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Abstract: The integration of artificial intelligence (AI) models in the classification of electromyo-
graphic (EMG) signals represents a significant advancement in the design of control systems for
prostheses. This study explores the development of a portable system that classifies the electrical
activity of three shoulder muscles in real time for actuator control, marking a milestone in the au-
tonomy of prosthetic devices. Utilizing low-power microcontrollers, the system ensures continuous
EMG signal recording, enhancing user mobility. Focusing on a case study—a 42-year-old man with
left shoulder disarticulation—EMG activity was recorded over two days using a specifically designed
electronic board. Data processing was performed using the Edge Impulse platform, renowned for its
effectiveness in implementing AI on edge devices. The first day was dedicated to a training session
with 150 repetitions spread across 30 trials and three different movements. Based on these data, the
second day tested the AI model’s ability to classify EMG signals in new movement executions in
real time. The results demonstrate the potential of portable AI-based systems for prosthetic control,
offering accurate and swift EMG signal classification that enhances prosthetic user functionality and
experience. This study not only underscores the feasibility of real-time EMG signal classification but
also paves the way for future research on practical applications and improvements in the quality of
life for prosthetic users.

Keywords: artificial intelligence; electromyographic signals; prosthetic control systems; portable system;
shoulder joint movements; Edge Impulse platform

1. Introduction

It has been estimated that approximately 10% of individuals with limb amputations
are equipped with prosthetic devices. However, regrettably, only 7% of this population pos-
sesses the necessary knowledge or has received proper training to effectively utilize these
devices [1]. The proper implantation of a prosthesis is essential during the rehabilitation
process following limb amputation. When performed accurately, it enables individuals to
fully reintegrate into their work and daily activities [2].

This, in particular, is critical when upper limb amputations are performed, as the
hands and arms are mostly used in everyday life [3]. And also, it is well known that an
amputation above the wrist leaves the limb with minimal functionality, which is considered
a significant disability [4,5], especially in young patients [6].

The process of adjusting to an upper limb prosthesis presents a significant challenge for
individuals in this patient population. Studies have reported a wide range of percentages for
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amputees’ adaptation to long-term prosthesis usage, ranging from 39% to 81% [7,8]. Despite
the limited literature available on the factors influencing these outcomes in upper limb
amputees [9–11], some studies suggest that this wide variation is closely associated with
the level of satisfaction derived from prosthetic device utilization [12]. Therefore, greater
attention should be given to improving rehabilitation strategies and refining prosthetic
control systems to optimize outcomes for individuals with upper limb amputations [13].

The literature indicates that less than 9% of upper limb prosthesis users use them for
daily activities where the use of both limbs is necessary. The majority of these individuals
supplement this need with assistive devices [11], opting to reserve prostheses for specific
activities. Furthermore, the importance of simplifying these devices and focusing on
progressive adaptation is emphasized in order to avoid the rejection and psychological
problems associated with adaptation to the prosthesis [10,14].

Among the individuals utilizing upper limb prostheses, those with shoulder disarticu-
lation exhibit the highest rate of device abandonment, standing at 60%. They are followed
by transhumeral amputees with a rate of 57%, and transradial users with a significantly
lower rate of 6% [12]. Furthermore, these rates can vary depending on the type of prosthesis
employed. Specifically, myoelectric prostheses exhibit abandonment rates of approximately
39%, passive hands at around 53%, and body-powered hooks at approximately 50% [15].

In recent years, there has been a notable growth in wireless and mobile technologies,
leading to an increased utilization of communication protocols such as Bluetooth, Wi-Fi,
Infrared, and others within the medical field. In the field of prosthetic research, there
has been a notable surge in interest driven by the potential applications of advances in
portable or mobile technologies. Specifically, electromyography (EMG) recording has
experienced significant benefits through the transition from wired to wireless acquisition
systems. The growing utilization of wireless EMG devices can be attributed to the necessity
of validating electrophysiological measurements in diverse settings and situations [16–18],
as well as their adaptability to various Human Device Interfaces (HDIs) [19–21] where
they are expected to optimize usability, portability, and reliability in remote operational
environments. Consequently, this enables the formulation of novel experimental protocols
applicable in everyday contexts.

The EMG technique is employed to record the electrical activity generated by muscles
as a signal, serving as the primary control method for myoelectric prosthetic systems.
The underlying concept behind utilizing this signal is that amputees are able to generate
phantom instructions. These instructions, although not resulting in limb activation, are con-
tinuously generated by the brain [22]. The majority of research efforts in this field primarily
focus on investigating the flexion/extension of the forearm or the pronation/supination of
the wrist, while the study of shoulder movements remains relatively limited. Conversely,
other studies concentrate on exploring EMG characteristics that are utilized as input for
artificial intelligence (AI) algorithms [23,24].

There are several EMG mobile devices that have achieved commercial success, in-
cluding Myoware® (Advancer Technologies, Raleigh, NC, USA, https://myoware.com/,
accessed on 20 November 2023), SEN0240 (Meter Kit V2. DFRobot, Shanghai, China,
https://www.dfrobot.com/product-1661.html, accessed on 21 November 2023), and oth-
ers. These devices offer non-invasive and real-time acquisition of muscular activity. They
offer ergonomic design, wireless functionality, and cost-effectiveness compared to other
mobile EMG systems. However, it is important to note that these devices also have certain
limitations, such as the fixed electrode location determined by the manufacturer’s design,
constraints on electrode positioning, and restrictions on the number of channels employed.
On the other hand, some studies have focused on the development of laboratory-level
EMG prototypes [25–29], demonstrating the performance of their versions in local testing.
However, these studies do not report the synchronized detection of multiple body muscles,
which could significantly complicate the training of prosthetic devices. In addition, they
do not report the application of these prototypes in patients who could be candidates
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for prosthetic use. They also lack a phase where EMG signals are analyzed and used for
movement classification.

Edge Impulse (https://www.edgeimpulse.com, accessed on 15 Janaury 2024) is an
emerging online platform specializing in the development of AI models designed specif-
ically for embedded devices. The platform has successfully been utilized to create tools
for recognizing hand movements in sign language, thereby facilitating the control of smart
home devices. This implementation utilizes inertial sensors and has achieved an efficiency
rate of 89.4% [30]. Additionally, Edge Impulse has developed applications in monitoring
the operational condition of industrial equipment, enabling timely maintenance detection.
In this context, the use of inertial sensors has resulted in an accuracy of 99.87% [31]. Another
documented application involves the utilization of surveillance cameras to identify suspi-
cious activities, triggering alarms in response to the detection of abnormal behavior [32].

Edge Impulse has also developed applications for discerning voice commands from
databases comprising both young individuals and adults, with a reported accuracy of 97%,
showcasing the potential to enhance interactions with embedded devices [33]. Additionally,
this tool has successfully differentiated between distinct mosquito species, including those
with potential lethality, solely based on the analysis of wing sounds. The conducted
experiment reported a classification accuracy of 88% [34].

However, no instances of utilizing Edge Impulse for muscle activity recordings are
identified in the existing literature. The closest analogous study focused on investigating
the electrical activity produced by the heart, wherein a classifier was developed to enable
the real-time prediction of normal or abnormal cardiac function. Remarkably, this research
achieved an accuracy rate of 95% [35].

This research is focused on the analysis of the muscle patterns of a subject who suffered
a shoulder disarticulation and is not currently a user of any prosthetic device. Muscular
electrical activity was recorded using three EMG channels placed over the area proximal
to the amputation stump. The structure of this paper is as follows: Section 2 describes
the Methods followed to record the EMG activity of the volunteer for this experiment.
The results obtained from the EMG building and comparison are presented in Section 3.
Section 4 discusses the outcomes achieved in the development of the signal acquisition
device and the application of AI, comparing these findings with those of other studies.
Finally, Section 5 presents the conclusion of this research.

2. Materials and Methods
2.1. Participant

This study involved the enrollment of a male participant, aged 42, who experienced
the loss of his left upper limb in a traumatic accident at the age of 21, resulting in a shoul-
der disarticulation; see Figure 1. The participant had no history of using any prosthetic
devices. Prior to the commencement of the study, ethical approval (CEI/2021/001) was
obtained from the Ethics Committee, and the volunteer provided informed consent, grant-
ing approval for his participation in the project. The investigation was conducted at the
Laboratory of Electronics Specialized, within the Electromechanical Department of the
Universidad Autónoma de Guadalajara (Mexico).

Figure 1. Front, back and side views of the participant. The scar resulting from the accident can be
seen on the left side.

https://www.edgeimpulse.com
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2.2. Data Acquisition

To record the muscular activity, Covidien-KendallTM (Medtronic, Minneapolis, MN,
USA) brand Ag/AgCl foam electrodes, sized 2.54 cm in diameter, were placed on the
pectoralis major, trapezius, and dorsal muscles on the left side of the participant.

The electrodes were connected to three electronic boards previously developed in the
laboratory, based on the AD8232 integrated circuit designed by Analog Devices (Norwood,
MA, USA) (Figure 2a). Although this component is used to monitor cardiac activity, it can
also be used to measure other types of biosignals, including muscle activity. It also offers
a low-power analog signal that a microcontroller’s analog-to-digital converter can read.
The AD8232 has a two-pole high-pass filter and a three-pole low-pass filter, whose cutoff
frequency can be modified by connecting externally passive components [36]. The 20 to
200 Hz frequency band was selected in this work, considering the ranges most frequently
employed in the literature for EMG processing in prosthetic control (50 to 150 Hz) [37–39].
Also, a gain of ×1000 was considered, another parameter that can easily be adjusted with
the equations proposed by the manufacturer.

Figure 2. At the top left, the electronic board’s design and size. The top and bottom views are
displayed in (a). At the top right, the patient during calibration, in (b). Bottom, the prototype for
recording and transmitting EMG data from the participant to the computer (c).

In the calibration phase, a comparison was made with the Biopac® system (BIOPAC
Systems Inc., Goleta, CA, USA), specifically, the model BIOPAC STUDENT LAB BASIC
SYSTEM MP36 (BIOPAC Systems Inc., Goleta, CA, USA). A total of six electrodes were
placed: four of them in the chest area, where two were connected directly to the professional
equipment and the other two to our prototype. The remaining two electrodes were used as
reference, one for each acquisition system. The signals from our prototype were acquired
using the Arduino platform, which was also used in later stages; see Figure 2b).

This comparison allowed us to validate our circuit and make the necessary adjustments
before proceeding to the next stage of the experiment. Both signals were sampled at a rate
of 2000 samples per second.
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Finally, during the experimental stage, a Nano 33 BLE Sense Arduino (Arduino, Turin,
Italy:) evaluation board was used to perform the digitizing process. Only three of eight
analog-to-digital converters (ADCs) were included on this board, leaving the opportunity to
increase the number of muscles recorded; see Figure 2c). A 10-bit resolution was considered
for each ADC. Data were sampled at 1000 data per second and recorded using serial
communication between the evaluation board and the Edge Impulse internet platform.

2.3. Experimental Test

For the experiment, the volunteer remained seated in front of a monitor with his spine
resting on the back of the chair and at a reasonable distance from the screen. The EMG
electrodes were then placed on the muscles of interest (pectoral, trapezius, and dorsal) .

The experiment spanned two days. On the first day, the participant performed five
series of ten arm abduction movements, ten arm adduction movements, and ten arm raises.
All the movements were executed with the muscles affected by the shoulder disarticulation.
At the end of each series, a 3 min pause for rest was also considered.

A visual interface developed in Python (ver 3.2) showed the participant the movement
that would be executed, followed by a 1.5 s wait window, and finally, a 3 s window where
the execution of the movement would take place was displayed. Each trial was followed
by a 3 s rest pause before the next trial (Figure 3a,b). Data were sent through the interface
to the Edge Impulse platform assigning a numerical marker to each event. Since these
values were only used to identify the start, end, and type of each attempt, they did not
affect the experiment.

Figure 3. (a) Example of the interface developed in Python to indicate the sequence of each movement.
(b) The temporal sequence followed for the execution of a movement of the participant’s left arm.
All the movements have the same time intervals, the only difference being the values of the triggers.
(c) Setup implemented during the experiment.

To avoid the possibility of volunteers memorizing the trials, they were all selected
randomly. A database consisting of 150 trial executions (50 per movement) was obtained at
the end of the experiment and used to train an AI model.

Figure 3c shows our participant during the recording of muscle signals. In the table,
the prototype consisting of electronic cards is observed, together with the electrodes that
are connected over the muscles of interest.

Following the same exercises as the previous day, the model was loaded onto the
evaluation circuit board (parameters will be described in the next section). The only
difference was that the volunteer was free to decide when to perform a new movement
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since he did not receive instructions to start a new trial. Also, the AI model was running all
the time, simulating the functioning in daily life. To provide feedback to our participant
and help him improve his training, a virtual avatar received commands from the AI model
and mimicked the volunteer’s movement (Figure 4).

Figure 4. Virtual avatar used to provide feedback and mimic the volunteer’s intended movements,
(a) white, resting activity, (b) red, right movement, (c) green, up movement, (d) blue, left movement

2.4. Data Analysis

Edge Impulse is a tool for developing machine learning models that can be used on
specific development electronic board platforms by recording data from any sensor. In this
study, data from the three target muscles mentioned above were recorded at a sampling rate
of 100 samples per second. Each trial was separated as an independent window and assigned
a category corresponding to the movement performed. The final working windows were
centered between Triggers 610 and 620, related to arm raise; between 710 and 720, associated
with arm adduction; and finally, between 810 and 820, linked to arm abduction. Each of
these windows lasted 3 s—the time during which the participant performed the movement.
Furthermore, each window had 300 samples for each trial.

After the data were sorted, an 80/20 (120/30 trials) data ratio for training and val-
idation was used in a 5-fold cross-validation testing process. Edge Impulse uses digital
Butterworth filters to extract the frequency and power characteristics of each sample, re-
ducing the frequency spectrum as much as possible for easier processing. Subsequently, a
neural network designed using Python Keras (ver 3) is applied, which is the main engine
of Edge Impulse for the development of artificial intelligence models. One hundred epochs
were selected as training cycles and the number of characteristics varied according to the
model evaluated. Two dense layers were maintained for all models, the first with twenty
neurons and the second with ten neurons, all associated with the three classes that could be
predicted, and all using a learning rate of 0.005 or 0.0005.

3. Results
3.1. Electronic Board Assembly

As Figure 5 shows, a multilayer copper-printed board was constructed, based on the de-
sign proposed in Section 2.2. All passive electronic components around the central integrated
circuit were carefully calculated according to the specifications of the AD8232 datasheet [36].
These components interact with the internal operational amplifiers of the integrated circuit to
provide a bandpass filter with cutoff frequencies at 23.41 and 224.5 Hz. These values are close
to those suggested at the circuit design stage and are within the frequency range commonly
studied in the literature [37–39]. In addition, the circuit detects the presence of the electrodes
as soon as they are connected, and in the event of incorrect placement or absence of contact,
the device goes into standby mode, allowing verification and energy saving.



Sensors 2024, 24, 3264 7 of 14

Figure 5. (a) Final construction of an EMG prototype based on the AD8232 integrated circuit. (b) The
3 EMG channels connected to the Arduino Nano 33 BLE Sense Arduino.

Finally, the output signal of the circuit is transmitted in analog form to the Arduino
microcontroller and, although it has already been amplified and filtered, it can be digitally
post-processed if necessary. Figure 6 shows the average of the recorded EMG signals from
all trials with each of the three muscle movements under study. The series of graphs
exhibits the activity of three different muscles during the execution of a specific move-
ment. Each graph corresponds to a different muscle, labeled from left to right as pectoral,
trapezius, and dorsal. The ‘Left’ row, shown in blue, indicates that these data represent
the shoulder adduction movement. In the middle row, the graphs in red are marked with
the legend ‘Right’ and display the shoulder abduction movement. Lastly, the bottom row
in green, under the legend ‘Up’, represents the elevation of the arm. Each graph plots the
corresponding signal as a function of time, which extends along the horizontal axis marked
as ‘Time (sec)’ in seconds.

Figure 6. Average of the raw signals of the three muscle recording channels during the different
movements. On the X-axis, the recording time for each sample (5 s). On the Y-axis, the values of the
ADC. Dotted lines indicate the 3-s window during which features were extracted from the AI model.

3.2. Model Training

For feature extraction, three different methods were employed, two of which were
already preconfigured in the Edge Impulse platform. The third method is a combination
of both feature types. The first method was the Flatten method. This option focuses on
extracting time characteristics, applying different statistics to a time window of the signal
and assigning a value for each time window. These statistics include mean, maximum
and minimum values, root mean square, standard deviation, skewness, and kurtosis. Two
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models were generated using this method. In the first, the learning rate was set at 0.0005,
which resulted in a data prediction accuracy of 89.5%. In this case, the model confused
certain movements of the left arm with those of the right arm. In contrast, the right and up
trials were correctly identified by the predictor.

On the other hand, the learning rate for the second model was set to 0.005, ten times
higher than that of the previous model. This value yielded a 100% accuracy for all three
movements. Some precautions were taken in choosing learning rate values when designing
both models. This is because small changes in values could lead to overtraining of the data
(Figure 7).

Figure 7. Confusion matrices showcasing classification accuracy for directional movements at
learning rates of 0.0005 and 0.005, using data flattening, spectral analysis, and a combination of both.
Results are depicted with F1 scores and overall model accuracy.

The second method was focused on spectral analysis to obtain the spectral power of
the signals and generate feature extraction. Again, two models were developed, keeping the
same learning rates as the previous method. This method achieved 94.70% accuracy with a
learning rate of 0.0005, a value higher than that of the previous method. In the same way,
it also confused the left movements but this time with the up movements. Nevertheless,
it was able to predict 90.9% of the cases, surpassing the 81.8% accuracy of the previous
method. The rest of the movements were predicted without any problem. Increasing the
learning rate also exhibited no difference, as it also achieved an accuracy of 94.7% and again
confused left movements, which already had a predictive value of 90.9%, with respect to
right movements (Figure 7).

Several runs of this model were performed to find the best parameters and obtain
the best classifier. During these runs, parameters such as the learning rate, the number
of layers of the neural network, and the number of neurons in each layer were adjusted,
which improved the accuracy and generalization capacity of the model.

Although the best feature extraction model was the Flatten method with a learning
rate of 0.005, a model integrating the previous two methods was proposed to compare the
results. As with previous tests, the learning rate remained the same, and it was found that
with a learning rate of 0.0005, an accuracy of 89.5% was achieved. This did not result in
an increase over the Flatten method but a decrease of about 5% compared to the spectral
analysis. Finally, 100% accuracy was achieved with a learning rate of 0.005. This result is
the same as that of the Flatten method, but an increase of over 5% was observed for spectral
analysis (Figure 7).

3.3. Model Testing

According to the previous results, only models with 100% accuracy were retained for
the next phases of the tests and used to validate the test data previously separated. Thus,
the Flatten model, with a learning rate of 0.005, achieved an accuracy of 95.24%. Again,
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movement to the left was the most difficult to classify, predicting only 85.7% of the data
and identifying the rest as unknown (Figure 8).

Figure 8. Comparison of classification performance using Flatten and Flatten + Spectral Analysis
models at a learning rate of 0.005. Both models achieved an accuracy of 95.24%, with the left
movement prediction being the most challenging, having an 85.7% success rate and the remainder
classified as uncertain.

Similarly, the Flatten + Spectral Analysis model, with a learning rate of 0.005, did not
differ from the test data. It also achieved 95.24% accuracy and had problems predicting the
left arm movements, confusing them with unknown movements.

These discrepancies in performance suggest that the models may struggle with certain
types of motions, indicating a potential area for improvement. To improve performance,
future work could include experimentation with different feature extraction methods,
hyperparameter tuning, or the use of data augmentation techniques to better handle
challenging motion patterns.

3.4. Online Classification

All the previous results correspond to data obtained on the first day of the experiment.
As mentioned earlier, a second test was conducted the next day, involving the real-time
detection of the three movements while the volunteer performed them freely.

For this second test, the electrodes were placed in the same anatomical positions as the
day before. Later, the participant not only observed the interface used previously, where
he waited for a new movement instruction but also observed an avatar (Figure 4) that
mimicked the volunteer’s movements when the AI models predicted them correctly. To
do this, both AI models, obtained through Edge Impulse, were previously loaded into the
Arduino Nano 33 BLE Sense microcontroller. The volunteer was then asked to complete
only two test sessions per model. The same number of trials per session was adhered to,
and 60 new retrials were conducted for each model.

The left side of Figure 9 shows the results of the online Flatten model, which uses
only the temporal characteristics of the signals to predict the new movements of the
participant. This method achieved an accuracy of 95%, a result close to that obtained
during the training stage. On the other hand, the classifier’s performance in predicting all
the movements was correct, confusing left and right movements only a few times. Finally,
the second model, which used the temporal and spectral characteristics of the signals, is
shown at the right of Figure 9. In this case, the data prediction accuracy decreased slightly
compared to the corresponding training model, going from 95.24% to 93.34%, which is a
very insignificant difference.

The effectiveness of the online classification models in predicting muscle movements
in real time aligns with the study’s objectives of enhancing prosthetic control. The practical
implications of this are significant, as accurate real-time prediction enhances the usability of
prosthetic devices, contributing to the autonomy of users. The slight decrease in accuracy
observed during the real-time testing suggests that future models could benefit from further
refinement to enhance robustness in real-world settings.
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Figure 9. Results from the second day real-time movement detection tests using Flatten and Flatten +
Spectral Analysis models. The Flatten model had 95% accuracy, and the combined model exhibited a
minor drop to 93.34% accuracy, with some difficulty in predicting left movements.

4. Discussion

In this research, we have presented a robust AI-enabled EMG classification system
tailored for a shoulder disarticulation case. Our results demonstrate unprecedented real-
time accuracy, particularly with the Flatten method at a learning rate of 0.005. These
findings are supported by the data presented in Table 1, where we compare the performance
of our EMG prototype with existing solutions. Unlike the other prototypes listed, which
have a broader frequency range for EMG signal acquisition, our system operates effectively
within a narrower band (23.41–224.5 Hz), optimizing signal clarity and processing efficiency.
The data in Table 1 also illustrate the electrical characteristics of various devices and
potential prototypes, aiding in the design of our electromyograph and helping us develop
a competitive version.

Our portable EMG prototype, leveraging wireless and wired communication, stands
out by balancing the sampling frequency with the precision of muscle activity readings.
This balance is crucial, as Allard et al. [40] and Prakash et al. [41] demonstrated that a higher
sampling frequency does not necessarily translate into better motion prediction accuracy.
The slight drop in accuracy during online classification, compared to model training phases,
is likely due to the dynamic nature of real-life movement execution as opposed to controlled
experimental conditions. However, our system’s performance remains superior when
benchmarked against other studies, which commonly report decreased model accuracy
when transitioning from offline to online testing scenarios. The inclusion of a virtual avatar
as biofeedback represents an innovative step in prosthetic control, as it may enhance user
adaptability to prosthetic devices by providing visual cues aligned with detected EMG
patterns. This approach could address the high abandonment rates observed in shoulder
disarticulation prostheses, offering a more intuitive and user-friendly interaction with
the device.

In terms of prototype size, our system is smaller than other systems in Table 1, a crucial
advantage in prosthetic control where space and weight are critical factors. Allard et al. [40]
mention a prototype size of 50 mm², but it is part of a bracelet integrating eight sensors,
limiting its use to specific body parts and not suitable for all types of prosthetics as ours is.

The studies referenced in [25–29] focused on EMG signal acquisition but did not ad-
dress synchronized detection of multiple body muscles, which is important for training
prosthetic devices. Moreover, these studies did not apply their prototypes to potential pros-
thetic users or analyze EMG signals for movement classification, as we did. Our embedded
system utilizes AI models, a novel approach not previously reported in the literature.

A limitation of this study was the small participant pool, which could impact the
generalizability of the findings. Future studies should address these challenges by including
more participants and refining the prototype for broader applications.

The generalizability of the findings is crucial for future research directions. The
system’s effectiveness should be tested across different populations, types of amputations,
and real-world settings to determine its broader applicability.

It is important to consider the ethical and societal implications of this research. Privacy
concerns, user autonomy, and the impact of technological advancements on healthcare
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delivery are key factors. Addressing these aspects broadens the scope of the discussion
and highlights the broader implications of the study beyond technical aspects.

The presented EMG prototype and AI methodology highlight the way for developing
more accurate and user-friendly prosthetic control systems. Future studies should expand
the participant pool and explore the methodology’s efficacy across different types of limb
movements and amputations. By doing so, we can refine the system’s accuracy and make
significant strides toward a better integration of prosthetic devices into the daily lives
of amputees.

Table 1. Electrical characteristics of commercial devices and prototypes focused on electromyography
used in rehabilitation and prosthetic techniques at a research level.

Article Allard [40]. Prakash [41]. Sattar [42]. Vavrinsky [43]. Walter [44]. Liu [45]. This EMG
Prototype

Application
EMG band
design, and

hand recognition

Prosthetic
control

Prosthetic control
with Myo
armband

EMG design EMG design
EMG

design, and
rehabilitation.

Portable EMG
design

Prototype/
Product Prototype Prototype Product Prototype Prototype Prototype Prototype

Communication Wireless Wired Wireless Wireless – – Wireless Wireless and
wired

Num. of
channels 10 1 8 – – 1 4 1 to 6

Sampling
frequency [Hz] 1000 2000 200 – – 1000 1000 1000

Frequency
range [Hz] 20–500 11.4–323.7 – – 2 - 300 10–500 20–500 20–200

Type of
electrode

Electroless nickel
immersion gold

(ENIG)
Ag/AgCl – – PCB Electrode Ag/AgCl Ag/AgCl Ag/AgCl

Weight [g] 62 42 – – – – 25 – – 20

Size 50 mm2 25 × 70 mm – – – – 57 × 36 mm 35 × 25 mm 29.5 × 25 mm

5. Conclusions

This study has successfully demonstrated the integration of artificial intelligence tech-
niques into the design of a portable EMG-based prosthetic control system, showing promise
in advancing the autonomy and functionality of prosthetic devices for individuals with up-
per limb amputations. Over the course of two days, our subject-specific approach allowed
for the collection of robust data and the development of an embedded AI model capable of
the real-time classification of shoulder muscle movements with impressive accuracy.

Our findings, as highlighted by the confusion matrices in Figures 6 and 8, under-
score the system’s proficiency in distinguishing between different directional movements,
although recognizing left arm movements remains a challenge. This challenge is reflec-
tive of the complexity of muscular patterns and the subtleties inherent in accurate EMG
signal interpretation.

The successful deployment of this system onto a low-power microcontroller platform,
the Arduino Nano 33 BLE Sense, illustrates the feasibility of portable and real-time muscle
pattern recognition. This accomplishment is a significant step toward the development of
more adaptive and intuitive control systems for prosthetic users. Our research contributes
to the burgeoning field of embedded machine learning, particularly within the context of
biomedical applications. The consistency of our system’s performance from the training
phase to real-world application provides a methodological framework that could potentially
be adapted to other forms of prosthetic control and rehabilitation technologies.

As we look to the future, the scope for expanding this study is considerable. It will
be essential to replicate this work with a broader participant base and to investigate the
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application of the technology to different types of limb movements and various levels
of limb loss. It is our hope that these advances will not only further the capabilities of
prosthetic devices but also tangibly improve the quality of life for their users by offering
them greater control and independence.

The potential demonstrated by the integration of AI models, such as those provided by
Edge Impulse, paves the way for innovative solutions that could transform the landscape of
prosthetic design and user experience. Our study serves as a beacon for future explorations
in this exciting and rapidly evolving field.
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