) D (mm) Thickness (mm)

Infinite element domain 1000.00 - - - 100.00
Magnetized domain - 500.00 30.00 8.00 -

Pipe 200.00 500.00 - - 8.00
Crack - Varied 1.00 Varied -
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A part of the pipe, labeled in yellow in Figure 3a, is taken out as the magnetized
domain, and the detailed dimensions of the magnetized domain are shown in Figure 3b. A
residual magnetic flux density along the circumferential direction of the pipe is applied
to the magnetized domain to simulate the residual magnetic effect, which is caused by
the passage of the permanent magnet. Therefore, the width of the magnetized domain
and that of the permanent magnet are consistent. The x-directional magnetic signal (Bx)
attributed to the crack is obtained through a cut line, which is along the axial direction
of the pipe and is also the motion path of the magnetic sensor in the real inspection. The
distance between the data line and the pipe surface is 7.00 mm, which is the sum of the
lift-off distance (2.00 mm) and the coating thickness (5.00 mm). It should be noted that the
coating is not considered in the model. This is because the material of coating (nylon) has
the same electromagnetic properties as air.

2.3. Signature Waveform Analysis

Through analyzing the Bx signals for a series of cracks, which have different lengths
but a fixed depth of 4.00 mm, the effect of the crack length on the residual magnetic signal
is first acquired. A set of Bx signals at different lengths of L ranging from 5.00 to 40.00 mm,
with an increment of 5.00 mm, is shown in Figure 4a. It is evident that the Bx curve is
sensitive to the variation of L. At length, both the amplitude and the waveform width of
the Bx curve increase with L. Partial derivatives are taken with respect to the axial direction
of the pipe (z-axis) to obtain the d(Bx, z) curves, as illustrated in Figure 4b. It can be seen
that the waveform width also increases with L, whereas the discrimination in amplitude
between different curves is fuzzy. The characteristics in the residual magnetic signal,
namely, the peak-to-peak value in the Bx curve ∆Bx, the peak-to-peak value in the d(Bx, z)
curve ∆d(Bx, z), and the distance between the peak and trough in the d(Bx, z) curve lx, are
extracted. Moreover, the relationships between these characteristics and L are displayed in
Figure 5a–c, respectively. As shown in Figure 5a,b, the characteristics ∆Bx and ∆d(Bx, z)
have a similar trend, that is, they increase quickly at first and then slowly with the crack
length, and their growth rates descend gradually. Unlike the two characteristics analyzed
in advance, Figure 5c shows that the correlation between lx and L is approximately linear,
which is a tremendous advantage for the representation of the crack size.
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Next, the influence of the crack depth on the residual magnetic signal is then analyzed
at a constant length of 30.00 mm and different depth, which increases from 1.00 to 8.00 mm
at a step of 1.00 mm. The Bx curves and their corresponding d(Bx, z) curves of all cracks
are shown in Figure 6a,b, respectively. In amplitude, it is not hard to find that the two
curves rise with D. In waveform width, it is not easy to identify their differences in both
the Bx and d(Bx, z) curves. To better understand the variation of the residual magnetic
signal with D, the characteristics ∆Bx in the Bx curves and two characteristics ∆d(Bx, z)
and lx in the d(Bx, z) curves are taken out. The variation curves of all characteristics with
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D are revealed in Figure 7a–c. Obviously, a monotonic increasing trend can be found in
the variation curves of characteristics ∆Bx and ∆d(Bx, z), as shown in Figure 7a,b. It can be
seen from Figure 7c that the lx variation curve is a nearly horizontal line. In other words,
the characteristic lx is independent of D. Accordingly, lx cannot be used to represent the
crack depth.
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According to the simulation results, all three characteristics are able to respond to the
change in the crack length, and lx is more sensitive than the other two characteristics (∆Bx
and ∆d(Bx, z)) for the variation of L. The characteristics ∆Bx and ∆d(Bx, z) are monotonically
related to the crack depth, which cannot play a role in the characteristic lx. In summary,
it is demonstrated that the RMFT method can be used to inspect cracks in ferromagnetic
pipes from the perspective of the simulation.
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3. Experimental Setup and Results
3.1. RMFT System

A photograph of the RMFT system is shown in Figure 8a; there is a detection probe,
a data transmission cable, a data acquisition card (DAQ), and a PC in the system. These
modules play different roles in detecting defects in pipes. In testing, a carbon steel pipe
(20 steel, which meets Chinese standard GB/T 8163-2018 [23]) is scanned by the probe,
which is used to magnetize the pipe and collect the analog signal, synchronously. The cable
transmits the signal to the DAQ (NI 6218-BNC, National Instrument, Austin, TX, USA),
which is used to disperse the analog signal to the digital signal with a sampling frequency
of 100 Hz. The raw signal is further denoised by a PC using some algorithms, such as the
empirical mode decomposition (EMD) [24] method.

In the RMFT system, the probe is a key equipment, which not only provides the
magnetized source for the pipe but also acquires the residual magnetic signal. The probe
consists of 8 permanent magnets, 8 TMR sensors, a plug, a support, and some adjusting
screws, as shown in Figure 8b. Figure 8d displays the sensitivity curve of the TMR sensor
(MultiDimension Technology, Suzhou, China). It can be seen that the sensitivity of the
TMR sensor is 30 mV/V/Gs, which is determined by the slope in the transferring curve
with a linear range of H = ±10 Gs. Another significant parameter of the TMR sensor is
intrinsic noise, which determines the detection precision of the probe. As can be shown in
Figure 8e, the noise of the TMR sensor decreases with frequency gradually. The self-noise
of the sensor is 750 pT/

√
Hz at f = 1 Hz, which is a relatively low level compared with coils

and other magnetic sensors. A TMR sensor is attached to a printed circuit board (PCB), and
the corresponding voltage amplifier circuit is designed using a gain transferring function of
100 times over a low-pass filter at a frequency f ≤ 20 Hz. A sensing array including 8 signal
acquisition circuits is developed. The array is placed at the top of the support to improve
detection efficiency. In addition, the sensitive direction of every TMR sensor is tangent to
the pipe. There are 8 permanent magnets with a residual magnetic flux density of 1.20 kGs
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in the exciting module, which is installed at the end of the support. The magnetic flux
density in the permanent magnet is also along the circumferential direction of the pipe. The
centers of a TMR sensor and the corresponding permanent magnet can be connected as a
straight line, which is parallel to the axial line of the pipe. The distance between the TMR
sensor and the corresponding magnet is 310.00 mm, which is large enough to eliminate the
interference with each other. Furthermore, the plug is applied to connect the PCBs and the
cable. The adjusting screws have the function to hold the distance between the sensors and
the pipe, which is also the lift-off distance. In experiments, the lift-off is set as 2.00 mm. In
testing, the residual magnetic field is retained in the pipe due to the scanning of the magnet.
Hence, the pipe should be demagnetized to eliminate the effect of the residual magnetic
field in advance.
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To verify the developed RMFT system, a series of cracks with a width of 1.00 mm are
machined by a drill press at the surface of the new carbon steel pipe, and these cracks are
labeled No. 1 to 8, respectively. The positions of all cracks are shown in Figure 8c, and their
dimensions are summarized in Table 3. It is worth noting that the depths of all the cracks
are the values in the metal layer of the pipe. From the pipe surface, the depths should be
uniformly added 50.00 mm, which is the thickness of the coating. The other parameters of
the pipe are the same as the simulation model.

Table 3. Dimensions of cracks in the pipe.

Crack L (mm) D (mm) Crack L (mm) D (mm)

1 10.00 5.00 5 30.00 7.00
2 30.00 5.00 6 30.00 6.00
3 20.00 5.00 7 30.00 4.00
4 40.00 5.00 8 30.00 3.00
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3.2. Results Analysis and Discussion

The effect of the crack length is first analyzed through inspecting the first group cracks
(No. 1–5). During measurement, the probe is moved along the axial direction of the pipe,
i.e., the longitudinal direction of all cracks. The Bx signal of each channel in the sensor array
is extracted and shown in Figure 9a. It can be seen from the figure that the distinction is
obvious in these Bx curves of the cracks with different lengths. Similar to the simulations,
all Bx signals are taken derivatives with respect to the z-axis, and the corresponding d(Bx, z)
curves are shown in Figure 9b. Unlike the Bx signals, it is difficult to directly distinguish
these d(Bx, z) curves. Then, the characteristics ∆Bx, ∆d(Bx, z), and lx are retrieved, and
their corresponding variation curves with the crack length are illustrated in Figure 10a–c,
respectively. As shown in Figure 10a, the ∆Bx values of cracks 1–4 are 0.79 × 103, 1.86 × 103,
2.53 × 103, and 2.83 × 103 mV, respectively. It is known that the distortion value in the Bx
signal increases as the crack length increases, which coincides with the simulation results.
Figure 10b indicates that the ∆d(Bx, z) variation is irregular with L. The reasons may be
the uneven surface in the pipe and the probe vibration. Based on the experimental results,
the crack size is hard to predict using the characteristic ∆d(Bx, z). The characteristics lx are
determined to be 9.12, 22.44, 32.40, and 35.70 mm for cracks 1–4, respectively. It is inferred
that the lx value increases with the increase of L, but the growth rate gradually becomes
smooth, which is a slight difference from the simulations. Anyway, the characteristic lx can
be used to express the crack length.
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Subsequently, the influence of the crack depth is investigated using cracks 2 and 5–8,
and their corresponding Bx signals are presented in Figure 11a, where these Bx curves can be
clearly distinguished. Particularly, the peak-to-peak values in all Bx curves are measured to
be 1.88 × 103, 2.26 × 103, 2.53 × 103, 2.69 × 103, and 2.77 × 103 mV, respectively. Meanwhile,
the relationship between ∆Bx and D is depicted in Figure 12a. It is observed that the ∆Bx
value become larger as D increases, but the increment declines step by step, which agrees
with the simulation results. Conventionally, the differentials of all Bx signals about the
z-axis are calculated, and the resulting curves are shown in Figure 11b. Obviously, they are
distinct enough to be identified, but it is not easy to find the differences of characteristics
lx in these d(Bx, z) curves. Hence, the characteristics ∆d(Bx, z) and lx of all d(Bx, z) curves
in Figure 11b are fetched out and their changes with D are displayed in Figure 12b,c. As
shown in Figure 12b, in contrast to the simulation results, the ∆d(Bx, z) curve is tortuous
rather than monotonous. In other words, the characteristic ∆d(Bx, z) can not signify the
crack depth based on the experimental results. Figure 12c shows that the characteristic
lx is insensitive to the crack depth, and the lx values of all cracks are 32.30, 31.16, 32.40,
28.48, and 29.22 mm, respectively. The experimental results of the lx variation with D are
consistent with the simulations.

Sensors 2024, 24, x FOR PEER REVIEW 11 of 13 
 

 

characteristic lx is insensitive to the crack depth, and the lx values of all cracks are 32.30, 
31.16, 32.40, 28.48, and 29.22 mm, respectively. The experimental results of the lx variation 
with D are consistent with the simulations. 

 
Figure 11. (a) Bx signals of cracks 2 and 5–8. (b) d(Bx, z) signals of cracks 2 and 5–8. 

 
Figure 12. (a) ΔBx variation with D based on experiments. (b) Δd(Bx, z) variation with D based on 
experiments. (c) lx variation with D based on experiments. 

In accordance with the experiments, the changing trend of the characteristic ΔBx with 
both the crack length and depth is monotonically increasing. Nevertheless, the variation 
of the characteristic Δd(Bx, z) is uncertain not only with the crack length but also with the 
depth. Meanwhile, the characteristic lx depends on the crack length positively but is inde-
pendent of the crack depth. To sum up, on the basis of the relationship between the char-
acteristics in the residual magnetic signals (lx and ΔBx) and the crack size (L and D), the 
profile of the crack can be easily portrayed using the polynomial fitting [25] or the machine 
learning algorithm [26], which have already been applied in ACFM. In short, the feasibil-
ity of crack detection using the RMFT method is verified by the experiments. 

Figure 11. (a) Bx signals of cracks 2 and 5–8. (b) d(Bx, z) signals of cracks 2 and 5–8.

Sensors 2024, 24, x FOR PEER REVIEW 11 of 13 
 

 

characteristic lx is insensitive to the crack depth, and the lx values of all cracks are 32.30, 
31.16, 32.40, 28.48, and 29.22 mm, respectively. The experimental results of the lx variation 
with D are consistent with the simulations. 

 
Figure 11. (a) Bx signals of cracks 2 and 5–8. (b) d(Bx, z) signals of cracks 2 and 5–8. 

 
Figure 12. (a) ΔBx variation with D based on experiments. (b) Δd(Bx, z) variation with D based on 
experiments. (c) lx variation with D based on experiments. 

In accordance with the experiments, the changing trend of the characteristic ΔBx with 
both the crack length and depth is monotonically increasing. Nevertheless, the variation 
of the characteristic Δd(Bx, z) is uncertain not only with the crack length but also with the 
depth. Meanwhile, the characteristic lx depends on the crack length positively but is inde-
pendent of the crack depth. To sum up, on the basis of the relationship between the char-
acteristics in the residual magnetic signals (lx and ΔBx) and the crack size (L and D), the 
profile of the crack can be easily portrayed using the polynomial fitting [25] or the machine 
learning algorithm [26], which have already been applied in ACFM. In short, the feasibil-
ity of crack detection using the RMFT method is verified by the experiments. 

Figure 12. (a) ∆Bx variation with D based on experiments. (b) ∆d(Bx, z) variation with D based on
experiments. (c) lx variation with D based on experiments.



Sensors 2024, 24, 3259 11 of 12

In accordance with the experiments, the changing trend of the characteristic ∆Bx with
both the crack length and depth is monotonically increasing. Nevertheless, the variation
of the characteristic ∆d(Bx, z) is uncertain not only with the crack length but also with
the depth. Meanwhile, the characteristic lx depends on the crack length positively but is
independent of the crack depth. To sum up, on the basis of the relationship between the
characteristics in the residual magnetic signals (lx and ∆Bx) and the crack size (L and D), the
profile of the crack can be easily portrayed using the polynomial fitting [25] or the machine
learning algorithm [26], which have already been applied in ACFM. In short, the feasibility
of crack detection using the RMFT method is verified by the experiments.

4. Conclusions

In this paper, the RMFT probe with TMR sensor arrays and the testing system for crack
detection in ferromagnetic pipes are proposed. A finite element model is established, and
the perturbed residual magnetic signals are simulated. The simulation results demonstrate
that both residual magnetic signal (Bx) and its differential with respect to the axial direction
of the pipe (d(Bx, z)) can be influenced by the crack dimensions (length and depth) signifi-
cantly. Moreover, the crack profile can be depicted by three characteristics (∆Bx, ∆d(Bx, z),
and lx). Based on the simulation results, a sensing element is developed based on the TMR
sensor, which has a high sensitivity of 30.00 mV/V/Gs in a range of ±10 Gs and a noise of
750 pT/

√
Hz at 1 Hz. The PCBs are printed on the condition of a gain-transferring function

of 100 times and a low-pass filter of 20 Hz. Such high-sensitive and low-noised TMR
sensors are assembled into an array probe, which is found to be adaptive for weak residual
magnetic field detection. An experiment is carried out, and the residual magnetic signals
of cracks are analyzed. The results demonstrate that the variations of the characteristics
∆Bx and lx with the crack size are in agreement with the simulations, which also verifies
that the RMFT is a feasible method for crack detection in ferromagnetic pipes.

The proposed RMFT method provides a low-cost, compact-size, and low-power testing
solution, which is the first step toward the optimization of the RMFT system. In practice,
it should be possible to detect the oil and gas pipeline using a novel RMFT probe, which
is integrated into a pipe pig to inspect the inner surface of the pipe. At present, we are
designing a novel probe to inspect cracks in the inner surface of the pipe and developing
a quantification algorithm for crack sizing based on RMFT technology, which will be
presented in our future work.
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