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Abstract: In this article, a novel cross-domain knowledge transfer method is implemented to optimize
the tradeoff between energy consumption and information freshness for all pieces of equipment
powered by heterogeneous energy sources within smart factory. Three distinct groups of use cases
are considered, each utilizing a different energy source: grid power, green energy source, and mixed
energy sources. Differing from mainstream algorithms that require consistency among groups,
the proposed method enables knowledge transfer even across varying state and/or action spaces.
With the advantage of multiple layers of knowledge extraction, a lightweight knowledge transfer is
achieved without the need for neural networks. This facilitates broader applications in self-sustainable
wireless networks. Simulation results reveal a notable improvement in the ’warm start’ policy for each
equipment, manifesting as a 51.32% increase in initial reward compared to a random policy approach.

Keywords: industrial internet-of-things (IIoT); age of information (AoI); energy efficiency;
cross-domain

1. Introduction

The sustainability of communication networks is a critical goal for next-generation
wireless systems (e.g., 6G and beyond [1]). Network sustainability is defined as an approach
that successfully integrates and balances environmental responsibility, economic viability,
and social equity. Despite the growing attention and hype surrounding the sustainability
of 6G, there is a lack of a rigorous and practical definition to guide its implementation
in networks. Sustainability has been mainly linked to green networking to achieve the
United Nations’ Sustainable Development Goals (SDGs) [2]. In practice, this is particularly
related to energy efficiency of the versatile network elements. In particular, smart factories
constitute a significant component in Industrial Internet-of-Things (IIoT) [3] and Industry
4.0 [4], playing a key role in enabling cyber-physical systems to function autonomously.
IIoT applications typically requires the automation of a large number of devices in man-
ufacturing with limited hardware capabilities and energy resources, usually with small
batteries [5]. Industrial 4.0 [6] encompasses emerging technologies, such as artificial intelli-
gence (AI), edge computing, and digital twin (DT) and so on. In particular, the work in [7]
comprehensively investigated the intelligence maintenance in various aspects of mainte-
nance. Specifically, it focused on the human-in-the-loop-based maintenance and its role in
enhancing physical resilience in smart manufacturing. This paradigm requires increased
flexibility, agility and resilience through the lifespan of the IIoT devices. Consequently,
in the realm of IIoT, the smart factories are expected to integrate advanced autonomous
capabilities along with enhanced energy-efficient functionality. Nevertheless, the robots,
sensors and actuators in the factories are empowered with different sources of energy. Such
sources include power grids [8], renewable technologies [9] (e.g., solar), and other energy
harvesting techniques [10] (e.g., radio frequency (RF) energy). Subsequently, ensuring the
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energy efficiency of each individual equipment necessitates adopting a unique mode of
operation that is specifically tailored to the varying availability and abundance of their
respective energy sources. This can have a direct implication on other critical performance
metrics of operation in smart factory. Chief among these metrics is the age of information
(AoI) [11] that represents the degree of freshness of the data acquired from the monitored
autonomous physical systems [12]. With a focus on both energy efficiency and information
freshness, the sustainability of each individual equipment can be significantly enhanced.
However, assuring the sustainability of the IIoT as a whole requires looking beyond the
individual equipment. In fact, the overall performance and environmental impact of the
IIoT will crucially depend not only on the performance of single piece of equipment but also
on long-term environmental friendliness of its solution. This encompasses considerations
of the system’s overall energy consumption and its ability to sustain prolonged opera-
tion without causing harmful impacts on the environment, by considering the associated
complexity and energy efficiency of the solution.

The minimization of hybrid energy sources in smart factories has been extensively
investigated in various scenarios [13,14]. For instance, the works in [13,14] study the mini-
mization of grid energy consumption in a mixed energy supply scenario. Nonetheless, these
works leverages reinforcement learning (RL) solutions [15] that assume a homogeneous
model across equipment having heterogeneous energy utilities. In fact, these studies often
assume uniformity of state and/or action spaces between heterogenous scenarios, which
can barely hold true with the unique operation associated to each equipment [16]. There-
fore, in practical real-world scenarios, a robust RL approach is needed to effectively address
the heterogeneous nature of the cyber-physical system, while ensuring the sustainability of
the solution. Notably, one should consider an RL solution that generalizes across multiple
tasks. For instance, the works in [17,18] employ multiple experts to optimize the aggregated
performance across different groups. However, the use of multiple agents hinders knowl-
edge sharing among these groups and leads to increased costs as the number of groups
grows. The work in [19] considers a federated imitation learning method for cross-domain
knowledge sharing framewor. However, the utilization of neural networks slows down
the learning process. Furthermore, the application of gradient descent (GD) [20] in such
operations incurs additional energy costs as it requires a significant amount of resources to
converge. Consequently, to ensure network sustainability, encompassing both the energy
efficiency of individual equipment and the computational efficiency of the entire network,
a more universally applicable and generalizable solution is essential for heterogeneous
Internet of Things (IoT).

The main contributions of this paper is the development of a globally generalizable RL
solution, designed to enhance the overall sustainability of cyber-physical systems compris-
ing heterogeneous energy sources. In particular, we tackle the sustaibality issues at both
the equipment and system levels by introducing a lightweight, cross-domain knowledge
sharing solution. This innovative approach leverages a three-layered knowledge repository
structure to facilitate efficient knowledge storage and transfer across the system. Numer-
ical simulations demonstrate that the proposed method consistently outperforms other
baseline methods in computational complexity while maintain a comparable performance
for smart factories.

The rest of this paper is organized as follows. The system models and problem
formulation are provided in Section 2. The proposed cross-domain knowledge sharing
framework and the corresponding solutions are presented in Section 3. Simulation results
are given in Section 4. Finally, conclusions and future works are drawn in Section 5.

2. System Models

Consider a set N of N smart factory equipment having heterogeneous energy re-
sources in a smart factory. These pieces of equipment are distributed for various manufac-
turing purposes such as supply chain integration, pre-production setup, production, quality
control and inspection, packaging and storage, delivery and so on. Each equipment collects
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sensory data from its surrounding environment and subsequently executes actions that are
tailored to the information gathered. As illustrated in Figure 1, these pieces of equipment
are clustered into three distinct groups according to their energy sources. We use x ∈ X to
index the three groups such that x = 1, 2, . . . , X, whereby each group includes a set Nx of
Nx equipment. In particular, three sources of energy supply are considered: (i) grid power
(GP), (ii) green sources (GS), and (iii) mixed sources (MS). Specifically, MSs encompasses both
the grid and harvested energy resources. In addition, cyber-physical equipment within
each group collects data packets from their respective surrounding environments and
abstract useful information using their processing capabilities. As illustrated in Figure 2,
the abstracted information is subsequently transmitted to a nearby base station (BS).

BS

Group 2
Group 3

Group 1

EquipmentUplink Transmission
Downlink Transmission Grid Power Wire

Power Grid
Tower

Figure 1. System model of three groups of smart factory equipment with diverse energy sources.
Group 1 supplied by grid power wire, group 2 supplied by battery energy and group 3 supplied by
grid power and green power source.

RXTX Channel
TransmitSense

Energy Source

Environment

Figure 2. Illustrative figure of the system model representing an smart factory.

We consider a time-slotted system where each timeslot has a uniform length denoted
as τ. These timeslots are indexed sequentially as t = 1, 2, . . . , T. A Rayleigh fading channel
is considered for the uplink communication between smart factory equipment and BS. The
data transmission rate ϕ(cy(t)) for each equipment y ∈ N at time slot t can be obtained
as below:

ϕ(cy(t)) = B log2

(
1 +

gpy(t)
I + BN0

)
, ∀y ∈ N , (1)

where cy(t) is the number of bits to be processed, ϕ(cy(t)) is the number of bits to be
transmitted after processing, py(t) ∈ [0, py,max] (in dBm) is the transmitter power used to
upload the abstracted information, B is the channel bandwidth, I is the interference from
other pieces of equipment in corresponding group, N0 is noise power spectral density, g is
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the channel response, which is related to the distance between each equipment y and the BS,
i.e., ly. Next, we present the energy models of each group based on their energy sources:

1. GP Source : GP typically refers to power that is supplied through an electrical grid.
Hence, GP-powered equipment does not have energy limitations. For instance, the
robots and actuators in production line are connected to grid energy supply. The
energy consumption ei(t) of each equipment i ∈ N1 can be divided into two categories:
(a) transmission energy eT

i (t) = τpi(t) consumed to transmit abstracted information
to the BS and (b) computing energy eC

i (t) = ςκiϑ
2ci,t used to process the collected

data packets:
ei(t) = eT

i (t) + eC
i (t) = τpi(t) + ςκiϑ

2ci,t, (2)

where ς is the energy consumption coefficient depending on the chip of each IIoT
equipment, κi is the number of central processing unit (CPU) cycles required for
processing per bit data, assumed to be equal for all pieces of equipment and ϑ is the
frequency of the CPU clock of each equipment [21].

2. GS Source : Renewable energy sources, such as wind power, solar power, thermal
power and RF are used to enable the establishment of a self-sustainable green network.
For example, drones and robots utilized for quality inspection and automated delivery
systems are predominantly powered by battery technology. This reduces dependence
on conventional grid energy and, consequently, enhances the mobilities while offering
greater flexibility and efficiency in operational processes. These energy harvesting
methods consistently capture energy from natural environments, converting it into
electrical power and storing the collected energy in rechargeable batteries. We define
Emax as the maximum amount of energy that can be stored in a battery. When the
battery reaches its full capacity, any additional harvested energy will be discarded.
Consider an ideal rechargeable battery with no energy loss during storage or retrieval
processes. At each time slot, the harvested energy eh

j (t) ≥ 0 by equipment j ∈ N2

follows follows a Bernoulli distribution with probability σ ∈ [0, 1], such that:

eh
j (t) = psolar × ϵ0 × ϵ1 × ϵ2 , (3)

where psolar is the density of solar power to the equipment [22]. We consider a typical
solar-powered equipment that is equipped with a photovoltaic panel with size ϵ0 and
the energy transfer efficiency ϵ1. Considering the heterogeneity in solar power density,
a uniformly distributed random variable, ϵ2 is taken into account. Consequently, the
energy level of the battery eb

j (t) will be given by:

eb
j (t + 1) = min{Emax, eb

j (t) + eh
j (t)− eT

j (t)− eC
j (t)}, (4)

where eT
j (t) and eC

j (t) are transmission energy and computing energy for equipment
j. Moreover, the following constraint stands:

0 ≤ eb
j (t) ≤ Emax (5a)

eT
j (t) + eC

j (t) =ej(t) ≤ eb
j (t), (5b)

where ej(t) is the energy consumption at time slot t for equipment in group 2. (5a)
implies the battery limitation of equipment j ∈ N2. (5b) implies that the available
energy, which can be used for processing and transmitting energy at the beginning of
each time slot, must not exceed the energy level of the battery.

3. MS Source : The third group of cyber-physical equipment is powered by hybrid energy
sources comprising both the grid and renewable energy sources. For example, the
industrial sensors are strategically deployed to monitor a range of environmental
parameters as well as the status of products. This design aims to reduce energy
consumption from the grid power while mitigating the randomness and intermittency
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associated with green energy. Accordingly, for an equipment k ∈ N3, the consumed
energy at time slot t comprises two sources: grid energy eG

k (t) and battery energy
eB

k (t). We assume the same energy harvesting model as previously defined, such that
eh

k (t) is updated as in (3). Different from GS, the battery level is updated as:

eb
k(t + 1) = min{Emax, eb

k(t) + eh
k (t)− eB

k (t)} (6)

where eb
k(t) is the battery level at each time slot. Furthermore, the following constraints

are held:

eT
k (t) + eC

k (t) ≤ eB
k (t) + eG

k (t) , (7a)

eB
k (t) ≤ eb

k(t) , (7b)

ek(t) = eG
k (t) (7c)

0 ≤ eb
k(t) ≤ Emax (7d)

where eT
k (t) and eC

k (t) are the transmission and computing energy separately. More-
over, (7a) implies that the consumed energy must not exceed the total energy provided
by both the battery and the grid. (7b) implies that the permissible battery energy
must not exceed the available battery capacity. Since our optimization objective is
to minimize grid energy consumption, we set the energy optimization variable ek(t)
equal to eG

k (t) in (7c). (7d) indicates the battery limitation of each equipment k ∈ N3.

AoI Model for Heterogeneous Scenarios

At each time slot, sensing data packets arrive at the equipment with a probability λy.
The size of the data packet, denoted as ay(t), follows a Gaussian distribution. Data packets,
once collected, are placed in a waiting queue. The system processes and transmits these
packets employing a first-come-first-served (FCFS) approach. Consequently, the queue size
by(t) can be updated as follows:

by(t + 1) = by(t) + ay(t)− cy(t). (8)

The AoI at time slot t is defined as the timestamp of the most recently processed and
successfully received packet at the receiver. The entire process encompasses both data
processing time and transmission time. Formally, the update of AoI ∆y(t) is as follows:

∆y(t + 1) =

{
∆y(t) + 1 , if ϖy(t) = 1
min{(t + 1)−U(t), ∆max} , otherwise.

(9)

where, U(t) represents the generation timestamp of the most recent packet and ∆max is the
maximum AoI value and ϖy(t) = 1 indicates that the processing of a packet is finished.
This limit is imposed to constrain the impact of AoI on performance after a certain level of
staleness is reached.

With the aforementioned models, we can now proceed to our optimization objective.
For each equipment, we define a cost function wy(t) = η1∆y(t) + (1− η1)ey(t), where η1
is a tradeoff factor to balance AoI and energy cost and ey(t) represents the energy cost of
any equipment of three groups. Our objective is to minimize the averaged cost wy(t) of all
pieces of equipment throughout all the time, which can be written as:
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min
{py(t)},{eG

y (t)},{eB
y (t)}

3

∑
x=1

1
Nx

∑
y∈Nx

wy(t) (10)

s.t. 0 ≤ py(t) ≤ py,max (10a)

0 ≤ ∆y(t) ≤ ∆max (10b)

(2), ∀y ∈ N1 (10c)

(3), (4), (5), ∀y ∈ N2 (10d)

(6), (7), ∀y ∈ N3 , (10e)

where (10a) indicates that the transmission power must not surpass the maximum power
of each equipment, (10b) indicates the limitation requirements of AoI. (10c) implies the
conditions of equipment i ∈ N1 while (10d) and (10e) are constraints for all pieces of
equipment in group GS and MS, separately.

3. Cross-Domain for Heterogeneous Scenarios

Problem (10) is NP complete, making it inherently computationally expensive. Fur-
thermore, the unique constraints specified in (10c), (10d) and (10e) add to the complexity
of this problem. Additionally, this problem is compounded by the absence of any presup-
posed knowledge regarding the distribution patterns of data and energy arrivals. To tackle
these challenges, we adopt RL, a method that does not require prior knowledge of the
underlying distribution patterns. First, three distinct RL models are presented for each
group. Then, the overall minimization problem in (10) is considered as a cross-domain
knowledge sharing problem.

3.1. Markov Decision Processes (MDPs) Models

Initially, the manufacturing related equipment is partitioned into three distinct groups.
As such, the objective of each group is to minimize the averaged cost for all pieces of
equipment. Without interfering the overall objective in (10), we model the objectives of
each group using MDPs:

1. GP Source : The MDP tuple of the first group can be presented as (Si,Ai,Ri), where Si
is the state space and Ai is the action space andRi is the reward function separately.
Particularly, Si = {si,t} = {∆i,t, bi,t|∆i,t ∈ [0, ∆max], bi,t ∈ N}. The action space is the
set of all possible transmitting powers such that Ai = {ai,t} = {pi,t|pi,t ∈ [0, pi,max]}.
The reward function can be defined as ri(si,t, ai,t) = wi(t). The parameterized policies
can be defined as πθi (ai,t|si,t) = Pr{ai,t|si,t, θi}, where θi ∈ Rd1 , with d1 = 2.

2. GS Source : The MDP tuple of the second group can be presented as (Sj,Aj,Rj). Partic-
ularly, Sj = {sj,t} = {∆j,t, bj,t, eb

j,t|∆j,t ∈ [0, ∆max], bj,t ∈ N, eb
j,t ∈ {0, Emax}}. The ac-

tion space is the the same as group 1, such that Aj = {aj,t} = {pj,t|pj,t ∈ [0, pj,max]}.
Similarly, the reward function and the parameterized policies can be defined as
r j(sj,t, aj,t) = wj(t) and πθj(aj,t|sj,t) = Pr{aj,t|sj,t, θj}, where θj ∈ Rd2 , with d2 = 3.

3. MS Source : The MDP tuple of the third group can be presented as (Sk,Ak,Rk).
Particularly, Sk = {sk,t} = {∆k,t, bk,t, eb

k,t|∆k,t ∈ [0, ∆max], bk,t ∈ N, eb
k,t ∈ {0, Emax}}.

The action space is Ak = {ak,t} = {pk,t, eB
k,t, eG

k,t|pj,t ∈ [0, pj,max], eB
k,t ∈ [0, Emax], eG

k,t ∈
N}. With the similar reward function rk(sk,t, ak,t) = wk(t), the parameterized policies
can be defined as πθk (ak,t|sk,t) = Pr{ak,t|sk,t, θj}, where θk ∈ Rd3 , with d3 = 9.

So far, we have successfully formulated the cost tradeoff between energy consumption
and AoI as a series of MDPs, each corresponding to an individual equipment. For each equip-
ment y, the optimization target can be writen as minθy J (θy) = E[1/T ∑T

t=1 ry,t(sy,t, ay,t)].
While RL demonstrates the capability to learn and optimize for each equipment individu-
ally, the scalability of this approach becomes a concern in large-scale factories due to the
potentially large number of learning agents involved. More importantly, this approach can
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be both time-consuming and energy-intensive. Consequently, there is a pressing need for a
more efficient method that can collectively optimize across all pieces of equipment in the
three distinct groups. Such a method is crucial not only for the energy efficiency of these
equipment but also for the overall sustainability of the cyber-physical system.

3.2. Cross-Domain Knowledge Sharing

To facilitate learning and knowledge sharing across multiple groups, techniques
like multi-task learning (MTL) and meta-learning are employed. These methods are
adept at managing the simultaneous learning of multiple tasks. However, a significant
limitation of these methods is their inherent assumption of model consistency across
groups. This assumption poses a challenge when optimizing groups across heterogeneous
groups, especially when there is a variation in the state and action spaces of these groups.
Consequently, given the substantial resource costs associated with the requirement for
numerous learning agents, the need for an efficient cross-domain knowledge transfer
method becomes increasingly apparent.

To facilitate knowledge sharing among groups and within each group, a three-layered
knowledge base is designed as in Figure 3. A global knowledge base, L ∈ Rd×m, serves as
the shared knowledge among groups. Three group-based knowledge matrices, denoted as
Gx ∈ Rdx×d, where x ∈ {1, 2, 3}, are also utilized to store the knowledge specific to each
group. These matrices serve as a bridge between the global knowledge base and equipment-
specific mapping vectors, represented by sy ∈ Rm, where y ∈ N . As demonstrated by the
MDP models of each group, the state and action spaces of each group can vary. In other
words, the dimensions of the MDP policies, i.e., θi, θj, and θk, have different dimensions
dx, as illustrated in Figure 3. However, due to the existence of varied group knowledge
bases Gx, the variations of the policy vectors are mapped to the same space. This enables
the achievement of a global knowledge base L that can be shared across different domains.
As a result, the policy parameters of each equipment can be obtained as:

θy = Gx ∗ L ∗ sy . (11)

Group 1: GP

MDP Models Mapping Vector Group Knowledge Global Knowledge

Knowledge
Models

Interaction
History

BS
Environment

State

Action

Reward

Group 2: GS

Environment

State

Action

Reward

Group 3: MS

Environment

State

Action

Reward

Policy

Figure 3. Illustration of three layers knowledge framework with varied state and/or action spaces.

Accordingly, our objective in (10) with the three-layered knowledge system can be
represented as the minimization problem:
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g(L, Gx) =
X

∑
x=1

{
1

Nx
∑

y∈Nx

min
sy

[
J (θy) + µ1∥sy∥1

]
+ µ2∥Gx∥2

F

}
+ µ3∥L∥2

F

where L1-norm approximates the vector sparsity and ∥L∥F= (tr(LL′))1/2 is the Frobenius
norm of matrix L. The parameter µ1 controls the balance between the policy’s fit and the
feature’s fit. Also, µ2 and µ3 are two regularization parameters, where µ2 controls the
sparsity of sy. The penalty on the Frobenius norm of G and L regularizes the predictor
weights to have low L2-norm and avoids overfitting.

The above objective can be approximated by performing a second-order Taylor expan-
sion towards J (θy) around the optimla policy αy, which can be obtained using regular RL
methods, such as policy gradient: αy = arg minθy J (θy). By operating first derivative and
second derivative to J (θy), the above equation can be rewriten as:

ĝ(L, Gx) =
X

∑
x=1

{
1

Nx
∑

y∈Nx

min
sy

[
∥αy −GxLsy∥2

Γy
+µ1∥sy∥1

]
+ µ2∥Gx∥2

F

}
+ µ3∥L∥2

F

where Γy is the Hessian matrix and ∥αy −GxLsy∥2
Γy
= (αy −GxLsy)⊤Γy(αy −GxLsy). The

constant term was ignored because it has no effect on the minimization. The linear term
was ignored because the αy is the estimated optimal policy.

In further, we can split the above equation by all the equipment. Such that, we only
optimize the equipment specific θy while fix the value of θy for all other equipment. The
improvement of L and Gx can be reflected to other equipment. As such, we can obtain the
update function of L and Gx:

∆L(k) = β1

[ 3

∑
x=1

1
|Zx(k)| ∑

z∈Zx(k)

(
−G⊤x Γzαzsz + G⊤x ΓzGxLszs⊤z

)
+ µ3L

]
, (12)

∆Gx(k) = βx

[
1

|Zx(k)| ∑
z∈Zx(k)

(
−Γzαz(Lsz)

⊤ + ΓzGx(Lsz)(Lsz)
⊤ + µ2Gx

)]
, (13)

where, β1 and βx, ∀x ∈ {1, 2, 3}, are the learning rates for L and Gx, separately. z ∈ Zx
is the set of observed equipment for each group. Such that, L(k + 1) = L(k) + ∆L(k) and
Gx(k + 1) = Gx(k) + ∆Gx(k), where k means k-th update step. With the updated global
knowledge base and group base, sy can be obtained by solving a Lasso:

sy(k + 1)← arg min
sy(k)

ℓ
(
GxL, sy(k), αy, Γy

)
, (14)

where ℓ
(
GxL, sy, αy, Γy

)
= ∥αy − GxLsy∥2

Γy
+µ1∥sy∥1. Consequently, the full algorithm

can be organized as in Algorithm 1: (1) Initialize the L, Gx and αy for all equipment.
(2) Estimate αy for all equipment. (3) Randomly choose a piece of equipment y and update
L and corresponding Gx using (12) and (13). (4) Compute sy according to (14). (5) Repeat
steps (3) and (4) until the time period comes to an end. It is worth noting that, at each step,
we update only the global knowledge base and the corresponding group knowledge base.
The performance improvement of equipment in other groups can benefit from the updating
of the global knowledge base. In this case, we have N = Z1 ∪ Z2 ∪ Z3 and θy = GxLsy.
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Algorithm 1 Overview of the Proposed Algorithm

Require: T ← 0, L← zerosd,m, Gx ← zerosdx ,d, ∀x ∈ {1, 2, 3}
Require: αy, sy for all pieces of equipment

while t ≤ T do
Randomly choose a piece of equipment
Identify the group of the chosen equipment as x ∈ {1, 2, 3}
Obtain interaction history and compute Γy
Update L, Gx using (12) and (13)
Update sy for device i using (14)
t← t + 1

end while

3.3. Computing Complexity

Each update begins with the computing of θy and Γy for each individual equip-
ment. We adopt a base-learner, specifically the episodic Natural Actor Critic (eNAC),
characterized by a computational complexity of O(ξ(dx, nt)) for each step. Here, nt
represents the number of trajectories obtained for a piece of equipment during the cur-
rent iteration. The update of L includes multiplication of matrix and vectors, which
yields O(d3

x + dxdm + m2) for each step. Similarly, the update of Gx has a complexity
O(dxdm + m2 + d2

x). The update of sy requires solving an instance of Lasso, which typically
would be O(d3h2 + md2

x + dxm2). Therefore, the overall complexity of each update for an
individual equipment is O(d3

x + dxdm + md2
x + dxm2 + ξ(dx, nt)).

4. Simulation Results
4.1. Simulation Settings

For our simulations, we consider a circular network area with a radius of 500 m and
one BS at its center serving three groups of equipment. Each group is distributed in a circle
with a radius of 250 m. Within each group, we consider Nx = 10 pieces of equipment
uniformly distributed. For each group, we have the following simulation parameters:

• GP: This group of equipment relies solely on the grid power as the energy source.
Therefore, there is no limit on the amount of energy could be utilized, i.e., ei(t) ∈ [0, ∞].
For this group, we consider the state vector dimension as d1 = 2.

• GS: This group of equipment is equipped with grean energy harvesting capabilities.
For solar energy collection, we consider solar panels with the following parameters:
psolar = 300 W/m2, ϵ0 = 3.8 cm× 9 cm, ϵ1 = 50%, and ϵ2 ∈ [0.5, 1.5]. The collected
energy is stored in batteries with maximum capacity Emax = 10 J. The dimension of
the state vector d2 = 3 is considered in this group.

• MS: The equipment in this group relies on both the grid energy and the green energy
source. For the grid energy source, there’s no limit on the amount of energy could
be utilized, i.e., eB

k (t) ∈ [0, ∞]. For the green energy harvesting, we consider solar
energy collection as in group GS. Similarly, the same solar panel parameters are
considered here. Moreover, the collected energy is stored in the batteries with the
maximum capacity Emax = 10 J. We consider a state vector dimension of the d3 = 9
for this group.

Moreover, for our three layered knowledge model, the values of d and m are obtained
through validation experiment. In addition to the above parameters, the parameters
shared by all parties pieces are listed below. We consider a bandwidth B = 180 kHz and
noise power spectral density N0 = −174 dBm/Hz. In addition, the loss of the channel is
g = 128.1 + 37.6 log 10(ly), where ly (in km) and the standard deviation of shadow fading
is 8 dB. With regard to computing energy consumption, we utilize associated values such
as: ς = 10−27, κy = 40 and ϑ = 109. We consider the harvested energy arrival probability
σ = 0.7. For each piece of equipment, we assume the average size of the arrived data
packets for each group is randomly generated from the range [20, 60]. Within each group,
the ay,t follows a Gaussian distribution specifically. For all the equipment, we assume
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py,max = 0.01W and ∆max = 30. The simulations in the article were conducted using a
MacBook Pro with an M1 chip. The code was executed on Matlab R2024a, and the MacOS
system version used was Ventura 13.2.1.

4.2. Results and Analysis

For comparison purposes, two benchmark algorithms are compared with our pro-
posed algorithm. The first is a Random strategy, which employs a randomly initialized
policy and regular Policy Gradient (PG) updating method. To be specific, any PG meth-
ods capable of estimating policy gradient can be utilized, such as REINFORCE [23] and
Natural Actor Critic (NAC) [24]. In our simulation, we adopt the NAC method as the
base learning method. Additionally, we compare our proposed algorithm with the policy
gradient efficient lifelong learning (PGELLA) algorithm [25]. PGELLA facilitates learn-
ing and knowledge sharing within each individual group, which is different from our
cross-domain approach.

In Figure 4, we examine the initial performance improvement of the two algorithms,
which we refer to as the warm start policy, compared to the random initial policy. Figure 4
shows the improvement of warm start policies of our proposed method and PGELLA
over random initial policies. Both methods surpass the random initial policies. To be
specific, the overall averaged results show that our algorithm can achieves 51.32% warm
start policy improvement over random policy while PGELLA achieves 28.91% in general.
As shown in Figure 4, for the devices in group GP, the proposed algorithm can provide a
slight better performance compared to PGELLA. This is because the group GP, with lower
complexity, requires less knowledge from other domains. Therefore, simpler intra-cluster
knowledge sharing and migration models can provide satisfactory performance compared
to cross-domain methods. Furthermore, for both the group GS and group MS, the proposed
algorithm obviously outperforms PGELLA. Particularly for the MS group, the algorithm
proposed can achieve a performance improvement of 90.04% compared to the random
initial policy, while a 23.32% performance improvement can be achieved by PGELLA. The
differing performance of the algorithm proposed and PGELLA across different groups can
be attributed to the varying model complexities of these groups. The proposed algorithm
enables cross-domain knowledge sharing, leading to a higher degree of exploration for
complex models and the ability to migrate learned knowledge to new tasks. The enhanced
performance of our method is attributed to its capacity to retain a broader spectrum of
knowledge, while PGELLA is limited to providing insights specific to individual groups.

34.96%

24.41% 23.32%

28.91%

37.97%

43.02%

90.04%

51.32%

Figure 4. The warm start policy improvement for all the groups.
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In Figure 5, a comprehensive overview of the learning trajectory is depicted across
1000 iterations for three groups. The implementation of more effective warm start poli-
cies can significantly reduce the convergence time for each group. This underscores the
impact of initial policy selection on the efficiency of the learning process. In Figure 5a,
it is evident that for group GP, both PGELLA and the proposed algorithm demonstrate
improved warm start policies compared to the random initial policy. This enhancement
effectively improves the performance of the initial policy. Additionally, both methods
exhibit similar convergence speeds and final convergence performance. This similarity may
be attributed to the simpler Markov models in group GP. These simpler models require
less demanding algorithms to achieve satisfactory performance. In other words, PGELLA
suffices for simpler models, despite lacking extensive knowledge collection and migra-
tion capabilities. Figure 5b illustrates that the enhanced capacity for broader exploration
facilitates attaining globally optimal solutions. In Figure 5b, for group GS, our proposed
algorithm significantly enhances the performance of the warm start policy and outperforms
both PGELLA and random PG algorithm in terms of convergence speed. This improve-
ment stems from the ability of the proposed algorithm to learn cross-domain knowledge
and migrate accumulated knowledge from other domains to the current one, potentially
achieving global optimality or sub-optimality and breaking out of local optima. It is worth
noting that PGELLA also achieves superior results by enabling knowledge sharing within
group devices, which helps overcome local optimality limitations. In Figure 5c, it can
be observed that both PGELLA and the proposed algorithm achieve notable improve-
ments in warm start policies compared to the random PG algorithm. Particularly, the
proposed algorithm exhibits a significant enhancement, consistent with the performance
of warm start depicted in Figure 4. Additionally, although PGELLA also contributes to
the improvement in convergence rate, the algorithm proposed outperforms the other two
algorithms significantly in terms of convergence speed. This is attributed to our proposed
algorithm’s capability in cross-domain knowledge transfer, enabling it to achieve greater
performance improvements on complex models than on simpler ones. In Figure 5d, the
average performance of different algorithms across three groups is presented. Based on
the averaged results, it can be observed that overall, both in terms of warm start policies
performance and convergence rate, our proposed algorithm outperforms PGELLA. In a
nutshell, while the performance in each single group can vary, our algorithm shows better
overall performance in respect to warm start policy and convergence speed.

Figure 5. The learning methods comparison over 1000 iterations: (a) Group GP. (b) Group GS.
(c) Group MS. (d) All groups.
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Figure 6 considers the default groups and environmental settings as specified in
Section 4.1. In this scenario, mixed energy sources, including grid power energy and green
harvested energy, are considered to minimize grid energy consumption. In a nutshell, our
proposed method can achieve a better balance between grid energy consumption, battery
energy consumption and AoI. By contrast, the other methods, such as PGELLA and Random
methods, fail to optimize the overall performance. This proves the sustainability improve-
ment of our proposed method. To be specific, Figure 6 shows the performance attributes
for the MS group, encompassing average AoI, queue length, grid energy consumption and
battery energy consumption. This group is selected due to its model complexity, allowing
for a more comprehensive comparison of the algorithms. Three algorithms are considered:
random PG with a random initial policy, PGELLA with intra-group knowledge sharing
capability, and the proposed algorithm, the cross-domain knowledge migration algorithm.
Figure 6a demonstrates the significant impact of the proposed algorithm on reducing AoI
as the number of learning steps increases. In contrast, algorithms with random initial
policies or PGELLA exhibit inferior performance in this regard, albeit the latter showing
initial superiority compared to random initial policy. Figure 6b reveals a similar trend
in average queue length reduction across all the devices in the group MS with the algo-
rithms proposed, indicating enhanced packet processing efficiency. Notably, queue length
is closely correlated with AoI. A notable difference in grid energy consumption among the
three algorithms is evident in Figure 6c. While both the random initial policy and PGELLA
show a decrease in grid energy consumption with increasing learning steps, our proposed
algorithms exhibits an increase. However, it’s essential to highlight that this aligns with
our goal of minimizing balanced cost. Our method achieves a better balance between
AoI and grid energy consumption. Figure 6d indicates relatively consistent performance
among the three algorithms in terms of battery energy consumption. The stability in battery
energy consumption observed with the proposed algorithms is attributed to the significant
performance enhancement with minimal energy consumption in the grid power network.
Conversely, the battery energy consumption of the other two algorithms decreases with
increasing learning steps, through with limited performance enhancement. Additionally,
the PGELLA exhibits lower battery energy consumption than the random initial strategy.
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Figure 6. AoI and energy related performance comparison for group MS: (a) Average AoI. (b) Average
queue length. (c) Average grid energy consumption. (d) Average battery energy consumption.

As depicted in Figure 7, the performance of group GS is evaluated in terms of aver-
age AoI and average battery energy consumption. From Figure 7a, it’s evident that the
performance of all three algorithms improve as the number of learning steps increases.
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Particularly, the initial AoI of the random PG is lower than the other two algorithms, and
this trend persists as the number of learning steps increases. In Figure 7b, the battery
energy consumption of all three algorithms decreases with the increase in the number
of learning steps. This reduction in energy consumption is accompanied by an increase
in average AoI, indicating the optimization of multiple parameters rather than a single
objective. Notably, the algorithms proposed demonstrate superior optimization for average
energy consumption compared to the other two algorithms. While all algorithms exhibit
a significant decrease in average energy consumption with increasing learning steps, the
proposed algorithms perform the best in terms of overall performance improvement across
multiple parameters, as demonstrated in Figure 5b.
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Figure 7. AoI and energy consumption comparison for group GS: (a) Average AoI. (b) Average total
battery energy consumption.

4.3. Influence of the Number of Groups

As depicted in Figure 8, the impact of the number of groups on the proposed algo-
rithm is illustrated. It can be observed that as the number of device groups increases, the
proposed algorithm offers improved initial policies. This enhancement is attributed to the
increased richness of knowledge in the knowledge base with each type of group, resulting
in a more diverse global knowledge base. Furthermore, since the group knowledge base
relies on the existence of the global knowledge base, optimizing the global knowledge
base further enhances the performance of each group. Specifically, the warm start pol-
icy performance of the proposed algorithm improves from 29.73% for a single group to
51.32% for three groups compared to a random initial policy. Similarly, as the number of
groups increases, the PGELLA algorithm maintains relatively stable performance, with
the warm start policy performance ranging from 28.28% for one group to 29.91% for three
groups. This is because, PGELLA, as an intra-cluster knowledge learning algorithm, does
not perform knowledge sharing among groups, and its warm start policy performance
variation is due to the differentiated performance of different groups. Nevertheless, our
proposed algorithm still achieves a better warm start policy improvement than PGELLA,
demonstrating its effectiveness in handling differentiated cluster data. Furthermore, when
the number of groups is insufficient, the cross-domain knowledge sharing framework has
less knowledge to abstract and share, leading to a degradation in performance compared
to scenarios with a larger number of groups. As a result, as the number of groups increases,
the advantages of the three-layer knowledge base framework proposed become apparent,
significantly outperforming the performance of PGELLA. This highlights the advantages
of the three-layer knowledge base framework in handling cross-domain knowledge trans-
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fer. Therefore, the proposed algorithm exhibits more potential application scenarios and
advantages when the number of groups is high.

28.28% 29.21% 29.91%29.73%

41.23%

51.32%

Figure 8. Warm start policy improvement when the number of groups increases.

As depicted in Table 1, the table provides a comparison of the running time and the
running time difference between two algorithms: PGELLA and our proposed algorithm,
for varying numbers of groups. From the table, it’s evident that as the number of groups
increases, the running time of both algorithms also increases approximately linearly. With
PGELLA, each additional group necessitates a complete repetition of the algorithm’s pro-
cess. On the other hand, our proposed algorithm requires visiting a higher number of
devices with each additional group, resulting in a longer time to visit all devices compared
to PGELLA. Hence, with a single group, the runtime of our proposed algorithm (3.9225 s)
is less than that of PGELLA. Yet, as the number of groups rises, PGELLA’s runtime pro-
gressively diminishes compared to our proposed algorithm. In particular, when there are
three groups, PGELLA’s runtime surpasses that of the proposed algorithm by 0.5931 s.
Combining the findings from Figure 8, we observe that our proposed algorithm achieves
approximately a 15% performance enhancement, with a mere 4.94% increase in runtime.
This suggests a perfect balance between runtime efficiency and performance improvement.

Table 1. The Running Time Comparison.

Running Time (Seconds) One Group Two Groups Three Groups

CD 3.9225 9.8620 12.5984
PG 4.0014 9.4575 12.0053
Gap −0.0793 0.4044 0.5931

5. Conclusions

The article introduces a lightweight cross-domain knowledge sharing model leverag-
ing diverse energy supply methods. It employs a three-layered knowledge base, incorpo-
rating global, group-specific, and individual policy vectors. By integrating grid, harvested,
and mixed energy sources, significant improvements in warm start policy performance
are demonstrated compared to random initial policies. Moreover, the collaborative nature
of the global knowledge base contributes to enhanced sustainability, surpassing that of
two-layered models. Considering the significant energy savings and AoI optimization
achieved, our approach can facilitate the sustainability of IIoT and Industrial 4.0 initiatives.
To advance in the field of cross-domain knowledge sharing, several potential research di-
rections can be considered. These include investigating the impact of mobility, addressing
privacy and security concerns, and exploring the integration of edge computing.
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