
Citation: Abbas, N.; Abbas, Z.; Zafar,

S.; Ahmad, N.; Liu, X.; Khan, S.S.;

Foster, E.D.; Larkin, S. Survey of

Advanced Nonlinear Control

Strategies for UAVs: Integration of

Sensors and Hybrid Techniques.

Sensors 2024, 24, 3286. https://

doi.org/10.3390/s24113286

Academic Editor: Carlos

Tavares Calafate

Received: 21 February 2024

Revised: 12 May 2024

Accepted: 16 May 2024

Published: 21 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Review

Survey of Advanced Nonlinear Control Strategies for UAVs:
Integration of Sensors and Hybrid Techniques
Nadir Abbas 1, Zeshan Abbas 2 , Samra Zafar 3, Naseem Ahmad 1 , Xiaodong Liu 1,*, Saad Saleem Khan 4,
Eric Deale Foster 5 and Stephen Larkin 5

1 School of Control Science and Engineering, Dalian University of Technology,
Dalian 116024, China; nadir10@mail.dlut.edu.cn (N.A.); engr.naseem99@mail.dlut.edu.cn (N.A.)

2 Institute of Ultrasonic Technology, Shenzhen Polytechnic University, Shenzhen 518055, China;
abbasz@szpu.edu.cn

3 Department of Computer Science, School of Control Science and Engineering,
Dalian University of Technology, Dalian 116024, China; samra@mail.dlut.edu.cn

4 Department of Electrical Engineering, College of Engineering, United Arab Emirates University,
Al-Ain 15551, United Arab Emirates; 201590095@uaeu.ac.ae

5 Omega Aviation Ltd., Leicester LE9 4LG, UK; eric.foster@omegaaviation.co.uk (E.D.F.);
stephen.larkin@omegaaviation.co.uk (S.L.)

* Correspondence: xdliuros@dlut.edu.cn

Abstract: This survey paper explores advanced nonlinear control strategies for Unmanned Aerial
Vehicles (UAVs), including systems such as the Twin Rotor MIMO system (TRMS) and quadrotors.
UAVs, with their high nonlinearity and significant coupling effects, serve as crucial benchmarks for
testing control algorithms. Integration of sophisticated sensors enhances UAV versatility, making
traditional linear control techniques less effective. Advanced nonlinear strategies, including sensor-
based adaptive controls and AI, are increasingly essential. Recent years have seen the development
of diverse sliding surface-based, sensor-driven, and hybrid control strategies for UAVs, offering
superior performance over linear methods. This paper reviews the significance of these strategies,
emphasizing their role in addressing UAV complexities and outlining future research directions.

Keywords: perturbed MIMO system; robust adaptive nonlinear control; sensor integration; intelligent
control; UAV dynamics

1. Introduction

The integration of Unmanned Aerial Vehicles (UAVs) with the Internet of Things (IoT)
holds significant promise for the advancement of smart cities [1]. Efficient management of
UAV flight trajectories is crucial for optimizing the lifespan of onboard systems and energy
expenditure, which is essential for extensive data acquisition and processing [2]. UAVs
play a pivotal role in bridging data gaps, particularly in remote areas, thereby enhancing
environmental surveillance efforts. Their successful deployment across various scenarios
underscores their transformative potential. The adept maneuvering of UAVs coupled
with sophisticated navigational controls is essential for urban development. Seamlessly
integrated UAVs can navigate urban environments to collect the comprehensive sensor
data vital for applications such as traffic management, environmental monitoring, and
structural inspections. These precise control mechanisms facilitate real-time data flow,
enabling informed decision-making and timely actions [3].

Resource optimization within smart cities is further augmented by UAVs’ specialized
capabilities. Their aerial perspective facilitates the monitoring of public utilities, enabling
swift identification of service disruptions and supporting maintenance activities. Proactive
detection of inefficiencies or failures ensures the continuous operation of critical services,
including water and power distribution and waste management [4]. In terms of public
safety, precisely controlled UAVs play a vital role. They provide a comprehensive view for
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crowd surveillance, detect anomalies, and contribute to situational awareness essential for
public security operations. Guided by robust control frameworks, UAVs are able to adeptly
navigate urban environments, adhere to designated flight paths, and promptly respond to
security incidents [5].

During crisis events such as natural calamities or urban mishaps, the deployment of
UAVs with advanced control systems is invaluable. Their ability to swiftly access otherwise
unreachable zones and relay vital insights can revolutionize emergency response strategies,
potentially saving lives and mitigating the impact of disasters. Furthermore, UAVs are set
to revolutionize urban mobility and logistics. Implementing efficient control algorithms
allows UAVs to aid in decongesting roads, optimizing traffic flows, and enhancing route
planning. They additionally stand to streamline delivery services, easing the burden on
urban transit systems and elevating the efficacy of city-wide distribution networks [6].

Over the last two decades, UAVs, commonly known as drones, have carved out a niche
in geosciences and remote sensing, becoming a pivotal tool thanks to their adaptability
and cost-effectiveness. Their ascent to prominence is mirrored in the surge of scholarly
articles examining UAV applications, with Scopus documenting over 80,000 publications
since 2001 that feature terms such as “UAV”, “drone”, “UAS”, and “RPAS” in Figure 1.
This scholarly attention predominantly emanates from fields such as engineering and
computer science [7]. The scientific intrigue around UAVs spans various citation indexes,
underscoring a universal trend towards their study and development. Financially, the
UAV sector has seen a robust upswing, with valuations running into the billions annually.
While the current market is heavily skewed towards military use, the horizon for civilian
applications of UAVs is broadening, propelled by economic factors, technological strides,
miniaturization of sensors, and innovations in software and algorithmic approaches [3,7].
UAVs are making inroads into diverse sectors, with the construction industry being a prime
example [8]. Their ability to capture high-resolution images and gather extensive data
offers a cost-efficient alternative for continuous observation and management of project
timelines [9].

Figure 1. Scientific research articles according to SCOPUS [10].

Efficient control systems enable UAVs to navigate through densely populated areas,
avoid obstacles, and manage energy consumption while ensuring that they collect accu-
rate and comprehensive data. These data are invaluable for applications such as traffic
management, environmental monitoring, and public safety. Control strategies allow UAVs
to operate autonomously, make decisions in real-time, and interact seamlessly with other
IoT devices, contributing to the overall intelligence and responsiveness of smart city in-
frastructures [11]. In the context of geoscience and remote sensing, which was the focus
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of the second rephrased text, control strategies are just as important. They enable UAVs
to conduct detailed surveys of the Earth’s surface, including areas that are otherwise inac-
cessible. With precise control, UAVs can execute complex flight patterns to systematically
collect geospatial data, which is crucial for mapping, natural resource management, disaster
response, and environmental studies [11]. In both applications, the control strategies form
the backbone of UAV operation, determining their efficiency, effectiveness, and adaptability
to various tasks. Whether following a predetermined flight path or responding to dynamic
conditions in real time, the control system is what enables a UAV to meet its operational
objectives, making it a key focus for ongoing research and development in the field [12].

Having establishing the landscape of advanced nonlinear control strategies for UAVs in
this introduction, we now turn to this survey’s contributions. By offering a comprehensive
review and highlighting the significance of sensor integration and hybrid techniques,
the following section elucidates the pivotal role of these methodologies in enhancing
UAV capabilities.

Contributions

Through a discussion of recent advancements and future directions, the survey aims
to provide valuable insights for researchers and practitioners in the field.

1. Comprehensive Review: This survey offers a thorough examination of advanced
nonlinear control strategies tailored for UAVs, emphasizing the integration of sensors
and hybrid techniques.

2. Highlighting Significance: The survey underscores the importance of nonlinear con-
trol methodologies in addressing the complexities inherent in UAV systems, shedding
light on their efficacy in improving UAV performance and stability.

3. Role of Sensor Integration: The survey elucidates the pivotal role of sensor integration
in enhancing UAV capabilities, providing insights into how sensor-driven approaches
contribute to real-time data acquisition and informed decision-making.

4. Future Directions: Finally, by discussing recent advancements and outlining future
challenges in the field, the survey aims to guide future research efforts towards the
development of more efficient and reliable UAV control systems, thereby facilitating
progress in various UAV applications.

The outline of this survey is elaborated through the block diagram in Figure 2. Before
moving on to the background section of this review article on UAVs, it is essential to set
the stage by providing an overview of the burgeoning field of UAVs research in order to
highlight the pivotal role of research. Table 1 offers a succinct summary of related surveys,
providing brief outlines.

Figure 2. Survey article organization.
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Table 1. Overview of recent surveys on UAV communication and control strategies.

Authors, Year Reference Brief Description

Fotouhi, et al. [13], 2020
Review providing an exhaustive perspective on the use of UAVs and discussing practicalities
including the hurdles of integration, creation of protocols, establishment of standards, and issues
pertaining to security.

Wang, et al. [14], 2022
Analysis delving into progress on UAVs encompassing essential principles, application contexts,
Air-to-Ground (A2G) communication channels, and the functions of UAVs. It includes an evaluation
of secrecy performance and improvement strategies for both stationary and mobile UAV systems.

Han [15], 2023

Survey offering a comprehensive examination of studies regarding the utilization and path
planning of Unmanned Aerial Vehicles (UAVs) to improve the capacity and management of UAV
wireless networks. It also underscores the hurdles faced in this field and suggests potential
directions for future research.

Sharma, et al. [16], 2021
Review centering on cutting-edge network technologies for UAVs and their deployment in
upcoming cellular networks, exploring a range of nascent communication technologies for UAVs
and evaluating their benefits, prospective uses, technical hurdles, and prospective developments.

Hentati, et al. [17], 2021
Examination providing an in-depth analysis of UAV communication protocols, network architectures,
frameworks, and practical applications, while emphasizing significant technical obstacles and
identifying critical areas of research that demand further exploration and advancement.

Xiao, et al. [18], 2022

Review presenting a comprehensive summary of research pertaining to UAV communications and
the integration of technologies. It explores the domain of mmWave beamforming in UAV
communications, addressing the technical potential and difficulties, and delves into the pertinent
aspects of mmWave antenna design and channel modeling.

Geraci, et al. [19], 2023
A study demonstrating the efficacy of sub-6GHz massive MIMO technology in handling cell
selection and interference, evaluating the coverage of mmWave frequencies in various
environments, and scrutinizing the intricacies of initial 2D communication for airborne devices.

McEnroe, et al. [20], 2023

Review investigating how edge artificial intelligence influences crucial technical aspects and
applications of UAVs, spanning domains such as power management, formation control,
autonomous navigation, and computer vision while addressing concerns related to privacy,
security, and communication.

Jasim, et al. [21], 2022

Review identifying appropriate management strategies for UAV characteristics and spectrum
requirements, taking into account their coexistence with current wireless technologies within the
spectrum. Additionally, it details the guidelines and directives of policymakers and regulators and
investigates various operational frequency bands and radio interfaces.

Xu, et al. [22], 2022 Review scrutinizing the evolution of regulatory policies and key technologies pertinent to the safe
and effective functioning of small civilian UAVs operating at low altitudes in urban settings.

Hafeez, et al. [23], 2023
Review focusing on integrating privacy and security measures in blockchain-supported UAV
communications, underscoring the need for basic analysis and decentralized data storage solutions
while laying out crucial prerequisites in the formulation of privacy and security frameworks.

Wei, et al. [24], 2023

An assessment offering an extensive examination of various scenarios and pivotal technologies
relevant to UAV-assisted data gathering in the Internet of Things (IoT) context. It outlines system
architectures, encompassing both the network infrastructure and mathematical modeling, and
performs an in-depth evaluation of the essential technologies involved.

Nomikos, et al. [13], 2023
Review investigating the role of UAVs in maritime communications and the integration of
conventional approaches with machine learning techniques to improve performance in aspects
such as the physical layer, resource allocation, and cloud/edge computing.

Duong, et al. [25], 2023
Review presenting an exhaustive overview of UAV caching within 6G networks, covering the
progression of caching models from ground-based to aerial systems. It introduces a standard UAV
caching system and delves into the latest developments and performance indicators in this field.

This Survey

A survey reviewing advanced nonlinear control strategies for UAVs, emphasizing the necessity of
sensor-based adaptive controls and artificial intelligence. It explores innovative control strategies
such as sliding surface and sensor-driven techniques, highlighting their effectiveness in enhancing
UAV performance and stability. This review underscores the complexities of UAV control, the
critical role of sensors, and the benefits of nonlinear methods while discussing recent advancements
and future challenges in this rapidly evolving field.
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2. Background on UAV Systems

Twin-rotor MIMO (Multiple Input, Multiple Output) systems represent a class of
UAVs designed to simulate the flight dynamics of helicopters. The TRMS typically consists
of two rotors mounted on a fixed beam, with one located at the front (main rotor) and one
at the back (tail rotor). This configuration allows for the separate control of vertical lift and
horizontal movement, making it possible to study complex control system designs within a
MIMO framework. The TRMS is particularly useful in research and education because it
provides a practical example of a system with strong cross-coupling effects, nonlinearities,
and unstable dynamics, similar to those experienced in larger-scale helicopters [26,27]. The
twin-rotor setup enables the study of pitch, roll, and yaw movements and the effects of
MIMO controls on these motions. By manipulating various inputs, such as rotor speed or
blade pitch, the TRMS can hover, move laterally, or rotate about its axis [28,29].

A quadrotor, also known as a quadcopter, is a type of UAV that is lifted and propelled
by four rotors. The configuration of these rotors, typically arranged in a square pattern,
allows for a high degree of stability and maneuverability. Each rotor pair rotates in oppo-
site directions, which counters the reactive torque and provides control over pitch, roll,
and yaw. This design simplifies the mechanics required for flight control compared to
traditional helicopters, which rely on complex rotor mechanisms. Due to their relative
ease of construction and control, quadrotors have become a popular platform for hobbyists
and researchers alike. Additionally, their stability and agility make them ideal for indoor
operations or in environments where precise movements are required [30,31].

Both TRMS and quadrotor designs contribute significantly to UAV technology, each
offering unique advantages for control systems research, practical applications, and the
advancement of aerial robotics. While the TRMS design provides insight into the complexi-
ties of helicopter flight, the quadrotor design offers a more accessible platform for a broad
range of UAV applications [30]. This paper traces the progression of caching models from
aerial applications, introducing a standard UAV and examining recent developments and
performance indicators in this area.

3. Nonlinear MIMO System Dynamics in UAVs

An unmanned vehicle is a prototype with a structure almost near to a helicopter, with
a limited degree of freedom. Modifications of such systems are required due to their wide
range of applications in real life. The UAV has two significant parts: the main rotor (vertical
plane) and the tail rotor (horizontal plane) [12,32]. The main rotor has a higher diameter
and controls the movement of the beam on a vertical axis the called pitch angle, while the
tail rotor has a lower diameter and covers the movement of the beam on a horizontal axis,
called the yaw angle. The speed of the rotors manages the equilibrium of the system. Each
rotor of the UAV is connected with a separate DC supply motor, as shown in Figure 3.

The stability is disrupted by the cross-coupling torque produced by the rotational
torque in the UAV rotors. This coupling effect is seen as the disruption that the decoupling
procedure corrects. Understanding all of the variable parameters and necessary UAV
outputs is necessary before we can grasp mathematical modeling. The UAV is a lab tool
that helps in understanding helicopter flight control [6,33]. The considered system has
two rotors, as shown in Figure 4; their design is very important, as different forces affect the
movement of the propellers. These include frictional force, disturbance torque, rotational
force, propulsive force, and centrifugal force. Motors are used to deliver control input volt-
age in order to counteract the impacts of these forces while recognizing and comprehending
the mathematical presumptions that are used to interpret and reduce the mathematical
model. Figure 5 details the rotor measurements along with their thrust directions.
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Figure 3. Twin-rotor aerodynamic system [6].

Figure 4. Mathematical model-based block diagram of UAV with coupling effect.

Figure 5. Rotor dimensions with torque.

All nonlinear squared factors in the mathematical equations are linearized using the
linearization method. The system’s motions are fixed along the horizontal and azimuthal
planes determined from the model [34,35]. The stream rotates in a manner that can be
characterized as

Jv
d2αv

dt2 = Mv, (1)
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where Jv represents the inertial motion along the axis of the vertical plane and Mv represents
the entire momentum of the forces applied along the vertical axis. One result, known as
pitch angle, must be regulated by the alphav parameter (vertical axis). All of the factors
acting on the momentum can be represented as follows:

Mv = Mv1 + Mv2 + Mv3 + Mv4 + Mv5 + Mvd . (2)

The gravitational torque through the gravitational force is provided as

Mv1 = −k1cos(av)− k2sin(av), (3)

where the constants k1 and k2 are displayed and retain the mass mounted on the beam. An
equation for the momentum force produced by the primary propeller is

Mv2 = lmFv(wv), (4)

where lm stands for the beam length, wv describes the main propeller’s spinning speed, and
Fv(wv) depicts the angular force of the main rotor. The following mathematical expression
represents the moment force along the vertical plane:

M(v3)
= −k3Ω2

hsin(av)cos(av), (5)

where Ωh = dαh
/
dt

is the beam speed in the MIMO system’s vertical plane, αh is the yaw
angle (the angle at which the beam rotates in the azimuth plane), and k3 is the constant
parameter. The movement of the beam with respect to the horizontal plane determines the
frictional momentum:

M(v4)
= −k fv Ωv, (6)

where Ωv = dαv
/
dt

indicates the angular speed in the horizontal direction, and k fv displays
the constant value. Momentum between the rotors as a result of input voltage (force) being
applied along the horizontal plane.

M(v5)
= −khv uh, (7)

where khv is regarded as the constant and uh is the input for controlling the horizontal plane.
The torque along the vertical plane causes a disturbance known as the disturbance torque
Mvd . The rotational velocity of the main rotor is produced by the propeller force (propulsive
force) along the vertical line (vertical plane) Fv(wv). The following is the estimated velocity
along the main rotor:

F̃v = −7.13 × 10−19wv5 − 3.79 × 10−16wv4 + 2.41 × 10−11w3
v

+1.87 × 10−8w2
v + 2.89 × 10−5wv − 0.0124.

The vertical axis can be used to determine the total force (or torque) along the horizon-
tal axis. A force with a different spectrum is generated by the tail rotor’s total torque along
the horizontal axis (intensity of force). A mathematical expression such as the one below
can be used to determine the torque (rotational impact of force) along the horizontal axis:

Jh(d2ah)/(dt2) = Mh (8)

where Mh is the total momentum (force) along the horizontal axis, Jh is the total inertial
force along the vertical plane, Jh = k4cos2(αv) + k5, and the coefficients k4 and k5 are
mass-based constants of the beam. The following mathematical expression can be used to
describe the entire force (momentum) along the horizontal axis:

Mh = Mh1 + Mh2 + Mh3 + Mhd
. (9)
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The propelling momentum (power) along the rotor of the tail can be used to represent
each separate term:

Mh1 = ltFh(wh)cos(av) (10)

where lt is the beam length, wh is the rotational velocity, and Fh(wh) is the rotor’s propelling
motion (force) expressed as the angular velocity. Based on the rotational speed of the beam,
the frictional momentum is provided as follows:

Mh2 = −k fh
Ωh (11)

where k fh
is a constant. The cross-sectional velocity caused by the action of the control

input along the horizontal axis is

Mh3 = kv−hcos(αv)uv. (12)

The torque along the horizontal plane, also known as the disturbance torque caused
by the tail rotor, is denoted by the symbol Mhd

, while the propeller force (propulsive force)
along the horizontal axis (azimuthal plane), denoted by the symbol Fvwv, generates the rate
of rotation on the rotor. The estimated velocity along the tail rotor is provided as follows:

F̃h = −2.56 × 10−20w5
h − 4.10 × 10−17w4

h + 3.17 × 10−12w3
h

+7.34 × 10−9w2
h + 2.13 × 10−5wh − 9.14,

The equation for the primary propeller (rotor) along its vertical plane is

Iv(dwv)/dt = uv − H−1
v (wv). (13)

Here, the main rotor’s inertial momentum along the vertical axis is denoted by Iv, while
the static motion of the main rotor is provided by wv = Hvuh. Figure 6a shows how the
primary rotor thrust is generated; the figure displays the velocity modeling outcomes based
on experimental verification in Figure 6b. The following is the seventh-order expression for
the primary rotor’s vertical plane velocity:

w̃v = −6.17 × 103u7
v − 1.30 × 102u6

v + 1.37 × 104u5
v + 1.50 × 102u4

v − 1.10 × 104u3
v − 3.76 × 101u2

v + 7.33 × 103uv − 5.36.

Figure 6. (a) Main rotor thrust and (b) tail rotor thrust.

The following mathematical equation can be used to describe the motion (speed) of
the tail rotor along the horizontal axis:

Ih(dwh)/dt = uh − H−1
h (wh). (14)

Here, Ih is the tail rotor’s inertial motion along the horizontal axis and wh = Hhuh
demonstrates the static velocity (or speed) of the primary rotor. The results of the velocity
modeling and the tail rotor thrust are supported by experimental verification. Figure 7a
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represents the velocity generated by main rotor, while Figure 7b represents the velocity of
the tail rotor. The fifth-order expression for the rotary velocity is as follows:

w̃h = −6.17 × 103u5
h − 1.30 × 102u4

h + 1.37 × 104u3
h

+1.50 × 102u2
h − 1.10 × 104uh − 37.6.

Figure 7. (a) Main rotor velocity and (b) tail rotor velocity.

By rearranging Equations (13) and (14) together, we obtain

dαv

dt
= Ωv, (15)

dαh
dt

= Ωh. (16)

The control voltages at the input uh (horizontal plane or yaw angle) and uv are used
in the modeling process to describe the state space description of the UAV (sixth-order
nonlinear system). The yaw (azimuth) angle αh and pitch (vertical) angle αv are the output
angles. In order to fully comprehend its dynamic response, the system must be categorized
as a multivariable system with extremely nonlinear behavior. Two channels in the UAV
model can never be regarded as separate channels. This cross-coupled feature is known as
the coupling effect. Decoupling must be used to overcome the coupling impact and create
an independent two-channel system. The values of the model’s system coefficients are
provided in Table 2.

The decoupling technique divides the system into two distinct planes, namely, the
Vertical Plane System (VPS) and Horizontal Plane System (HPS), by fixing one weight
(motion) for both blades [36].

3.1. Unstructured Modeling

Mathematical complexity and unknown conditions are always present in the various
structure-type systems during modeling. Mathematical expressions and notations are used
to indicate the description of uncertain parameters [35]. Supposing that Jh is the inertial
momentum along the horizontal axis and that kFh , kFv are the coefficients of the generated
thrust of the rotors, the rotors then have some velocity gains kHh , kHv , the coefficients,
k fh

, k fv , and kvh , and khv are the corresponding cross-momentum and frictional momentum
coefficients, and RV is the returned force between the rotors (coupling effect). All ten of
these modeled factors are dependent on the pitch angle and yaw angle, which are the two
primary outputs.

Furthermore, we assume that the inertial momentum Jh, with factors kFh , kFv , kHh , kHv ,
has an error estimation of up to 10%. The remaining coefficients have up to 5% error in
their calculation. The UAV represents the system behavior as the controlled plant through
algebraic expressions:

G =

[
Gv
Gh

]
(17)
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where

y = G
[

Md
u

]
, y =

[
αh
αv

]
, u =

[
uh
uv

]
, Md =

[
Mdh
Mdv

]
(18)

Table 2. Parameters of TRMS (UAV).

Variable Notation Description Units and Values of Parameters

I1 Main rotor inertia 6.8 × 10−2 kgm2

I2 Tail rotor inertia 2 × 10−2 kgm2

a1 constant 0.0135
b1 constant 0.0924
a2 constant 0.02
b2 constant 0.9
Mg Gravitational Momentum 0.32 Nm
B1θ Frictional parameter 6 × 10−3 Nms2/rad2

B2θ Frictional parameter 1 × 10−3 Nms2/rad2

B1φ Frictional parameter 1 × 10−1 Nm.s/rad
B2φ Frictional parameter 1 × 10−2 Nms2/rad
kgy Gyroscopic Parameter 0.05 rad/s
k1 Gain of Main Motor 1.1
k2 Gain of Tail Motor 0.8
T11 Denominator of motor 1.1
T10 Numerator of motor 1
T21 Denominator of motor 1
T20 Numerator of motor 1
kc Coupling reaction for gain 2

Figure 8 shows the input–output links for the UAV’s system schematic model, fol-
lowed by a discussion of the unclear model’s fundamental mathematical formulation. The
illustration can be described as follows:

G =
[

Gd Gu
]

while
Gd =

[
Gdh

Gdv

]
Gu =

[
Guh Guv

]
such that

y = Gd Md + Guu. (19)

The above expression states that Gd depicts the plant disturbance as a matrix and
Gu displays the matrix of the control signal. In the event of perturbations (both internal
and exterior disturbances), the uncertain plant must meet the following fundamental
requirements:

u =
[

Kr Ky
][

r −yc
]T

= Krr − Kyyc (20)

where Ky represents the feedback matrix function and Kr is the transfer function matrix of
the pre-filter.

3.2. Inherent Characteristics: Nonlinearity and Coupling Effects

Nonlinearity is a fundamental characteristic of many UAV systems, including TTRMS
and quadrotors. This implies that the relationship between input variables (such as the
rotor speed or control surface angles) and output responses (such as altitude, position, or
attitude) is not proportional or does not follow a straight line when graphed. In UAVs,
nonlinearity can arise from aerodynamic effects, changes in the air density at different
altitudes, battery voltage drops, or the complex interplay between thrust, drag, lift, and
weight. For instance, increasing the thrust on a rotor does not result in a linear increase
in altitude due to factors such as aerodynamic drag. Similarly, the efficiency of the rotor
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blades changes with speed and angle of attack, further contributing to nonlinearity. These
nonlinear dynamics can make control systems more complex, as linear control strategies
may not suffice to stabilize or maneuver the UAV effectively across its entire operating
envelope [14].

Figure 8. Block diagram of decoupled UAV input/output.

Coupling effects refer to the interdependence of control channels within a UAV. In an
ideal linear system, adjusting one control input would affect only the corresponding output.
However, in UAVs, a change in one control input can affect multiple outputs due to coupling
effects. For TRMS, the pitch control can influence both the altitude and the forward motion
due to the aerodynamic interactions between the rotors and the fuselage. In quadrotors,
the situation is similar; controlling roll or pitch also affects horizontal displacement and
yaw due to the interrelated rotor speeds needed to produce these movements. Coupling is
particularly pronounced in UAVs due to the close proximity of the rotors and the need for
differential thrust to control movement and orientation. For example, increasing the speed
of one rotor on a quadrotor to initiate a roll movement will inadvertently affect the lift and
could cause a change in altitude if not compensated for by the other rotors [15].

Both nonlinearity and coupling effects pose significant challenges in UAV control sys-
tem design. Controllers must be robust and adaptive, often relying on complex algorithms
such as those found in nonlinear control theory and MIMO system design to ensure the
stability and responsiveness of the UAV in the face of these inherent characteristics [16].

3.3. Role of Sensors in UAVs

Sensors play a crucial role in the operation and functionality of TRMS and quadrotor-
based UAVs. These sensors are fundamental in providing the necessary data for navigation,
stabilization, and execution of specific tasks. While the types and roles of these sensors can
vary depending on the UAV’s application, some of the most common uses include:

• GPS (Global Positioning System): Provides accurate location data, enabling UAVs to
navigate to specific coordinates and maintain a stable position [16].

• Gyroscopes: Essential for detecting and measuring rotational motion and orientation,
gyroscopes help in maintaining the UAV’s balance and orientation [17].

• Accelerometers: Measuring linear acceleration, in UAVs they are crucial for detecting
changes in the speed and tilt for orientation control [17,18].

• Magnetometers: Act as digital compasses, aiding in orientation relative to the Earth’s
magnetic field, which is particularly useful in environments where GPS signals are
weak or unavailable [37].

Environmental Interaction and Data Collection

• Lidar (Light Detection and Ranging): Used for high-precision mapping and terrain
analysis by measuring distances with laser light [38].
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• Infrared Sensors: Employed in various applications, from detecting heat signatures for
search and rescue operations to assessing crop health in precision agriculture [38,39].

• Optical Cameras: Provide visual data, critical for tasks such as aerial photography,
surveillance, and visual inspection of infrastructure [40].

• Magnetometers: Act as digital compasses, aiding in orientation relative to the Earth’s
magnetic field, which is particularly useful in environments where GPS signals are
weak or unavailable [40,41].

• Multispectral Cameras: Capture data across different wavelengths, useful in environ-
mental monitoring, agriculture (for assessing plant health), and resource mapping [38].

Obstacle Detection and Collision Avoidance

• Ultrasonic Sensors: Measure the distance to nearby objects, aiding in collision avoid-
ance, especially in tight or cluttered spaces [33].

• Infrared Sensors: Employed in various applications, from detecting heat signatures
for search and rescue operations to assessing crop health in precision agriculture [42].

• Radar: Used for detecting and avoiding obstacles, particularly effective in poor
weather conditions where optical sensors might be less effective [38].

Specialized Applications

• Chemical Sensors: Detect specific chemicals or environmental pollutants, useful in
environmental monitoring [43].

• Thermal Cameras: Useful for search and rescue operations at night or for detecting
energy inefficiencies in buildings [37].

The integration of these sensors into UAV systems allows for a wide range of capabili-
ties, from basic flight stabilization and navigation to complex tasks such as 3D mapping,
agricultural monitoring, infrastructure inspection, and search and rescue operations. The
choice of sensors is dictated by the specific requirements of each application, balancing
factors such as accuracy, range, size, weight, and power consumption against the UAV’s
intended use. Advanced UAVs often combine multiple sensors, using sensor fusion tech-
niques to enhance reliability and the quality of the data collected [37,43].

4. Challenges in UAV Control
4.1. Discussion of Nonlinearities and Coupling Effects in UAVs

The operation of UAVs such as TRMS and quadrotors is inherently complex due to
nonlinearities and coupling effects. These characteristics present significant challenges in
UAV control system design and operation [19].

• Complex Dynamics: UAVs exhibit nonlinear dynamics due to factors such as aerody-
namic forces, changes in air density at different altitudes, and the nonlinear responses
of the motors and rotors. For instance, the relationship between the throttle input
and the resultant lift is not linear, especially when the UAV operates in different flight
regimes (e.g., hover, ascent, descent) [20].

• Control Challenges: Linear control strategies may not be effective across the entire
operational range of a UAV. Nonlinear control systems must be designed to adapt to
these varying dynamics, ensuring stable and responsive flight under a wide range of
conditions [44].

• Modeling Difficulties: Accurately modeling the nonlinear behavior of UAVs for simula-
tion and control design is complex and computationally intensive, requiring advanced
algorithms and significant processing power [44,45].

Coupling Effects in UAVs

• Interdependent Controls: In UAVs, especially those with multiple rotors such as
quadrotors, changes in one control input often affect multiple axes of motion. For
example, adjusting rotors to initiate a turn may inadvertently affect altitude and pitch,
requiring compensatory control inputs [46].
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• Design of Control Systems: The control system must account for these coupling
effects in order to achieve precise maneuverability. This often leads to more complex
control algorithms that can manage the interdependencies of the control inputs and
outputs [46,47].

• Flight Stability and Precision: Maintaining stability and precision in flight maneu-
vers is challenging due to coupling effects. Controllers must continuously adjust
for the unintended consequences of control inputs on various aspects of the UAV’s
motion [47].

• Real-Time Adaptation: Effective UAV control requires real-time adaptation to the
coupling effects, especially in dynamic environments or during complex tasks such as
payload delivery, precise inspections, or navigating through cluttered spaces [8].

Addressing the Challenges

• Advanced Control Strategies: Developing advanced control strategies such as nonlin-
ear control, adaptive control, and robust control is crucial. These strategies can handle
the complexities and variabilities in UAV dynamics [48].

• Sensor Fusion and Feedback: Utilizing sensor fusion techniques can enhance the
UAV’s understanding of its state and environment, leading to better control. Feedback
mechanisms are crucial for adjusting control inputs in real-time based on the UAV’s
response [49].

• Machine Learning and AI: Implementing machine learning and artificial intelligence
can help to predict and adapt to nonlinearities and coupling effects, especially in
unpredictable environments [9].

• Simulation and Testing: Rigorous simulation and real-world testing are vital to under-
standing and mitigating the effects of nonlinearities and couplings in UAVs. This aids
in refining control algorithms and ensuring reliable UAV performance [50].

Addressing the challenges posed by nonlinearities and coupling effects is fundamental
for the advancement of UAV technology, particularly as their applications become more
diverse and their operational environments grow more complex as depicted in Figure 9.

Figure 9. Challenges in UAV control.

Evolution of UAV Control Strategies

Over the past few decades, the field of UAV control has witnessed significant advance-
ments, evolving from simple manual control systems to sophisticated autonomous control
strategies capable of handling complex tasks. Early UAV control strategies primarily relied
on manual piloting or basic autopilot systems, providing limited autonomy and functional-
ity. With the advent of advanced computational methods and sensor technologies, there has
been a paradigm shift towards more intelligent and adaptive control strategies, including
PID control, Linear Quadratic Regulators (LQR), and nonlinear control techniques such as
backstepping and feedback linearization [10,51].
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In recent years, the integration of artificial intelligence, machine learning, and pre-
dictive control algorithms such as MPC has further revolutionized UAV control, enabling
enhanced performance, robustness, and autonomy. Despite these advancements, chal-
lenges remain in achieving optimal control of UAVs, particularly in handling nonlin-
ear dynamics, coupling effects, and uncertainties associated with complex operational
environments [19,52].

In this context, our work makes several unique contributions to the existing litera-
ture. Unlike previous studies that focused on individual control strategies or specific UAV
platforms, our review provides a comprehensive analysis of various nonlinear control
strategies, with a particular emphasis on their applicability to UAVs such as TRMS and
quadrotors. We delve into the intricacies of sensor integration, adaptive controls, and artifi-
cial intelligence-driven approaches, highlighting their efficacy in addressing the challenges
associated with UAV control [53].

Furthermore, our review offers insights into the latest developments, research direc-
tions, and future challenges in this rapidly evolving field, serving as a valuable resource
for researchers, engineers, and practitioners working on UAV control systems. By bridg-
ing the gap between theory and practice, our work aims to advance the state-of-the-art
in UAV control, paving the way for the development of more intelligent, robust, and
autonomous UAV systems capable of operating in increasingly complex and dynamic
environments [24,26,28].

4.2. Limitations of Traditional Linear Control Techniques

Traditional linear control techniques, while effective in many standard control appli-
cations, face inherent limitations when applied to the complex dynamics of UAVs [54].
These limitations stem from the fact that UAVs often exhibit nonlinear behaviors and
interactions that cannot be adequately addressed by linear control methods. Some of the
key limitations include:
Inadequacy in Handling Nonlinear Dynamics

• Linear Approximation: Linear control techniques are based on linear approximations
of system dynamics. However, UAVs often exhibit strongly nonlinear behaviors due
to aerodynamic forces, changes in air density at different altitudes, and the nonlinear
response of their propulsion systems [55].

• Limited Operational Range: Linear controllers are typically designed around a specific
operating point, such as hovering. They tend to be less effective when the UAV
operates outside this narrow range, such as during rapid maneuvers or in response to
strong external disturbances, and may even fail [56].

Oversimplification of Real-World Scenarios

• Ignoring External Factors: Linear controllers often do not account for varying external
conditions such as wind gusts, temperature changes, or variable payloads, which can
significantly affect UAV performance [57].

• Simplified Models: These controllers rely on simplified models that may not capture
the full complexity of UAV dynamics, leading to suboptimal or unstable flight in
real-world scenarios [58].

Inability to Manage Coupling Effects

• Independent Control Assumption: Linear control techniques often assume that each
control input affects only one output. However, in UAVs, especially multi-rotor sys-
tems such as quadrotors, there is significant coupling between controls, e.g., changing
rotor speed to control roll might inadvertently affect pitch and yaw [59].

• Challenges in MIMO Systems: UAVs are often MIMO (Multiple Input, Multiple
Output) systems where the interaction between multiple inputs and outputs needs to
be managed simultaneously, a task for which traditional linear control methods are
not well-suited [60].



Sensors 2024, 24, 3286 15 of 51

Lack of Adaptability and Robustness

• Fixed Parameters: Traditional linear controllers have fixed parameters and do not
adapt to changes in the UAV’s dynamics or the environment. This lack of adaptability
can lead to poor performance in changing conditions [61].

• Robustness Issues: They may not be robust against uncertainties or unmodeled dy-
namics, which are common in UAV operations, especially in complex or unstructured
environments [62].

Increased Complexity in Design and Tuning

• Complex Design for Multivariable Systems: Designing linear controllers for systems
with multiple interdependent variables, such as UAVs, can be complex and time-
consuming [29].

• Manual Tuning Limitations: These controllers often require manual tuning, which can
be a laborious process and might not yield the best possible performance [63].

While traditional linear control techniques have been foundational in control theory
and have applications in many areas, their limitations become apparent in the context of
UAVs. As explained in Figure 10, the complexity, nonlinearity, and dynamic nature of
UAVs call for more advanced control strategies that can adapt to changing conditions,
handle nonlinear dynamics, and manage the coupling effects inherent in these systems.

Figure 10. Limitations of traditional linear control techniques.

4.3. Impact of Sensor Data Complexity on UAV Control

The integration and utilization of sensor data plays a critical role in the control and
operation of UAVs [64]. However, the complexity of sensor data can significantly impact
UAV control systems in various ways:
Data Volume and Processing Challenges

• High Data Volume: UAVs often utilize a multitude of sensors such as cameras, LiDAR,
GPS, gyroscopes, and accelerometers, which generate a vast amount of data. Process-
ing this high volume of data in real time can be challenging, requiring robust and
efficient data processing algorithms [29].

• Computational Load: The need to swiftly process and analyze complex sensor data
places a considerable computational load on the UAV’s onboard systems, which could
impact its operational efficiency and responsiveness [65].

Sensor Fusion and Integration

• Complexity of Sensor Fusion: Integrating data from multiple sensors to form a cohe-
sive understanding of the UAV’s environment (sensor fusion) is complex. It requires
sophisticated algorithms to accurately combine and interpret disparate data sources,
which can be challenging, especially in dynamically changing environments [66].

• Inconsistencies and Conflicting Data: Different sensors may provide conflicting in-
formation due to varied accuracy, resolution, or response times. Resolving these
inconsistencies is crucial for accurate flight control and decision-making [67].
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Accuracy and Reliability Concerns

• Sensor Accuracy: The precision and accuracy of sensors directly affect the control
and stability of UAVs. Inaccuracies in sensor readings can lead to incorrect control
commands and potentially unstable flight [68].

• Reliability under Diverse Conditions: Sensors must be reliable under a wide range of
operational conditions. For example, visual sensors might be less effective in low-light
or foggy conditions, impacting the UAV’s ability to navigate and avoid obstacles [69].

Real-Time Decision Making

• Delayed Response: The time taken to process complex sensor data can lead to de-
lays in decision-making, which is critical for UAVs that need to respond quickly to
environmental changes or obstacles [70].

• Autonomous Operations: For autonomous UAVs, the ability to make real-time deci-
sions based on sensor data is crucial. Complex data can complicate the algorithms
needed for autonomous navigation and task execution [71].

Energy Consumption

• Delayed Responses: The time taken to process complex sensor data can lead to
delays in decision-making, which is critical for UAVs that need to respond quickly to
environmental changes or obstacles [72].

• Autonomous Operations: For autonomous UAVs, the ability to make real-time deci-
sions based on sensor data is crucial. Complex data can complicate the algorithms
needed for autonomous navigation and task execution [73].

• Increased Power Demand: Processing complex sensor data requires significant com-
putational resources, which in turn increases energy consumption. This can reduce
the UAV’s operational endurance and limit its range or mission duration [74].

Calibration and Maintenance

• Calibration Complexity: Accurate sensor data depends on proper calibration. Complex
sensor systems may require frequent and sophisticated calibration procedures, adding
to the operational overhead [75].

• Maintenance Requirements: More complex sensor systems might have higher mainte-
nance needs, impacting the UAV’s readiness and operational costs [76].

While sensors are indispensable for modern UAV operations, their complexity intro-
duces several challenges. As shown in Figure 11, effectively managing these challenges
involves developing advanced computational algorithms for real-time processing, improv-
ing sensor technologies for better accuracy and reliability, and optimizing UAV designs for
efficient energy use. The ultimate goal is to ensure that UAVs can effectively interpret and
respond to their environment, balancing the complexity of sensor data with the need for
swift and accurate control.

Figure 11. Sensor data complexity and UAV control.
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5. Nonlinear Control Strategies: Sliding Surface-Based Control Strategies

Nonlinear control strategies are essential for highly nonlinear and coupled UAV
systems. Linear control techniques are not suitable for UAVs because of nonlinearities and
coupling effects. Nonlinear control strategies are designed to handle these nonlinearities
and coupling effects, making them more effective for UAVs [76,77].

There are various nonlinear control strategies available for UAVs, including slid-
ing mode control [76,77], fuzzy control [76], adaptive control [78], and neural network
control [79,80]. Sliding mode control is one of the most popular nonlinear control tech-
niques for UAVs. It provides robustness against parameter uncertainties and external
disturbances. Fuzzy control is a nonlinear control technique that uses linguistic variables to
control the system. It is robust against uncertainties and disturbances, and can handle the
nonlinearities and coupling effects of UAVs. Adaptive control uses adaptive laws to adjust
the control parameters based on the system’s dynamics, making it suitable for TRMS with
varying operating conditions. Neural network control uses artificial neural networks to
model the system and provide control.

5.1. First-Order Sliding Mode Control (SMC)

The foundation of SMC is VSS control theory, which operates under the tenet that in
order to maintain the states of the system in sliding mode, the controller structure must
continuously change in response to variations in the state variables. By using switching
control with a high frequency, the SMC has a tendency to alter system dynamics [81–83].
The VSS control theory is the foundation for the idea of sliding mode control, which
operates on the idea that the controller design should change continually in response to
changes in the state variables in order to maintain the system states in sliding mode. There
are two distinct parts to the controller design [34,84–86]. The sliding surface is assessed in
the first portion using the system’s order as a basis.

The intended sliding surface is expressed as follows:

s(t) =
(

d
dt

+ λ

)n
∫ t

0 eξ(t) dt. (21)

Here, eξ(t) is the observed monitored output with the new state as the state variable
and s(t) is the chosen manifold used as the sliding surface. It is vital to consider the
control rule that forces the control factors to their reference value while choosing the sliding
surface [87,88]. The mathematical formulation of the control law is

u = ueq + udis, (22)

while
udis = −ksign(s). (23)

Here, the constant k1, the sign function sign(s), and the equivalent controller ueq
provide a fragmented control input as a result of a limited switching over the sliding
surface. The movement of numerous control structures causes the controlled system’s
trajectory to slide along a variety of planes while adhering to the switching condition. It has
been noted that switching functions s(x), where x is either a scalar or vector, can be used
during SMC to define the system structure [89–91]. A line on the phase plane represents
the switching surface, denoted by s(x) = 0.

The instability of a nonlinear system can be examined using the Lyapunov function
and the theory of ODEs [92,93]. The ODE class theory calculates the system’s Lyapunov
function, which has to be negative definite, and uses the results to confirm the stability of
the system. The nonlinear system’s asymptotic stability is guaranteed by this necessary
condition. However, an appropriate methodology for building functions for ODEs is
lacking [94,95]. In practice, the sliding motion is observed to exist in the vicinity of the
sliding surface, much like the frequency-switching phenomenon in Figure 12. The system’s
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nonlinear behavior will attempt to stray off the sliding surface, while the controller will
push it to stay on course until it converges at the boundary layer or origin [96,97]. The
power supply needs to be highly optimized because of the quick and abrupt changes in
voltage patterns. Optimization methods can be used to achieve the required UAV output
with steady settling and a predictable voltage pattern.

Figure 12. Chattering phenomenon.

Chattering is a well-known phenomenon in SMC that can cause high-frequency oscil-
lations in the control signal. These oscillations can lead to actuator failures due to excessive
wear and tear, and can result in degraded control performance [98–100].

In one study [51], SMC was used to control a UAV for target tracking and hovering
tasks. The results showed that SMC was able to track the target accurately and robustly even
in the presence of disturbances and model uncertainties. SMC is a popular nonlinear control
strategy for UAVs due to its robustness against disturbances and uncertainties. In SMC, a
sliding surface is defined such that the dynamics of the system are constrained to remain on
the surface. Several studies have used sliding mode control for UAVs. In one study [101],
SMC was used for the trajectory tracking control of a UAV. The proposed controller was
able to achieve accurate and robust tracking even in the presence of disturbances and
modeling uncertainties. In another study [102], SMC was used for the attitude control of
a UAV. The proposed controller was able to achieve robust performance in the presence
of external disturbances and parameter uncertainties. UAV systems are highly nonlinear
and coupled, making them challenging to control using traditional linear control methods.
SMC has limitations around obtaining the required response, making adaptation law-based
SMC variants better for complex MIMO models.

Remarks

SMC is known for being insensitive to external disturbances and nonlinearities.
Observer-based SMC is a good option for reducing chattering while maintaining the
invariance property of SMC; however, observer-based SMC is not suitable for dealing with
parametric uncertainties or for maintaining tracking accuracy. Adaptive sliding mode
control (ASMC) is more robust than either conventional SMC or observer-based SMC.
Therefore, ASMC can be used instead of SMC to achieve adaption and remove chattering.
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5.2. Backstepping (Recursive) Structure-Based Control Strategies

Backstepping (recursive) structure-based control strategies are an important class of
nonlinear control techniques that have gained significant attention in recent years. The
importance of these strategies lies in their ability to handle complex nonlinear control
problems with high precision and efficiency. Backstepping control strategies are important
for a number of specific reasons:

• Nonlinear control: Backstepping control strategies are designed specifically for non-
linear control problems, which are common in many engineering applications. These
strategies provide a framework for designing controllers that can handle nonlinear
dynamics and uncertainties while ensuring stability and convergence.

• Recursive structure: Backstepping control strategies have a recursive structure that
allows for the systematic design of control laws. This structure provides a natural way
to build up the control law step-by-step, starting from the highest-order states and
working downwards. This recursive approach simplifies the control design process,
making it easier to develop complex controllers.

• Lyapunov stability analysis: Backstepping control strategies are typically designed
using Lyapunov stability analysis, which provides a rigorous mathematical frame-
work for assessing the stability and convergence properties of the control system.
This analysis ensures that the designed controller is stable and that the system state
converges to the desired state in a finite time.

• Robustness: Backstepping control strategies are inherently robust against disturbances
and uncertainties, as they are designed to handle nonlinear dynamics and uncertainties
in a systematic way. This robustness makes them particularly useful in applications
where the system model is uncertain or poorly known.

• Performance: Backstepping control strategies can achieve high control performance
because they are designed to optimize a performance criterion based on the sys-
tem dynamics and control objectives. This optimization ensures that the control
law is designed to achieve the desired control performance while ensuring stability
and robustness.

Backstepping control is a type of nonlinear control technique that has gained attention
for its effectiveness in controlling UAVs. The backstepping control approach is particularly
suitable for UAVs because it can handle complex the nonlinear dynamics and uncertainties
that are present in these vehicles. Backstepping control has been used in various UAV
applications, including trajectory tracking, altitude control, and stabilization. One of
the most significant advantages of backstepping control is that it can provide robust
performance in the presence of disturbances and uncertainties. Additionally, it allows for
the design of a control law that ensures the stability of the system while achieving the
desired tracking performance.

Several studies have reported the effectiveness of backstepping control for UAV appli-
cations. For example, in one study [103], backstepping control was used for the trajectory
tracking of a UAV, with the results showing improved tracking accuracy compared to
other control methods. In another study [104,105], backstepping control was used for the
altitude control of a fixed-wing UAV, and the results showed good performance even in the
presence of wind disturbances.

5.2.1. Mathematical Formulation of Backstepping Control

Backstepping is a recursive control design technique that is particularly well-suited
for nonlinear systems such as UAVs. For TRMS UAVs, we can consider the control of the
pitch (θ) and yaw (ψ) angles using backstepping.

The dynamic equations for the pitch and yaw angles of a TRMS UAV can be repre-
sented as follows:

Ixx θ̈ = τθ − (Izz − Iyy)ψ̇ϕ̇ (24)

Iyyψ̈ = τψ − (Ixx − Izz)ϕ̇θ̇ (25)
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where Ixx, Iyy, and Izz are the moments of inertia about the principal axes, τθ and τψ are the
respective control torques for the pitch and yaw, and ϕ̇ is the roll rate.

To design a backstepping controller, we introduce virtual control inputs and Lyapunov
functions to recursively stabilize the system. The control law for the pitch and yaw angles
can be formulated as follows:

τθ = −kθ(θ − θref)− kθ̇(θ̇ − θ̇ref) (26)

τψ = −kψ(ψ − ψref)− kψ̇(ψ̇ − ψ̇ref) (27)

where kθ , kθ̇ , kψ, and kψ̇ are the control gains and θref, θ̇ref, ψref, and ψ̇ref are the desired
pitch and yaw angles and their corresponding rates.

The Lyapunov functions are chosen to ensure the stability of the closed-loop system;
the recursive nature of backstepping allows for the design of controllers for higher-order
systems by sequentially stabilizing subsystems. By applying this backstepping control law,
the pitch and yaw angles of the TRMS UAV can be effectively controlled, ensuring stability
and desired performance.

5.2.2. Remarks

Backstepping control has been successfully applied to various physical systems, in-
cluding UAVs, robots, and mechanical systems. However, as with any control strategy,
backstepping control has some limitations. Backstepping control can be complex to design
and implement, especially for systems with many states or highly nonlinear dynamics. The
controller design involves multiple steps, and the resulting controller may be difficult to
analyze and understand. Backstepping control assumes that the system model is known,
which may not be true in practice. If there are uncertainties or disturbances in the system,
the controller may not perform well and may even become unstable. Backstepping control
relies on accurate measurements of the system states. If there is measurement noise, the
controller’s performance may be degraded. The performance of the backstepping con-
troller depends on the choice of tuning parameters, such as gains and feedback coefficients.
Tuning these parameters can be time-consuming and may require expert knowledge. Back-
stepping control may not be robust against changes in the system parameters or external
disturbances. This can be a problem in practical applications where the system may experi-
ence uncertain or varying environmental conditions. Finally, backstepping control is not a
panacea and may not be suitable for all types of MIMO channel systems or applications.
Proper consideration of these limitations and appropriate modifications may be necessary
for successful application in specific situations.

5.3. Feedback Linearization Control

Instead of linearizing via small angle approximation, this control paradigm transforms
the UAV’s nonlinear dynamics into linear corresponding dynamics via feedback. This control
method has been used by several researchers to create UAV flight controllers [53,106–114].
Due to the nonlinear nature of UAV dynamics, this method is well suited for removing
nonlinearities, after which linear control theory can be employed to develop a flight
controller. Feedback linearization eliminates the system’s nonlinearity by transforming the
variables and choosing the right input. Then, using an outer feedback loop, a new control
input v is computed using linear control theory. The transformation must be diffeomorphic
in order to guarantee that it is comparable to the original system. Zero dynamics, or states
that cannot be observed from the system output, are present in transformed systems, and
may cause instability; therefore, the stability of these zero dynamics should be maintained.
Due to the high-order Lie derivatives used in the linearization process, this technique
is quite susceptible to outside disturbances. The fact that feedback linearization only
applies to a particular class of nonlinear systems that satisfy a particular involutivity
criterion is another disadvantage of this technique [115–117]. Zero dynamics, also known as
internal dynamics, are crucial in determining the stability of the control system. Technically
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speaking, zero dynamics are the internal system states that are not visible from the system
output. These dynamics could be unstable and harmful for the internal states, as they can
become unbounded. It is necessary to take steps to guarantee that these internal dynamics
do not lead to stability issues, and these unobservable states should at the very least be
stable or controllable; see [53,115,118] for further information on zero dynamics.

A comprehensive study of accurate linearization for a UAV model has been presented
in [53,119]. This study showed that static feedback cannot solve the decoupling issue of
the UAV paradigm. Instead, it was discovered that dynamic feedback can transform a
system into one that is linear, disconnected, and non-interactive. Furthermore, dynamic
feedback can guarantee the controllability of the altered system. On the basis of attitude
representation, an exact input-output linearization of the UAV model was developed
in [107,120]. The linearization of the z and (x, y) states was performed separately, resulting
in what is known as quasi-static feedback linearization [120,121]. A similar investigation
of accurate linearization can be found in [53,106,122], while the inclusive mathematical
design and feedback linearization approach can be found in [109]. By adding successive Lie
derivative terms, UAV nonlinear dynamics were converted to linear dynamics. Transformed
linear systems have derivative terms up to the third order, which renders the control
strategy extremely susceptible to external errors and sensor noise. Similar work with
feedback linearized controllers has been reported in [11,53]. In [106,108], along with a fix
for rotor failure, the authors proposed a feedback linearization-based aircraft controller
for the problem of trajectory tracking. The same method was used to achieve steady
rotational motion across the z-axis in the event of rotor failure. A similar investigation was
presented in [113,115], where several fault scenarios involving UAV flights were looked
into. Attitude stabilization was accomplished by combining feedback linearization control
and an inner loop.

5.3.1. Mathematical Formulation

Feedback linearization is a control design technique that aims to transform a nonlinear
system into a linear one through a suitable change of coordinates. For a TRMS UAV, the
pitch (θ) and yaw (ψ) angles can be controlled using feedback linearization.

The dynamic equations for the pitch and yaw angles of a TRMS UAV can be represented
as shown below.

Ixx θ̈ = τθ − (Izz − Iyy)ψ̇ϕ̇ (28)

Iyyψ̈ = τψ − (Ixx − Izz)ϕ̇θ̇ (29)

To apply feedback linearization, we introduce a change of coordinates to linearize the
system. We first define the following virtual control inputs.

v1 = θ̇ − θ̇ref (30)

v2 = ψ̇ − ψ̇ref (31)

The transformed system can be written as follows:

v̇1 = −kθ(v1 − θ̇ref) (32)

v̇2 = −kψ(v2 − ψ̇ref) (33)

where kθ and kψ are the control gains and θ̇ref and ψ̇ref are the desired pitch and yaw rates.
The control torques τθ and τψ can then be determined using the inverse dynamics.

τθ = Ixx θ̈ + (Izz − Iyy)ψ̇ϕ̇ (34)

τψ = Iyyψ̈ + (Ixx − Izz)ϕ̇θ̇ (35)

Substituting the expressions for θ̈ and ψ̈ from the transformed system into the inverse
dynamics equations yields the control inputs required to achieve the desired pitch and yaw rates.
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By applying feedback linearization, the pitch and yaw angles of the TRMS UAV can
be effectively controlled by linearizing the system and designing control inputs to track
the desired rates. This approach offers a systematic way of handling the nonlinearities and
coupling effects present in the UAV dynamics, ensuring stable and precise control of the
UAV’s motion.

5.3.2. Remarks

Feedback linearization is a useful technique for changing a nonlinear system into
a matching linear system; however, as already discussed, it suffers from instability zero
dynamics. Linearization of a quadrotor produces zero dynamics, as its nonlinear dynamics
are underactuated. By placing two consecutive integrators in the direction of each control
input, as in [123,124], the issue of unstable zero dynamics can be handled. The complexity
of zero dynamics requires in-depth analysis. The need for full-state statistics is one of the
biggest drawbacks of the feedback linearization approach, necessitating the design of a
separate observer/estimator for estimation of the system’s states. In [123,125], observer
design and feedback linearization for UAVs were both achieved. The third derivative of the
output states is required for feedback linearization of a UAV model; however, in this study
the observer model was employed to constrain the third derivative, making the control
technique more acceptable for use with nonlinear systems.

The UAV model’s parametric uncertainties may lead to performance problems. This
calls for the application of adaption laws and control strategies that can lessen paramet-
ric uncertainty and accommodate changes in parametric values. A linearized adaptive
feedback controller was created in [126] and a thorough structure was provided. A similar
investigation of an adaptive feedback linearized controller architecture was presented
in [123,127]. The adaptive technique decreased the tracking error and enhanced the con-
troller’s performance. Through adaptation, the control parameters can be changed, improv-
ing the overall performance of the control system.

5.3.3. Remarks

When the system variables are known and there is no related uncertainty, feedback
linearization performs well; on the other hand, UAVs may encounter significant problems
due to their own parametric instabilities and feedback linearization-based controllers. In
order to completely solve the aforementioned issue, an adaptive intelligent technique must
be used along with traditional feedback linearization. Control performance can be greatly
enhanced by online updating and by employing nonlinear approximators to approximate
the unknown parameters.

5.4. Model Predictive Control (MPC)

MPC is a nonlinear control technique that can optimize the control inputs over a finite
time horizon. MPC has been used for UAVs in control applications such as surveillance
and mapping tasks. In one study [128–132], MPC was used to control a fixed-wing UAV
for surveillance tasks. The results showed that MPC was able to improve the accuracy
and efficiency of the UAV during the surveillance task [129,133]. MPC has a prediction ad-
vantage over LQR control because the latter cannot foresee future control inputs [134,135].
Second, although LQR only offers optimal control for linearized plant model systems, MPC
may be used for nonlinear systems as well. Without a precise prediction model, the MPC
controller’s algorithms cannot achieve extraordinary stability and performance [135]. As a
result, if the prediction model is imprecise, the system may become unstable, and creating
such a model demands an expensive control design effort. In addition, the capacity of
adaptive MPC to estimate uncertainty makes it more reliable and useful for optimizing
the control of a UAV. Future research could concentrate on developing an adaptive MPC
aircraft controller, as this area of research into UAV control has seen little study.
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5.4.1. Mathematical Formulation of MPC

Model Predictive Control (MPC) is an advanced control strategy that uses a predictive
model of the system to optimize control inputs over a finite horizon. For a TRMS UAV, the
pitch (θ) and yaw (ψ) angles can be controlled using MPC.

The dynamic equations for the pitch and yaw angles of a TRMS UAV are represented in
following equations.

Ixx θ̈ = τθ − (Izz − Iyy)ψ̇ϕ̇ (36)

Iyyψ̈ = τψ − (Ixx − Izz)ϕ̇θ̇ (37)

In MPC, we formulate a predictive model of the system and optimize a control se-
quence to minimize a cost function over a finite prediction horizon. We can define the state
vector as shown below.

x =


θ
θ̇
ψ
ψ̇

 (38)

The state space representation of the system can be written as follows:

ẋ = Ax + Bu (39)

y = Cx (40)

where

A =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

, B =


0 0
1

Ixx
0

0 0
0 1

Iyy

, C =

[
1 0 0 0
0 0 1 0

]
. (41)

The control inputs u can be represented as follows:

u =

[
τθ

τψ

]
. (42)

In MPC, the control inputs are optimized by solving the following optimization
problem at each time step:

min
u

J(x, u) (43)

s.t. x(k + 1) = Ax(k) + Bu(k) (44)

umin ≤ u ≤ umax (45)

where J(x, u) is the cost function and umin and umax are the minimum and maximum torque
limits, respectively.

By solving this optimization problem at each time step, MPC computes the optimal
control inputs that minimize the cost function while satisfying the system dynamics and
control constraints. This enables precise and robust control of the pitch and yaw angles of
TRMS UAVs even in the presence of uncertainties and disturbances.

5.4.2. Remarks

MPC has several benefits for controlling highly coupled wind rotor MIMO systems
such as UAVs. First, MPC is capable of accurately tracking a desired trajectory for the
UAV. This is important for UAVs that need to follow specific flight paths or perform
complex maneuvers. Second, MPC is robust against uncertainties and disturbances in the
UAV’s dynamics, making it a suitable control method for UAVs operating in dynamic and
uncertain environments. Third, MPC can easily handle constraints on the UAV’s inputs and
states. This is important for UAVs that need to operate within certain physical limitations,
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such as maximum velocity, altitude, or acceleration. Third, MPC can simultaneously
optimize multiple objectives, such as minimizing energy consumption while maximizing
tracking performance. This makes MPC a versatile control method that can adapt to
different operating conditions and environmental factors. Fourth, MPC can be easily
integrated with other systems, such as sensors, communication networks, and mission
planning software, making it a suitable control method for UAVs in complex and dynamic
environments. Fifth, MPC can be easily adapted to different UAV configurations, allowing it
to handle different operating conditions and environmental factors. Finally, MPC produces
control signals that are smooth and continuous, which reduces chattering in the control
signal. This results in smoother control actions and reduces wear and tear on the UAV’s
mechanical components.

While MPC has many benefits for controlling highly coupled wind rotor MIMO
systems such as UAVs, there are also limitations to this control method. First, MPC requires
solving optimization problems at each time step, which can be computationally intensive
and may require high-performance computing resources. This can be a limitation for UAVs
that require fast and real-time control responses. Second, MPC requires tuning of several
parameters, such as the prediction horizon, control horizon, and weighting factors for the
optimization objectives. If these parameters are not tuned correctly, the control performance
can be degraded. This can be a limitation for UAVs that operate in changing environments
where the optimal parameter values may vary. Third, MPC is dependent on the accuracy
of the mathematical model used to describe the system dynamics. If the model is not
accurate, the control performance can be compromised. This can be a limitation for UAVs
that have complex and highly nonlinear dynamics. Fourth, MPC relies on predicting the
future state of the system, which can lead to a delayed response to disturbances or changes
in the environment. This can be a limitation for UAVs that require fast and immediate
responses to changes in the environment. Fifth, MPC is a complex control method that
requires a significant amount of technical expertise to implement and maintain. This can be
a limitation for UAVs that have limited resources or operate in remote locations. Finally,
the control decisions made by MPC can be difficult to interpret or explain, making it
challenging to diagnose or troubleshoot control system issues.

While MPC has many benefits for controlling highly coupled MIMO systems such as
UAVs, the above limitations must be carefully considered when selecting a control method
for a particular application. Proper implementation and tuning are critical to ensuring
the control system’s stability, tracking performance, and robustness in the presence of
disturbances and uncertainties.

5.5. Contribution of Nonlinear Control Strategies for UAVs

Nonlinear control strategies offer a diverse range of approaches that can be effectively
applied to UAV systems, each with its own unique advantages and capabilities. Among
the nonlinear control strategies discussed in this review, MPC stands out for its ability to
handle complex dynamical systems and optimize control inputs over a predictive horizon,
making it particularly suitable for UAVs operating in dynamic environments. SMC, on
the other hand, excels in robustness against model uncertainties and external disturbances,
ensuring reliable performance in challenging conditions. Adaptive and neural network-
based control strategies offer flexibility and adaptability by learning from the UAV’s
environment, enabling autonomous decision-making and adaptation to varying operating
conditions. Finally, feedback linearization provides a systematic approach to transforming
nonlinear dynamics into linear ones, facilitating the design of linear controllers that can
effectively stabilize and control UAV systems. Each of these nonlinear control strategies
has been tailored to address specific challenges encountered in UAV applications, offering
a versatile toolkit for enhancing UAV performance, autonomy, and reliability.
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6. Hybrid Control Strategies

Hybrid control theory is a branch of modern control theory that focuses on systems
demonstrating both continuous and discrete behaviors. These systems, referred to as hybrid
systems, present a unique challenge due to their combination of continuous dynamics (such
as those seen in traditional control systems with smooth and continuous changes) and
discrete events (such as switching between different operational modes or the occurrence
of events triggering abrupt changes in behavior) [136,137].

In hybrid systems, the interaction between continuous dynamics and discrete events
is fundamental. Continuous dynamics represent the gradual evolution of system states
over time, while discrete events introduce sudden changes or switches in the system’s
behavior or mode of operation. For example, in a hybrid control system for an electric
vehicle, continuous dynamics might govern the motor’s speed and acceleration, while
discrete events could include switching between driving modes (e.g., electric-only mode
and hybrid mode) or activating regenerative braking when certain conditions are met [138].

Hybrid control theory aims to develop modeling, analysis, and control techniques
tailored to these complex systems considering both continuous and discrete aspects. It
addresses challenges such as the design of controllers that can handle both continuous
dynamics and discrete events, thereby ensuring stability and performance in the face of
mode switches or sudden disturbances and optimizing system behavior under various op-
erating conditions. Overall, hybrid control theory provides a framework for understanding
and effectively managing the intricate behavior of hybrid systems in various engineering
applications [136]. Developments in hybrid control are provided in Table 3.

Table 3. Hybrid control developments.

Year Contributor History

1980s Edward A. Lee and Alberto L. Sangiovanni-Vincentelli Proposed a framework for analyzing the behavior of hybrid
systems, introducing the concept itself.

1990s Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman.

Over time, hybrid control theory has witnessed significant
progress, propelled by contributions from numerous
researchers. Among the pivotal advancements in this
domain is the introduction of the hybrid automaton model.
This model serves as a formal framework for both
representing and scrutinizing the intricate dynamics of
hybrid systems [136,137].

1995 Henzinger, T. A., and Kopke, P. W.

Additional significant contributions to hybrid control theory
encompass the formulation of control synthesis
methodologies. These methods are instrumental in crafting
effective control strategies tailored specifically for hybrid
systems. Moreover, extensive research has been dedicated to
investigating the stability and performance characteristics
inherent in hybrid systems, further enriching the
understanding of their complex behavior [138].

2008 Cassandras, C. G., and Lafortune, S.

Another noteworthy advancement in hybrid control theory
is the emergence of reachability analysis techniques. These
methods serve the crucial function of identifying the range
of states attainable by a hybrid system starting from a
specified initial state. Demonstrating efficacy in analyzing
the behavior of hybrid systems, reachability analysis
methodologies also play a pivotal role in the formulation of
tailored control strategies for such systems [139,140].

UAVs represent a sophisticated control system utilized within the UAV’s operations.
In this context, hybrid control plays a crucial role due to its capability to offer a robust and
adaptable control strategy. In a hybrid control setup, various control methodologies are
integrated to enhance performance and ensure stability. This approach proves particularly
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beneficial in UAV applications in light of the diverse and dynamic environments in which
these systems operate. By amalgamating different control techniques, the UAV system can
effectively adjust to varying conditions and uphold stability, thereby enhancing its overall
operational efficiency and reliability [141,142].

6.1. Adaptive Sliding Mode Control (ASMC)

Adaptive sliding mode control (ASMC) is a variant of SMC that incorporates adap-
tive techniques to improve the control performance of nonlinear MIMO (multiple-input
multiple-output) systems. For several reasons, ASMC is generally considered to be better
than SMC for nonlinear MIMO systems. Nonlinear MIMO systems often have complex and
uncertain dynamics that can degrade the performance of conventional control strategies
such as SMC. ASMC incorporates adaptive mechanisms that allow the control parameters
to be adjusted in real time based on the system’s current operating conditions, making it
more robust against model uncertainties [143]. ASMC can achieve better tracking accuracy
compared to SMC for nonlinear MIMO systems. This is because ASMC uses a model refer-
ence adaptive control (MRAC) approach that provides more accurate tracking of the desired
trajectory while maintaining robustness against system uncertainties [144]. SMC can suffer
from chattering, which is a phenomenon characterized by high-frequency oscillations in
the control signal. ASMC can reduce chattering by incorporating adaptive gain scheduling,
which adjusts the control gain in real time to reduce the effects of chattering and improve
control performance [145]. ASMC can achieve the same control performance as SMC with
lower control effort, which can be beneficial for systems with limited actuator capacity
or those that operate in harsh environments [143,145]. Overall, ASMC offers several ad-
vantages over SMC for nonlinear MIMO systems, including improved robustness, better
tracking accuracy, and reduced chattering. However, the design and implementation of
ASMC can be more complex than SMC, and it may require higher computational overhead.
Adaptive sliding mode control (ASMC) is a nonlinear control strategy that has been applied
to UAVs for effective control in the presence of uncertainties and disturbances. ASMC has
been shown to be effective in controlling UAV in various scenarios. In one study [146],
an ASMC approach was used for the position and attitude control of a UAV. The results
showed improved control performance compared to traditional linear control methods.
In another study [147], an ASMC approach was used for the stabilization of a UAV in the
presence of parameter uncertainties, with the results showing good robustness and dis-
turbance rejection. The main advantage of ASMC is its ability to handle uncertainties and
disturbances by using a sliding mode control law that drives the system to a sliding surface,
where it can maintain stability and robustness. Additionally, the use of an adaptive law
allows the system to adapt to changing conditions and uncertainties, improving the overall
control performance. Although ASMC is an efficient control strategy, the convergence time
must be faster and the system should move toward stability more quickly.

Remarks

While adaptive SMC is more robust than conventional SMC, it has slower convergence;
therefore, ATSMC can be used to achieve faster convergence along with chattering removal.
According to the above discussion, using ATSMC with an adaptation design can result
in the best control performance. Furthermore, ATSMC offers a simple nonlinear design
procedure for flight controllers, which leads to lower computational costs compared to
other methods. Overall, the findings highlight the benefits of SMC and the use of ATSMC
for flight control to achieve better control performance, faster convergence, and reduced
computational cost, particularly with adaptive designs.

6.2. Adaptive Fast-Terminal Sliding Mode Control (AFTSMC)

UAVs are a popular benchmark system in the field of control engineering. Adaptive
fast-terminal sliding mode control (AFTSMC) is a robust control technique that has been
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applied to UAVs to achieve improved control performance. The design procedure of
AFTSMC for UAVs involves the following steps:

• System modeling: The first step is to develop a mathematical model of the UAV. The
model should include the dynamics of both the rotor and the platform, and should be
expressed in state space form.

• Control objective: The control objective is to design a control law that can stabilize the
UAV at a desired position and orientation while rejecting disturbances and uncertainties.

• Sliding mode control: AFTSMC is based on sliding mode control (SMC), which
involves the design of a sliding surface that ensures fast convergence to the desired
state. The sliding surface should be designed such that its derivative is negative
definite and the system trajectory approaches it asymptotically.

• Terminal sliding mode control: In addition to SMC, AFTSMC incorporates terminal
sliding mode control (TSMC) to achieve faster convergence to the desired state. TSMC
involves the design of a terminal sliding surface which is reached in a finite time and
remains stable thereafter.

• Adaptive control: AFTSMC incorporates adaptive control to account for uncertainties
in the system parameters. Adaptive control involves the design of an adaptation law
that updates the control gains in real time based on the estimated system parameters.

• Design of control gains: The final step is to design the control gains such that the
sliding surface and the terminal sliding surface are reached in a finite time and the
system remains stable thereafter. The control gains can be tuned using simulation or
experimental data to achieve optimal performance.

The design procedure of AFTSMC for UAVs involves the integration of SMC, TSMC,
and adaptive control to achieve robust and efficient control performance. AFTSMC is an im-
provement over ASMC that addresses some of the limitations of the latter. Among the main
advantages of AFTSMC over ASMC, it converges to the sliding surface much faster due to
the addition of a terminal sliding mode surface that has a higher convergence rate. This
means that AFTSMC can achieve better tracking performance in a shorter time. In addition,
AFTSMC is more robust against parameter uncertainties and disturbances compared to
ASMC, as the terminal sliding mode surface provides guarantees convergence within a
finite time even in the presence of disturbances and parameter uncertainties [148]. Finally,
AFTSMC reduces chattering compared to ASMC. Chattering is a phenomenon in which
the control signal switches rapidly between different values; this can cause wear and tear
on the actuators, and reduces the overall system performance [149]. Adaptive fast-terminal
sliding mode control (AFTSMC) is a nonlinear control technique that has been applied to
UAVs for effective control in the presence of uncertainties and disturbances. AFTSMC is an
extension of the traditional sliding mode control approach which incorporates a terminal
sliding mode to improve the speed and accuracy of the system’s response. Several studies
have investigated the use of AFTSMC for UAV control. In [149], AFTSMC was used for
the attitude control of a UAV in the presence of uncertainties and external disturbances.
The results showed improved control performance compared to traditional sliding mode
control approaches. In another study [148] where AFTSMC was used for the position
control of a UAV, the results again showed good robustness and disturbance rejection.

The key advantage of AFTSMC is its ability to achieve fast and accurate tracking of
the desired trajectory even in the presence of uncertainties and disturbances. The terminal
sliding mode allows the system to converge to a desired state in a finite time, while the
adaptive law ensures that the system can adapt to changing conditions and uncertainties.

6.2.1. Remarks for AFTSMC, ASMC, and SMC

Sliding surface-based control strategies are a class of control methods that rely on the
design of a sliding surface, which is a function of the system state that is used to enforce a
desired behavior or trajectory of the system. Several sliding surface-based control strategies,
such as sliding mode control, adaptive sliding mode control, and adaptive fast terminal
sliding mode control, have been reviewed for use in controlling highly coupled rotor MIMO
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systems such as UAVs. General remarks that apply to all sliding surface-based control
strategies are provided below:
Limitations

While sliding surface-based control has several benefits for twin-rotor MIMO systems
such as UAVs, it has several limitations as well. These include:

• Control signal chattering: Although first-order SMC can reduce chattering compared
to higher-order sliding mode control techniques, it can still generate high-frequency
oscillations in the control signal. This can cause wear and tear on mechanical compo-
nents, decrease the lifespan of the vehicle, and lead to suboptimal control performance.

• Parameter sensitivity: First-order SMC can be sensitive to changes in the system
parameters, such as the mass and moment of inertia of the UAV. This can lead to poor
control performance or even instability if the parameters are not accurately known or
change during operation.

• Simplicity of implementation: First-order SMC is relatively easy to implement and
does not require extensive tuning of control parameters. This can reduce the develop-
ment time and cost of UAV control systems.

• Reduced tracking accuracy: First-order SMC may not provide the same level of
tracking accuracy as other control techniques such as model predictive control or
linear quadratic regulator. This can be a limitation in applications where precise
tracking of a desired trajectory is critical.

• Limited applicability: First-order SMC may not be suitable for all types of UAVs or
operating conditions; for example, it may not be effective for highly dynamic systems
with rapid changes in speed or acceleration.

• Limited convergence rate: The adaptation process in ASMC can lead to slower conver-
gence rates compared to traditional sliding mode control techniques. This can be a
limitation for UAVs that need to respond quickly to changes in their environment.

• Sensitivity to modeling errors: ASMC can be sensitive to modeling errors, which can
lead to poor control performance or even instability. This is because the adaptation
process relies on accurate knowledge of the system dynamics.

• Limited applicability: ASMC may not be suitable for all types of UAVs or operating
conditions. For example, it may not be effective for highly nonlinear systems or
systems with significant time delays.

• Chattering: A common issue with sliding surface-based control strategies is chattering,
which involves high-frequency oscillation of the control signal around the desired
value. Chattering can cause mechanical wear and tear in the actuators as well as noise
and vibration. Techniques such as the use of saturation functions or the introduction
of a switching gain can reduce the effect of chattering.

• Non-smoothness: Sliding surface-based control strategies are non-smooth, which
means that the control signal can switch abruptly between different values. This non-
smoothness can cause difficulties in the implementation of the control law, and can
introduce high-frequency noise and vibration. Careful consideration of the physical
limitations of the actuators and sensors is required to ensure that the control law can
be implemented smoothly.

• Model dependency: The performance of sliding surface-based control strategies is
highly dependent on the accuracy of the system model. Errors in the model can lead
to poor performance or instability. Techniques such as adaptive control or model
predictive control can be used to address this issue.

• Potential for actuator wear: The high-frequency control actions generated by TSMC
can potentially cause wear and tear on the UAV’s mechanical components, such as its
actuators. This can lead to increased maintenance costs and reduced system reliability
over time.

AFTSMC may require the use of specialized hardware or software, such as high-
speed processors or real-time operating systems. This can add to the complexity and
cost of implementing the control technique. Adaptive fast-terminal sliding mode control
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(AFTSMC) is a relatively new control technique that has shown promising results in
various nonlinear control applications. However, as with any control technique, it has
its limitations.

• One limitation of AFTSMC is that it can suffer from chattering, which is a phenomenon
in which the control signal oscillates rapidly around the desired value. This can result
in high-frequency noise as well as potential wear and tear on the mechanical compo-
nents of the system. Several researchers have proposed modifications to AFTSMC
to reduce chattering, such as adding a boundary layer to the sliding mode control or
using fuzzy logic to dynamically adjust the sliding mode gain [149,150].

• Another limitation of AFTSMC is that it can be sensitive to model uncertainties and
disturbances. While AFTSMC is designed to be adaptive to such uncertainties, in
practice there may be situations where the uncertainties are too large or the adaptation
process is too slow to compensate adequately. Several researchers have proposed mod-
ifications to AFTSMC to improve its robustness, such as using disturbance observers
or incorporating online learning algorithms [151,152].

Sliding surface-based control strategies offer a powerful tool for controlling highly
coupled rotor MIMO systems such as UAVs. While they provide robustness to distur-
bances and uncertainties, careful consideration of chattering, non-smoothness, and model
dependency is required to ensure the successful implementation of the control law.

Benifits of AFTSMC over SMC, TSMC, and ASMC

AFTSMC is a robust control technique that has several advantages over other sliding
surface-based hybrid controllers for UAVs. Among the benefits of AFTSMC are the following:

• Fast convergence: AFTSMC combines SMC and TSMC to achieve fast convergence to
the desired state. TSMC enables the system trajectory to reach the sliding surface in a
finite time, while SMC ensures that the sliding surface is stable thereafter. This results
in faster convergence compared to other sliding surface-based hybrid controllers.

• Robustness: AFTSMC incorporates adaptive control to account for uncertainties in the
system parameters. The adaptation law updates the control gains in real time based
on the estimated system parameters, which enhances the robustness of the controller.
This makes AFTSMC more effective in dealing with uncertainties and disturbances
compared to other hybrid controllers.

• Chattering reduction: Chattering is a common problem in sliding mode control, result-
ing in high-frequency oscillations in the control signal. AFTSMC reduces chattering
by incorporating a fast terminal sliding surface, which reduces the time spent on the
sliding surface, and consequently the amplitude of the oscillations.

• Reduced control effort: AFTSMC reduces the control effort required to stabilize the
UAV. Both the sliding surface and the terminal sliding surface are designed to minimize
the control effort required to maintain stability, which reduces wear and tear on
the system.

Overall, AFTSMC combines the benefits of SMC, TSMC, and adaptive control to
achieve faster convergence, enhanced robustness, reduced chattering, and reduced control
effort compared to other sliding surface-based hybrid controllers for UAVs.

6.2.2. Remarks

Hybrid control is a control technique that combines multiple control strategies to
achieve better control performance. Compared to other sliding surface-based controllers
for UAVs, hybrid control has several advantages. Hybrid control has a number of benefits
over AFTSMC and other sliding surface controllers. Hybrid control for UAVs can improve
the robustness of the controller by combining multiple control strategies that can handle
different types of uncertainties and disturbances. For example, hybrid control can combine
adaptive control with model predictive control to achieve robust control performance in the
presence of model uncertainties and disturbances. In addition, hybrid control can improve
the tracking performance of the controller by combining different control strategies that
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are optimized for different aspects of the control problem. For example, hybrid control can
combine feed-forward control with feedback control to achieve better tracking performance
while minimizing control effort. Hybrid control can reduce chattering by combining
different control strategies that can mitigate chattering in different ways. For example,
hybrid control can combine sliding mode control with integral action to reduce chattering
while maintaining fast convergence. Finally, hybrid control is a flexible control technique
that can be customized to suit specific control problems. By combining different control
strategies, hybrid control can be tailored to optimize control performance while taking into
account system constraints and other requirements.

6.3. Adaptive Backstepping Control

Adaptive backstepping control is a nonlinear control approach that is used to design
control systems for complex dynamic systems such as UAVs. It has the ability to handle
parametric uncertainties and external disturbances effectively. By using adaptive back-
stepping control, UAVs can achieve better tracking performance, stability, and robustness.
Several studies have proposed and investigated the use of adaptive backstepping control
for UAVs. For instance, in [153] an adaptive backstepping control algorithm was proposed
for UAVs with parametric uncertainties and external disturbances. The proposed algorithm
was effective in tracking control and disturbance rejection. Another study [154] proposed
an adaptive backstepping control method for UAVs with input saturation and external
disturbances. The proposed control method was shown to achieve better tracking per-
formance compared to traditional backstepping control. Moreover, in [155] an adaptive
backstepping control method was proposed for UAVs with actuator saturation and external
disturbances. The proposed method was shown to achieve improved tracking performance
and robustness. Adaptive backstepping control has several benefits for controlling highly
coupled twin-rotor MIMO systems such as UAVs, including the following:

• Stability: Adaptive backstepping control is a Lyapunov-based control method that
ensures stability of the closed-loop system. This means that the control system is
guaranteed to converge to a stable equilibrium point and remain there even in the
presence of disturbances and uncertainties.

• Tracking performance: Adaptive backstepping control is capable of achieving high
tracking performance, which is important for UAVs that need to follow specific flight
paths and maintain a stable flight.

• Robustness: Backstepping control is a robust control method that can handle parameter
uncertainties, external disturbances, and measurement noise. This is particularly
important for UAVs that are subject to varying wind conditions, temperature changes,
and other environmental factors that can affect their flight dynamics.

• Reduced chattering: Adaptive backstepping control produces control signals that are
smooth and continuous, which reduces chattering in the control signal. This results in
smoother control actions and reduces wear and tear on the UAV’s mechanical components.

• Reduced chattering: Backstepping control produces control signals that are smooth and
continuous, which reduces chattering in the control signal. This results in smoother
control actions and reduces wear and tear on the UAV’s mechanical components.

• Energy efficiency: Backstepping control can be designed to minimize energy consump-
tion, which increases flight time and reduces the need for frequent battery replacements.

• Energy efficiency: Adaptive backstepping control can be designed to minimize en-
ergy consumption, which increases flight time and reduces the need for frequent
battery replacements.

• Adaptability: Adaptive backstepping control is capable of adapting to changes in the
UAV’s dynamics over time. This makes it a versatile control method that can handle
different operating conditions and environmental factors.

• Easy implementation: Adaptive backstepping control can be implemented using
standard digital signal processing techniques, making it easy to implement in modern
UAV control systems.
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The benefits of backstepping control make it a promising approach for controlling
highly coupled systems such as UAVs. By improving the stability, tracking performance,
robustness, energy efficiency, and ease of implementation of control systems, backstep-
ping control can help to improve the performance and reliability of UAVs in a variety
of applications.

Remarks

While backstepping and adaptive backstepping control have many benefits for control-
ling highly coupled systems such as UAVs, there are a number of limitations to this control
method. The adaptive law used in adaptive backstepping control may not converge in
certain situations, leading to unstable or oscillatory control performance. This can be a limi-
tation for UAVs that operate in highly dynamic and uncertain environments. Backstepping
and adaptive backstepping control are complex control methods that require a significant
amount of computing power and may be difficult to implement in real-time applications.
This can be a limitation for UAVs that require fast and accurate control responses. Back-
stepping and adaptive backstepping control require tuning of several parameters, such as
the control gains and the stability functions. If these parameters are not tuned correctly, the
control performance can be degraded. This can be a limitation for UAVs that operate in
changing environments where the optimal parameter values may vary. Backstepping and
adaptive backstepping control are dependent on the accuracy of the mathematical model
used to describe the system dynamics. If the model is not accurate, the control performance
can be compromised. This can be a limitation for UAVs that have complex and highly
nonlinear dynamics. Backstepping and adaptive backstepping control require accurate
measurements of the UAV’s state variables, such as its position and velocity. This can be a
limitation for UAVs that have limited sensor capabilities or operate in environments where
accurate measurements are difficult to obtain. Finally, designing a backstepping control for
a complex UAV system can be challenging, and may require significant expertise in control
theory and UAV dynamics.

Although backstepping and adaptive backstepping control have many benefits for
controlling UAVs, these limitations must be carefully considered when selecting a control
method for a particular application. Proper implementation and tuning are critical to
ensure the control system’s stability, tracking performance, and robustness in the presence
of disturbances and uncertainties.

6.4. Adaptive Backstepping Fast-Terminal Sliding Mode Control (AB-FTSMC)

Adaptive backstepping fast-terminal sliding mode control (ABFTSMC) is an advanced
control strategy that has gained attention in recent years due to its ability to provide robust
control for uncertain systems. In the context of a twin-rotor MIMO system, ABFTSMC can
provide effective control for the system despite the presence of external disturbances and
parametric uncertainties.

One of the advantages of ABFTSMC is that it combines the benefits of both adap-
tive control and sliding mode control. The adaptive control component allows the con-
troller to adapt to changes in the system dynamics or uncertainties in real-time, while the
sliding mode control component provides robustness against external disturbances and
parametric uncertainties.

Recent studies have demonstrated the effectiveness of ABFTSMC for UAVs. For
example, in [156], ABFTSMC was used to control a UAV with input nonlinearity. The
authors demonstrated that the proposed controller can effectively mitigate the effects of
input nonlinearity and external disturbances on the system. Similarly, in [157], ABFTSMC
was used to control a twin rotor MIMO system with actuator saturation and external
disturbances. The authors demonstrated the proposed controller’s ability to effectively
attenuate the effects of actuator saturation and external disturbances and showed that it
outperformed other control strategies.
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Remarks

ABFTSMC uses adaptive backstepping and fast terminal sliding mode control tech-
niques to achieve robust and accurate control of nonlinear MIMO systems. This con-
troller is capable of handling uncertain system parameters, external disturbances, and
input saturation, making it suitable for a wide range of practical applications. Simulation
results [156,157] have demonstrated the effectiveness of the proposed controller in control-
ling nonlinear MIMO systems, with improved tracking performance and reduced control
input chattering compared to other control methods. The proposed controller represents a
significant contribution to the field of nonlinear control and has the potential to be applied
in various real-world scenarios such as robotics, aerospace, and industrial control systems.
ABFTSMC is highly robust against parametric uncertainties, external disturbances, and
nonlinearities in the system. This makes it a suitable choice for controlling nonlinear MIMO
systems, which are typically subject to these types of uncertainty. ABFTSMC incorporates
adaptive control techniques, which means that it can adapt to changes in the system dy-
namics and uncertainties in real time. This makes it a highly flexible and adaptive control
strategy. The fast=terminal sliding mode control component of ABFTSMC ensures that the
control error converges to zero in a finite time. This means that the controller can quickly
achieve the desired control objective even in the presence of uncertainties and disturbances.
ABFTSMC can effectively handle input saturation, which is a common problem in MIMO
systems. The adaptive component of the controller ensures that the system can operate
within the input limits, while the sliding mode component ensures robustness against
external disturbances and uncertainties.

6.5. Model Predictive-Based Sliding Mode Control (MPSMC)

Model predictive-based sliding mode control (MPSMC) is a hybrid control strategy
that combines the benefits of MPC and SMC to control dynamic systems. In MPSMC, the
SMC is used to design a sliding surface that ensures the system’s stability and tracking
performance, while the MPC is used to optimize the control actions based on the predicted
future behavior of the system.

The basic idea behind MPSMC is to use the SMC to design a sliding surface that
guarantees the system’s stability and robustness against uncertainties and disturbances.
The sliding surface is defined as a hyperplane that separates the system’s behavior into
two regions: the sliding mode and the reaching mode. In the sliding mode, the system’s
behavior is constrained to follow the sliding surface, while in the reaching mode the sys-
tem’s behavior is guided towards the sliding surface. In [158], the authors proposed an
MPSMC strategy for the stabilization and trajectory tracking of a UAV in the presence of
uncertainties and disturbances, presented a detailed explanation of the MPSMC approach,
and demonstrated its effectiveness through simulations. In [159], the MPSMC strategy
was expressed with a different sliding surface design based on the predicted future behav-
ior of the UAV system. The authors showed the effectiveness of their approach through
simulations and experiments. In [160], the MPSMC approach was exploited for the atti-
tude stabilization of a UAV using a quaternion-based representation of the system. The
authors explained the details of their approach and demonstrate its effectiveness through
simulations and experiments.

In their review article, the authors of [161] compared the performance of MPC, SMC,
and MPSMC for the stabilization and trajectory tracking of UAVs. They provide a de-
tailed explanation of the MPSMC approach and show its superiority in terms of tracking
performance and robustness.

Remarks

After the sliding surface is designed, the MPC is used to optimize the control actions
based on the predicted future behavior of the system. The MPC predicts the future states of
the system and calculates the optimal control actions that minimize a cost function subject to
constraints. The control actions are then applied to the system and the process is repeated at
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each time step. The MPC can handle constraints on the system’s inputs and states, ensuring
that the control actions remain within physical limitations. MPSMC can be easily adapted
to different systems and operating conditions, making it a versatile control method. The
SMC guarantees the system’s stability and tracking performance, while the MPC optimizes
the control actions to minimize a cost function subject to constraints. MPSMC is a promising
approach for controlling dynamical systems, including highly coupled wind rotor MIMO
systems such as UAVs, that require robustness, tracking performance, constraints handling,
adaptability, and reduced chattering. By combining the benefits of MPC and SMC, MPSMC
can help to improve the performance and reliability of control systems for a variety of
applications. Despite its many benefits, there are limitations on the use of model predictive
based sliding mode control (MPSMC) to control highly coupled wind rotor MIMO systems
such as UAVs, which are discussed below.

The use of MPC in MPSMC can lead to increased computational complexity, especially
for systems with large state and control spaces. This can lead to significant computational
overhead and make it difficult to implement MPSMC in real-time control applications.
MPSMC requires the tuning of several parameters, including the sliding surface, cost func-
tion, and prediction horizon, which can be challenging and time-consuming. In addition,
the tuning process can be sensitive to changes in the system dynamics or environmental
conditions, requiring frequent recalibration. MPSMC relies on accurate system models for
prediction and optimization. However, there may be modeling errors due to uncertainties,
disturbances, or unmodeled dynamics that can affect the accuracy of the control actions.
The use of MPC in MPSMC can lead to input saturation, where the control inputs reach
their physical limits. This can result in degraded control performance and reduced stability
margins. The complexity of MPSMC can make it difficult to interpret and understand the
control actions and their effects on the system. This can make it challenging to diagnose
and correct control errors or to explain the system’s behavior to stakeholders.

6.6. Fuzzy Logic-Based Nonlinear Control Strategies

Instead of using the Boolean logic that computers typically utilize, fuzzy logic operates
on the concept of “degree of truth”. Because the degree of truth can have any real value
among 1 and 0, it is a many-valued logic. This control strategy’s logical thinking is similar
to that of humans in that there are many options in between the Boolean values “yes”
and “no”. Therefore, in this method the level of input possibilities is used to compute
the precise output. The word “fuzzy” used to describe this control strategy alludes to
its ability to produce predictable outputs for a variety of distorted and unclear inputs.
Fuzzy also means uncertain or confused. While fuzzy logic controllers do not depend on a
precise mathematical model, other linear and nonlinear controllers are more dependent on
a precise and accurate mathematical model of the system. This characteristic, which relies
solely on approximation reasoning, makes building a control system for any complicated
system simpler. The min–max rules, which combine the membership functions using
OR and AND logic, are a significant flaw in fuzzy logic [162,163]. Both the robustness
and the human-like reasoning for several inputs are lacking from these principles. This
control strategy has been applied in several UAV control investigations [162–166], and
better outcomes have been noted [166,167]. Investigations in several articles [166,168,169]
explain hybrid control strategies based on backstepping. A robust adaptive controller for a
UAV was designed using the aforementioned control schemes after the UAV dynamical
model was initially published. The adaptive fuzzy system was utilized to approximate
the value of the generated control law, while backstepping was employed to derive the
control law required to stabilize and track the intended location. The resulting controller
assures asymptotic tracking. The developed adaptive fuzzy backstepping controller and
the backstepping controller’s comparative findings were compared to alternatives, with
the proposed controller performing accurate tracking [170].

Another study [171] concentrated on the notion of combining integral backstepping
with fuzzy logic to enhance the performance of the flight controller. Simulation findings
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showed that the fuzzy-integral backstepping strategy performed better than traditional
integral backstepping. An evolutionary approach was used to add a control structure to
the fuzzy-based sliding mode control for UAVs. To prevent chattering, this method can be
researched further using second-order sliding mode control.

Remarks

The use of fuzzy logic-based nonlinear control designs for UAV systems is appropriate
in that a global controller can be created by locally defining control laws in terms of verbal
expressions. Another benefit of this method is that no precise model is required for the
design of the controller. Instead, it necessitates thorough knowledge and experience of the
designer with the specific system. The system’s local behavior can be changed through
the defined local rules, which are user-generated and depend on selected membership
functions. While fuzzy controllers can technically be used with nonlinear systems, proving
their stability and robustness analytically is time-consuming.

6.7. Neural Network-Based Nonlinear Control Strategies

Artificial neural networks (ANNs) process information similarly to organic neurons. In
this paradigm, the structure of the linked neurons and their capacity for adaptive learning is
crucial for information processing. The processing components of interconnected neurons
cooperate to solve a particular issue and learn from examples in a manner similar to
humans. Learning in ANNs occurs in a similar way to how it occurs in biological neurons
when synaptic connections are changed by training. This learning can take place online or
offline, allowing ANNs to be used in practical applications.

The utilization of ANNs for various tasks, such as data categorization, pattern iden-
tification, picture recognition, speech recognition, handwriting recognition, extracting
patterns from large datasets, sales forecasting, and risk management, has been the focus of
significant research efforts. Moreover, ANNs find applications in electronics and control
systems. In the realm of unmanned aerial vehicles, several studies have employed ANNs
to develop controllers for UAV models and understand the complex nonlinear dynamics
through their approximation capabilities. A notable example is the comprehensive explo-
ration of backstepping control and neural network adaptation conducted by Madani and
Benallegue [100,172].

The deployment of ANNs spans a plethora of domains, including data categorization,
pattern recognition, image analysis, speech processing, handwriting interpretation, data
mining from extensive datasets, forecasting sales trends, and managing risks, all of which
have garnered substantial attention in recent research endeavors. Furthermore, ANNs
exhibit utility in electronics and control systems, showcasing considerable versatility. In
the context of unmanned aerial vehicles, ANNs have been extensively utilized to craft
controllers tailored to UAV models as well as to unravel the intricate nonlinear dynamics
inherent in their operations, leveraging the approximation properties of neural networks.
Noteworthy among these efforts is the in-depth investigation into backstepping control
and neural network adaptation conducted by Madani and Benallegue [173].

The utilization of Artificial Neural Networks spans across various domains, encom-
passing tasks such as data classification, pattern recognition, image processing, speech
analysis, and handwriting interpretation, as well as extracting insights from vast datasets
for purposes such as sales prediction and risk assessment. Additionally, ANNs show-
case their versatility in applications involving electronics and control systems. In the
realm of unmanned aerial vehicles, ANNs have been extensively employed to develop
controllers tailored to specific UAV models and to comprehend the intricate nonlinear
dynamics governing their behavior, leveraging the approximation capabilities inherent
in neural networks. A notable contribution in this regard is the exhaustive investigation
into backstepping control and neural network adaptation undertaken by Madani and
Benallegue [172].
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One of the primary advantages of this proposed control strategy lies in its indepen-
dence from detailed knowledge of physical characteristics and system models. Operating
under a few broad assumptions, this control method ensures the convergence of all closed-
loop dynamic states. Furthermore, it offers versatility, as it can be applied to UAVs of
varying masses and inertia within the same class without necessitating knowledge of
specific physical parameters. Notably, the concept of online adjustment of AANN weights,
obviating the need for a separate learning phase, is elucidated in this approach. Nonlineari-
ties inherent in the UAV model are estimated through multilayer ANNs.

Several studies [110,174,175] have explored dynamic inversion and direct inverse
control methods incorporating ANNs within the control system architecture. Meanwhile,
sliding mode control stands out as a prevalent technique for managing nonlinear systems.
This method operates by introducing a sliding manifold, which is a low-dimensional
subspace of the system’s state space along which the system’s state is steered towards a
desired trajectory.

In [176], the authors proposed a neural network-based adaptive backstepping control
approach for nonlinear MIMO systems with input saturation. The proposed approach uses
neural networks to approximate the unknown nonlinearities of the system and adaptive
laws to estimate the saturation boundaries of the input signals. The backstepping design
approach is employed to design a series of feedback control laws that drive the system’s
state to a desired trajectory. The control approach was shown to be effective in controlling
a two-link robot arm system, and the results were compared with those obtained using
a traditional backstepping control approach. The proposed approach was demonstrated
to outperform the traditional approach in terms of tracking accuracy, control effort, and
robustness against disturbances and uncertainties. This article provides a useful contribu-
tion to the field of adaptive backstepping control and its application to nonlinear MIMO
systems with input saturation. Another article [177] proposed an adaptive neural network
backstepping control approach for MIMO nonlinear systems with time-varying input delay.
The proposed approach uses a neural network to approximate the unknown nonlinearities
of the system and a backstepping design approach to design a series of feedback control
laws that drive the system’s state to a desired trajectory. An adaptive law was developed
to estimate the time-varying input delay, which was then compensated for in the control
design. The control approach was shown to be effective in controlling a three-tank system
with time-varying input delay, and the results were compared with those obtained using a
traditional backstepping control approach. The proposed approach was demonstrated to
outperform the traditional approach in terms of tracking accuracy and robustness against
input delay variations. This article provides a useful contribution to the field of adaptive
backstepping control and its application to MIMO nonlinear systems with time-varying
input delay.

In [178], the authors proposed a robust adaptive neural network backstepping control
approach for MIMO nonlinear systems with input saturation. The proposed approach
uses a neural network to approximate the unknown nonlinearities of the system and a
backstepping design approach to design a series of feedback control laws that drive the
system’s state to a desired trajectory. An adaptive law was developed to estimate the
saturation boundaries of the input signals, which were then compensated for in the control
design. The control approach was shown to be effective in controlling an unmanned
aerial vehicle system with input saturation, and the results were compared with those
obtained using a traditional backstepping control approach. The proposed approach
was demonstrated to outperform the traditional approach in terms of tracking accuracy
and robustness to input saturation. This article provides a useful contribution to the
field of adaptive backstepping control and its application to MIMO nonlinear systems
with input saturation. Learning the nonlinear behavior of any complex system using
neural network approximation property is a worthwhile technique to account for the
system’s uncertainties and bounded disturbances. The nonlinear functions [179–181]
have been commonly approximated using radial basis functions (RBFs). Extended radial
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basis functions (E-RBFs) and normalized radial basis functions (N-RBFs) are examples of
augmented RBF functions. In [181], both N-RBFs and E-RBFs were used to approximate a
UAV’s unknown dynamics.

In a few studies, the position controller has been viewed as a MIMO nonlinear system
and the function of the system approximated using a radial basis function neural network
(RBFNN). This is described in [182,183]. The originality of this study is in the online
training of an adaptive rule to approximate a complete controller. This controller, which
is RBFNN-based, offers adaptation for parametric uncertainties as well as other outside
disturbances. The controller’s generated outputs include the total thrust term as well as
the necessary roll and pitch angles for the attitude subsystem. Reinforcement learning
(RL) has been used to successfully tackle many complex issues, and well-trained networks
have surpassed human specialists in many challenging applications. Unfortunately, the
majority of robotics research on reinforcement learning has mostly been limited to higher-
level choices, while the state-actuator space, e.g., low-level actuator commands, has not
received much attention. A UAV flight controller was trained using reinforcement learning
in [183,184]. In [185], the authors proposed a neural network-based SMC method for a UAV.
This control algorithm combines the advantages of SMC and neural network control to
achieve improved control performance. Another paper [186] presented a neural network-
based SMC method for a UAV. The proposed control approach is designed to improve
the tracking performance of the system while maintaining robustness against parameter
uncertainties and external disturbances. A neural network-based SMC approach for a UAV
was presented in [187]. The control algorithm employs a feedforward neural network to
approximate the unknown system dynamics and an SMC approach to handle parameter
uncertainties and external disturbances.

Another neural network-based SMC method for a UAV was presented in [188]. The
control approach employs a feed-forward neural network to approximate the system
dynamics and a SMC approach to handle parameter uncertainties and external disturbances.
The proposed control approach was tested on a real-time experimental platform, and the
experimental results demonstrated its effectiveness in controlling the UAV. In [184], a policy
network was trained to use high-quality deterministic samples to translate UAV states
into thrust commands. While the majority of recent studies have provided learning rules
based on stochastic samples, deterministic policies use comparatively fewer samples than
stochastic policies, which lowers the processing cost. In order to control the flight of a UAV,
a model-based reinforcement learning policy was implemented in [189]. However, the
synthesized controller does not exhibit a promising response to the step input. In [190], a
neural network-based adaptive control was developed for UAV formation flight.

A small amount of research on UAV model neuro-fuzzy controller systems has
been published as well. Through the use of an adaptive neuro-fuzzy inference system,
Bhatkhande and Havens created an intelligent neuro-fuzzy controller [163]. The developed
controller was trained using traditional PD controller data. The controller’s real-time imple-
mentation demonstrated acceptable control performance. Similar outcomes were reported
in [191]. A UAV attitude controller was developed using type-2 fuzzy neural networks
according to an advanced study [192,193]. In this study, the network-based controller was
trained using the best parameter update rule. Unmanned aerial vehicle safety is crucial,
particularly when they are utilized for military operations and public missions. The UAVs
must be sophisticated enough to successfully mitigate any potential undesirable condition
in the event of any introduced defect, whether hardware- or software-based [163,191,193].
Insufficient research has been carried out on fault-tolerant control of quadrotors, and there
are a number of related problems that need to be addressed thoroughly, such as preventing
cyberattacks during high-profile spying missions, identifying injected flawed data, and
detecting sensor spoofing and wireless communication attacks. The authors of [190,193]
presented a thorough analysis of the susceptibility of autopilots to potential cyberthreats
and discussed several cyberattack tactics.
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Remarks

Ensuring resilience and tolerance against cyberthreats such as injected false data,
wireless communication attacks, and sensor spoofing, is imperative for intelligent control
of UAVs. Several research teams have delved into the utilization of neural network-
based observers to address the aforementioned challenges. However, this underscores
the pressing need for further research aimed at developing control structures that are
resistant to cyberattacks and other potential UAV hijacking scenarios. A fault-tolerant flight
controller must possess the ability to keenly sense anomalies and exhibit low susceptibility
to disturbances. Moreover, it should be capable of accurately estimating the magnitude
and severity of faults as well as promptly and precisely detecting and diagnosing them.

In the realm of UAV technology, sensor-based adaptive controls are revolutionizing
capabilities, facilitating more intelligent, autonomous, and efficient operations [78]. These
systems play a pivotal role in broadening the scope of applications for UAVs and represent a
crucial area of focus in both current and future UAV technology development. An overview
of sensor-based adaptive strategies are elaborated in Figure 13.

6.8. Integration of Sensors into UAV Control Systems

The integration of sensors into UAV control systems is a critical aspect of their opera-
tion, enhancing their capabilities and allowing for a wide range of functionalities [79,80].
This process involves several key elements and considerations.

Types of Sensors Used in UAVs

• Navigation Sensors: GPS for location, gyroscopes for orientation and balance, ac-
celerometers for speed and direction, magnetometers for heading.

• Environmental Sensors: Lidar for terrain mapping, infrared and thermal sensors for
night vision or heat mapping, multispectral cameras for environmental monitoring.

• Obstacle Detection Sensors: Ultrasonic sensors, radars, optical cameras for real-time
obstacle avoidance and situational awareness.

Figure 13. Overview of sensor-based adaptive control of UAVs.

Sensor Fusion

• Combining Data: Sensor fusion involves integrating data from multiple sources to
create a more comprehensive understanding of the UAV’s environment. For instance,
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combining GPS and IMU data can provide accurate positioning and movement infor-
mation [81].

• Enhanced Decision-Making: Sensor fusion allows for more precise control and decision-
making, as it mitigates the limitations of individual sensors and leverages their
strengths [82,83].

Control System Integration

• Feedback Loops: Sensors provide critical real-time data that feeds into the UAV’s control
system, enabling it to adjust its flight path, speed, altitude, and orientation [92].

• Autonomous Operations: For autonomous UAVs, sensors are integral to their ability
to navigate, perform tasks, and make decisions independently [92,93].

Data Processing and Analysis

• Onboard Processing: Advanced UAVs often have onboard computers to process
sensor data in real time, enabling immediate response to environmental changes.

• Algorithm Development: Developing algorithms that can efficiently and accurately
process sensor data is crucial. These algorithms must be capable of handling high
volumes of data from various sensors simultaneously.

Calibration and Synchronization

• Sensor Calibration: Calibration ensures that sensors are accurately calibrated, which is
vital for obtaining reliable data. Incorrect calibration can lead to errors in navigation
and environmental interpretation [51].

• Time Synchronization: Synchronizing data from various sensors is essential, especially
when combining data for decision-making [101].

Energy and Resource Management

• Power Consumption: Sensors and data processing both consume power. Balancing
energy consumption with operational efficiency is crucial, especially for missions
requiring longer flight times [102].

• Weight and Space Constraints: The size and weight of sensors need to be considered,
as they affect the UAV’s payload capacity and flight dynamics [103].

Challenges and Considerations

• Environmental Factors: Sensors must be robust enough to operate in various environ-
mental conditions, including weather changes, lighting variations, and temperature
extremes [123].

• Reliability and Redundancy: Ensuring sensor reliability and incorporating redundancy
for critical sensors is important for the safe operation of UAVs [123,124].

The integration of sensors into UAV control systems is a multifaceted process that
enhances UAVs’ capabilities in navigation, task execution, and environmental interaction.
It involves careful consideration of sensor selection, data fusion, control integration, and
resource management to ensure efficient and effective UAV operations.

6.9. How Sensor Data Enhance UAV Control Strategies

Sensor data play a pivotal role in enhancing the control strategies of Unmanned Aerial
Vehicles (UAVs), enabling more sophisticated, reliable, and adaptive operations [123,125].
Sensor data contribute to this enhancement in several ways.

Improved Situational Awareness

• Comprehensive Environmental Understanding: Sensors such as cameras, Lidar, and
radar provide UAVs with a detailed understanding of their surroundings. These
data is crucial for navigation, obstacle avoidance, and mission execution in complex
environments.

• Real-Time Adjustments: With real-time data, UAVs can adapt to changing environ-
mental conditions such as weather changes, unforeseen obstacles, and variable terrain,
thereby improving flight safety and effectiveness.



Sensors 2024, 24, 3286 39 of 51

Enhanced Navigation and Positioning

• Precise Location Tracking: GPS and IMU data enable accurate positioning, which is
essential for waypoint navigation and geospatial tasks [126].

• Stable Flight Control: Gyroscopes and accelerometers provide critical information
about the UAV’s orientation and movement, enabling stabilization and precise ma-
neuvering [127].

Optimized Flight Paths and Energy Efficiency

• Efficient Route Planning: Sensor data can be used to optimize flight paths for energy
efficiency, reduce battery usage, and extend mission duration [135].

• Adaptive Speed Control: By analyzing environmental data, UAVs can adjust their
speed to conserve energy or avoid hazards, contributing to smarter energy manage-
ment [136].

Advanced Task Execution

• Target Detection and Analysis: Specialized sensors such as thermal or multispectral
cameras allow UAVs to perform specific tasks such as crop monitoring, search and
rescue, and infrastructure inspection with greater accuracy [136].

• Automated Payload Deployment: In applications such as agricultural spraying or
package delivery, sensor data can guide precise payload deployment, enhancing the
effectiveness of these operations [137].

Improved Safety and Collision Avoidance

• Obstacle Detection: Ultrasonic sensors, Lidar, and optical cameras enable UAVs to
detect and avoid obstacles, which is crucial for safe operation in crowded or dynamic
spaces [138].

• Emergency Response: Sensor data can trigger automatic safety protocols such as
return-to-home or landing procedures in response to critical situations such as battery
failure or extreme weather conditions [194].

Facilitation of Autonomous Operations

• Self-Guided Systems: Integration of sensor data is essential for fully autonomous
UAVs. These data allow UAVs to make independent decisions about navigation and
task execution and to respond to environmental changes [143].

• Machine Learning and AI Integration: Sensor data can be fed to machine learning
algorithms, enabling UAVs to learn from past experiences, improve their responses,
and handle complex tasks with greater autonomy [144].

Enhanced Communication and Data Transmission

• Data for Ground Control: Sensor data transmitted to ground control stations provide
operators with essential information for remote decision-making and intervention
when necessary [145].

• Network Integration: In applications involving IoT, sensor data can be used to in-
tegrate UAVs into broader networks, facilitating tasks such as data collection and
monitoring across various locations [147].

Sensor data can significantly enhance UAV control strategies by providing the nec-
essary inputs for improved situational awareness, precise navigation, energy-efficient
operations, advanced task execution, safety protocols, autonomous functionalities, and
effective communication. This integration of sensor data into UAV systems is fundamental
to the advancement and diversification of UAV applications.

6.10. Examples of Sensor-Based Adaptive Control Methods in UAVs

Sensor-based adaptive control methods in Unmanned Aerial Vehicles (UAVs) leverage
real-time data from various onboard sensors to dynamically adjust control strategies [148].
These methods enhance the ability of UAVs to operate effectively and execute complex
tasks in varying conditions.
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GPS-Assisted Navigation

• Waypoint Navigation: GPS data are used to guide the UAV along predefined coordi-
nates while adapting its path based on real-time location data [149].

• Geofencing: GPS sensors enable UAVs to recognize and adhere to virtual boundaries,
automatically adjusting their flight path to stay within designated areas [151].

Vision-Based Obstacle Avoidance

• Optical Flow Sensors: When combined with cameras, these sensors allow UAVs to
detect and avoid obstacles by analyzing visual data and adapting their flight path
accordingly [152].

• Stereo Vision: By using two cameras to simulate 3D vision, UAVs can gauge the
distance and size of obstacles, then adjust their flight to avoid collisions [153].

• Lidar for Terrain Mapping: UAVs equipped with Lidar sensors can create detailed
3D maps of terrain and structures, helping to adapt their altitude and position for
precise mapping [155].

Inertial Measurement Unit (IMU) for Stabilization

• Gyroscopic Control: Gyroscopes in the IMU provide data for roll, pitch, and yaw
stabilization, adapting control inputs to maintain stable flight [156].

• Accelerometer Data: Accelerometers aid in maintaining a steady altitude and velocity
and in adjusting the UAV’s thrust and tilt in response to changes in movement [157].

• Thermal Imaging for Search and Rescue: UAVs can use thermal sensors to locate
people or animals by their heat signatures, especially in low-visibility conditions, by
adapting their search patterns based on thermal data [158].

• Multispectral Imaging for Precision Agriculture: These sensors enable UAVs to moni-
tor crop health by capturing data in various spectral bands by adapting their flight
over farmlands to identify areas needing attention [159].

• Wind Sensors for Energy-Efficient Flight: By measuring wind speed and direction,
UAVs can adapt their flight path and speed for more energy-efficient routing [162,163].

• Ultrasonic Sensors for Indoor Navigation: In indoor environments or when flying
close to surfaces, ultrasonic sensors can help maintain a safe distance by adapting the
UAV’s altitude and position to avoid collisions [163].

These sensor-based adaptive control methods demonstrate the enhanced capabilities of
modern UAVs, enabling them to perform a wide range of tasks more safely and effectively.
The integration of sensor data and intelligent utilization is fundamental in enhancing UAV
adaptability and potential applications.

7. Importance of Artificial Intelligence Control Techniques

Hybrid control theory is a specialized area within modern control theory that focuses
on systems demonstrating a combination of continuous and discrete behaviors. These
systems, referred to as hybrid systems, are marked by the interaction between continuous
dynamics and discrete events. Continuous dynamics refer to gradual changes in the
system’s state over time, much like those seen in traditional control systems, where variables
evolve smoothly; in contrast, discrete events represent abrupt changes or transitions in the
system’s behavior, such as switching between different operational modes or the occurrence
of events triggering sudden alterations in system dynamics [141].

For instance, consider an autonomous vehicle system. The continuous dynamics might
govern factors such as vehicle speed and acceleration, which change smoothly over time.
However, discrete events could include actions such as switching between driving modes
(e.g., from manual to autonomous) or reacting to sudden obstacles on the road [142].

Hybrid control theory addresses the unique challenges posed by systems exhibiting
both continuous and discrete behaviors. It focuses on understanding and effectively
managing the interaction between these dynamics, enabling the design of control strategies
that can handle the complexities inherent in hybrid systems [136,195].
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Real Word Applications of Control Strategies

In addition to theoretical advancements, the practical implementation of advanced
control strategies has demonstrated significant improvements in UAV operations across
various real-world applications. For instance, MPC has been successfully applied in au-
tonomous surveillance missions, enabling UAVs to dynamically track and follow moving
targets while avoiding obstacles in complex urban environments [196]. Feedback lineariza-
tion control has proven effective in enhancing the stability and maneuverability of UAVs
during high-speed flight operations, making it suitable for applications such as search and
rescue missions or aerial photography [197]. Moreover, the integration of sensor-based
adaptive controls and artificial intelligence-driven approaches has enabled UAVs to adapt
and respond to changing environmental conditions, enhancing their versatility and ability
to perform a wide range of tasks [198]. These case studies and real-world applications
highlight the practical impact and potential of advanced control strategies in advancing
UAV capabilities and expanding their range of applications [199]. By leveraging the insights
and methodologies discussed in this review, researchers, engineers, and practitioners can
further enhance the performance, autonomy, and reliability of UAV systems [200].

8. Recent Developments and Research Directions in UAV Control Strategies

In recent years, the field of UAV control has seen significant advancements driven by
technological innovations and the increasing complexity of applications [171].

8.1. Key Developments in UAV Control Strategies

• Advanced Sensor Integration: Enhanced use of sensors such as Lidar, GPS, thermal
imaging, and multispectral cameras has improved UAV capabilities in navigation,
obstacle avoidance, and task-specific operations [171].

• Improved Sensor Fusion Techniques: Developments in sensor fusion have allowed for
more accurate and reliable interpretation of environmental data, enhancing situational
awareness and decision-making [173,201].

• AI and Machine Learning Integration: The incorporation of AI and machine learning
has led to smarter UAVs capable of adaptive decision-making, predictive analytics,
and learning from past operations [172].

• Nonlinear and Adaptive Control Systems: To address the challenges posed by nonlin-
ear dynamics and coupling effects in UAVs, recent control strategies have focused on
adaptive and robust control systems that can operate effectively in a wide range of
conditions [176].

• Autonomous and Collaborative Operations: Progress in autonomous control has en-
abled UAVs to perform complex tasks with minimal human intervention. Developments
in swarm technology have opened avenues for collaborative UAV operations [177].

8.2. Current Research Trends and Emerging Techniques

• Energy-Efficient Control Algorithms: With the growing need for longer flight times, re-
search is focusing on developing control strategies that optimize energy consumption [132].

• Enhanced Autonomy in Unstructured Environments: Researchers are exploring ways
to improve UAV autonomy in complex and unstructured environments, such as dense
urban areas or natural disaster sites [178].

• Human–Machine Interaction: There is increasing interest in intuitive control interfaces
and systems that allow seamless human–UAV interaction, especially for applications
such as search and rescue and surveillance [131,132].

• 5G and IoT Integration: Leveraging 5G networks and IoT integration for real-time
data transmission and enhanced connectivity is a growing research area [130,131].

• Swarm Intelligence: The study of UAV swarms for coordinated multi-UAV oper-
ations offers significant potential for applications such as agricultural monitoring,
environmental surveillance, and defense [128,130–132].
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The advancements in UAV control strategies and the current focus of research reflect
the evolving needs and potentials of UAV technology. These developments promise to
enhance the capabilities, efficiency, and applicability of UAVs in various sectors.

8.3. Challenges and Opportunities in Current Research

While there are exciting prospects in UAV research, several challenges and opportuni-
ties need to be addressed:

• Regulatory and Safety Concerns: Ensuring that UAV operations comply with evolv-
ing regulatory frameworks and addressing safety concerns in shared airspace is a
major challenge.

• Cybersecurity: As UAVs become more connected and autonomous, they face in-
creasing risks due to cyberthreats. Research into secure communication and data
transmission is crucial.

• Robustness in Diverse Conditions: Developing UAV control systems that are robust
in a variety of environmental conditions, including adverse weather or GPS-denied
environments, remains a challenge.

• Scalability of Swarm Technologies: While swarm technology is promising, scaling it
for large-scale operations poses technical and logistical challenges.

• Ethical and Privacy Considerations: As UAVs become more pervasive, addressing
ethical and privacy concerns is essential, especially in surveillance applications [194].

The field of UAV control is rapidly evolving, with significant advancements in sensor
technology, AI, and autonomous systems driving research forward. Addressing the chal-
lenges in safety, regulatory compliance, cybersecurity, and ethical considerations will be
key to unlocking the full potential of these technological developments.

9. Future Challenges and Opportunities in UAV Control Strategies

• Greater Autonomy and Intelligence: Future UAV control systems are expected to
exhibit higher levels of autonomy and intelligence and be capable of complex decision-
making with minimal human input. Developments in AI and machine learning will en-
able UAVs to learn from experiences and adapt to new situations more effectively [140].

• Advanced Swarm Coordination: There is potential for significant advancements in
swarm coordination, allowing for more complex and scalable UAV operations. This
includes enhanced communication systems and algorithms for real-time adaptive
coordination among multiple UAVs [135].

• Robustness in Adverse Conditions: Control strategies that maintain robustness in
challenging environments such as extreme weather, high electromagnetic interference,
or GPS-denied areas are likely to be a key focus [134,135].

• Energy-Efficient Designs: With the increasing emphasis on sustainability, future control
strategies will need to prioritize energy efficiency, including the development of algo-
rithms that minimize power consumption and extend flight durations [128,130–132].

• Environmental and Wildlife Monitoring: Advanced UAVs can play a crucial role in
large-scale environmental monitoring, biodiversity conservation, and management of
natural resources, especially in remote and inaccessible areas [123,125].

• Urban Planning and Smart Cities: UAVs equipped with advanced control systems
will be instrumental in urban planning, traffic management, and infrastructure main-
tenance within smart cities [123].

• Disaster Response and Humanitarian Aid: UAVs can provide rapid real-time informa-
tion and aid delivery in disaster-stricken areas, significantly improving emergency
response efforts [125,127].

• Healthcare and Medical Delivery: There is potential for UAVs to be used in remote or
urgent medical deliveries such as transporting medication, blood, or medical supplies
to hard-to-reach areas [127].
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• Space Exploration: Advanced control systems could enable UAVs to explore extrater-
restrial environments, such as Mars or other planets, where manual control is not
feasible [125].

Significance of Sensor Integration in UAVs

Sensor integration plays a pivotal role in advancing the capabilities and performance
of UAV control systems. Recent advancements in sensor technology have enabled signif-
icant improvements in UAV navigation, stability, and autonomous operation [202]. For
instance, the integration of high-precision Global Navigation Satellite Systems (GNSS)
with inertial sensors has enhanced UAV positioning accuracy, enabling precise navigation
and waypoint following even in GPS-denied environments. Additionally, the adoption of
advanced optical and infrared cameras along with LiDAR and radar sensors has revolution-
ized the sensing capabilities of UAVs for obstacle detection and avoidance. Furthermore,
the incorporation of sophisticated environmental sensors such as air quality and tem-
perature sensors has expanded the scope of UAV applications to include environmental
monitoring and surveillance. These examples illustrate the practical impact of sensor
integration on UAV control systems, demonstrating how cutting-edge sensor technologies
are driving advancements in UAV performance, reliability, and autonomy. By leveraging
these integrated sensor systems, UAVs are capable of executing complex missions with
increased efficiency and safety, paving the way for broader adoption in various industries
and applications [196,203,204].

10. Open Research Questions and Future Research Directions

1. Human–UAV Interaction: How can interfaces for human–UAV interaction be im-
proved to make them more intuitive and effective, especially for untrained users?

2. Ethical and Privacy Concerns: What are the ethical implications of widespread UAV us-
age and how can privacy concerns be addressed, especially in surveillance applications?

3. Integration with Manned Aircraft: How can UAVs be safely and effectively integrated
into existing airspace, which is predominantly occupied by manned aircraft?

4. Counter-UAV Systems: As UAVs become more common, what are the strategies for
counter-UAV systems to prevent misuse or hostile UAV activities?

5. Cross-Domain Coordination: What are the prospects and challenges around coordi-
nating UAV operations across different domains, such as air, ground, and maritime?

The future of UAV control strategies is poised for significant advancements, offering a
myriad of opportunities across various sectors. Addressing open research questions and
overcoming challenges in integration, safety, and ethics will be crucial in realizing the full
potential of UAV technology in the years to come.

11. Conclusions

In this survey, we have thoroughly examined UAV control systems, focusing on TRMS
and quadrotor platforms, and have highlighted the necessity of advanced nonlinear control
strategies due to system complexity. While sensor integration enhances UAV capabilities,
it introduces challenges in data management. Traditional linear methods fall short, while
sensor-based adaptive and AI-driven approaches excel. Looking ahead, ongoing advance-
ments will shape UAV capabilities, unlocking new opportunities in complex environments.
This survey bridges theory and practice, deepening the understanding of nonlinear control
and the pivotal role of sensor integration in advancing UAV capabilities.
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