Kinematics of the Tennis Serve Using an Optoelectronic Motion Capture System: Are There Correlations between Joint Angles and Racket Velocity?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Data Processing
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bahamonde, R.E. Changes in angular momentum during the tennis serve. J. Sports Sci. 2000, 18, 579–592. [Google Scholar] [CrossRef] [PubMed]
- Whiteside, D.; Elliott, B.; Lay, B.; Reid, M. The effect of age on discrete kinematics of the elite female tennis serve. J. Appl. Biomech. 2013, 29, 573–582. [Google Scholar] [CrossRef]
- Colomar, J.; Corbi, F.; Brich, Q.; Baiget, E. Determinant Physical Factors of Tennis Serve Velocity: A Brief Review. Int. J. Sports Physiol. Perform. 2022, 17, 1159–1169. [Google Scholar] [CrossRef]
- Fett, J.; Ulbricht, A.; Ferrauti, A. Impact of Physical Performance and Anthropometric Characteristics on Serve Velocity in Elite Junior Tennis Players. J. Strength. Cond. Res. 2020, 34, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Reid, M.; Morgan, S.; Whiteside, D. Matchplay characteristics of Grand Slam tennis: Implications for training and conditioning. J. Sports Sci. 2016, 34, 1791–1798. [Google Scholar] [CrossRef]
- Hornestam, J.F.; Souza, T.R.; Magalhaes, F.A.; Begon, M.; Santos, T.R.T.; Fonseca, S.T. The Effects of Knee Flexion on Tennis Serve Performance of Intermediate Level Tennis Players. Sensors 2021, 21, 5254. [Google Scholar] [CrossRef]
- Elliott, B.; Marshall, R.; Noffal, G. Contributions of Upper Limb Segment Rotations during the Power Serve in Tennis. J. Appl. Biomech. 1995, 11, 433–442. [Google Scholar] [CrossRef]
- Tanabe, S.; Ito, A. A three-dimensional analysis of the contributions of upper limb joint movements to horizontal racket head velocity at ball impact during tennis serving. Sports Biomech. 2007, 6, 418–433. [Google Scholar] [CrossRef]
- Kovacs, M.; Ellenbecker, T. An 8-Stage Model for Evaluating the Tennis Serve:Implications for Performance Enhancement and Injury Prevention. Sports Health 2011, 3, 504–513. [Google Scholar] [CrossRef]
- Whiteside, D.; Elliott, B.; Lay, B.; Reid, M. A kinematic comparison of successful and unsuccessful tennis serves across the elite development pathway. Hum. Mov. Sci. 2013, 32, 822–835. [Google Scholar] [CrossRef]
- Tubez, F.; Schwartz, C.; Croisier, J.-L.; Brüls, O.; Denoël, V.; Paulus, J.; Forthomme, B. Evolution of the trophy position along the tennis serve player’s development. Sports Biomech. 2021, 20, 431–443. [Google Scholar] [CrossRef] [PubMed]
- Brocherie, F.; Dinu, D. Biomechanical estimation of tennis serve using inertial sensors: A case study. Front. Sports Act. Living 2022, 4, 962941. [Google Scholar] [CrossRef] [PubMed]
- Reid, M.; Elliott, B.; Alderson, J. Shoulder joint loading in the high performance flat and kick tennis serves. Br. J. Sports Med. 2007, 41, 884–889. [Google Scholar] [CrossRef] [PubMed]
- Reid, M.; Elliott, B.; Alderson, J. Lower-limb coordination and shoulder joint mechanics in the tennis serve. Med. Sci. Sports Exerc. 2008, 40, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Fett, J.; Oberschelp, N.; Vuong, J.L.; Wiewelhove, T.; Ferrauti, A. Kinematic characteristics of the tennis serve from the ad and deuce court service positions in elite junior players. PLoS ONE 2021, 16, e0252650. [Google Scholar] [CrossRef] [PubMed]
- Mourtzios, C.; Athanailidis, I.; Arvanitidou, V.; Kellis, E. Ankle and Knee Joint Kinematics Differ between Flat, Slice and Topspin Serves in Young Tennis Players. Eur. J. Sport Sci. 2022, 1, 16–22. [Google Scholar] [CrossRef]
- Reid, M.; Giblin, G. Another day, another tennis coaching intervention, but does this one do what coaches purport? Sports Biomech. 2015, 14, 180–189. [Google Scholar] [CrossRef]
- Zappala, J.; Orrego, C.; Boe, E.; Fechner, H.; Salminen, D.; Cipriani, D.J. Influence of Posture-Cuing Shirt on Tennis Serve Kinematics in Division III Tennis Players. J. Chiropr. Med. 2017, 16, 49–53. [Google Scholar] [CrossRef]
- Wagner, H.; Pfusterschmied, J.; Tilp, M.; Landlinger, J.; von Duvillard, S.P.; Muller, E. Upper-body kinematics in team-handball throw, tennis serve, and volleyball spike. Scand. J. Med. Sci. Sports 2014, 24, 345–354. [Google Scholar] [CrossRef]
- Fleisig, G.; Nicholls, R.; Elliott, B.; Escamilla, R. Kinematics used by world class tennis players to produce high-velocity serves. Sports Biomech. 2003, 2, 51–64. [Google Scholar] [CrossRef]
- Abrams, G.D.; Harris, A.H.; Andriacchi, T.P.; Safran, M.R. Biomechanical analysis of three tennis serve types using a markerless system. Br. J. Sports Med. 2014, 48, 339–342. [Google Scholar] [CrossRef] [PubMed]
- Reid, M.; Giblin, G.; Whiteside, D. A kinematic comparison of the overhand throw and tennis serve in tennis players: How similar are they really? J. Sports Sci. 2014, 33, 713–723. [Google Scholar] [CrossRef] [PubMed]
- Elliott, B.; Marsh, T.; Blanksby, B. A Three-Dimensional Cinematographic Analysis of the Tennis Serve. Int. J. Sport. Biomech. 1986, 2, 260–271. [Google Scholar] [CrossRef]
- Touzard, P.; Lecomte, C.; Bideau, B.; Kulpa, R.; Fourel, L.; Fadier, M.; Cantin, N.; Martin, C. There is no rush to upgrade the tennis racket in young intermediate competitive players: The effects of scaling racket on serve biomechanics and performance. Front. Psychol. 2023, 14, 1104146. [Google Scholar] [CrossRef]
- Wu, G.; Siegler, S.; Allard, P.; Kirtley, C.; Leardini, A.; Rosenbaum, D.; Whittle, M.; D’Lima, D.D.; Cristofolini, L.; Witte, H.; et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—Part I: Ankle, hip, and spine. J. Biomech. 2002, 35, 543–548. [Google Scholar] [CrossRef]
- Wu, G.; van der Helm, F.C.T.; Veeger, H.E.J.; Makhsous, M.; Van Roy, P.; Anglin, C.; Nagels, J.; Karduna, A.R.; McQuade, K.; Wang, X.; et al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—Part II: Shoulder, elbow, wrist and hand. J. Biomech. 2005, 38, 981–992. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.-W.; O’Connor, J.J. Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. J. Biomech. 1999, 32, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Merbah, J.; Jacquier-Bret, J.; Gorce, P. Effect of the presence or absence of upper limb support on posture when a smartphone user is in a seated position under ambient light conditions. Int. J. Ind. Ergon. 2020, 80, 103050. [Google Scholar] [CrossRef]
- Bonnefoy-Mazure, A.; Slawinski, J.; Riquet, A.; Leveque, J.M.; Miller, C.; Cheze, L. Rotation sequence is an important factor in shoulder kinematics. Application to the elite players' flat serves. J. Biomech. 2010, 43, 2022–2025. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef]
- Jaen-Carrillo, D.; Garcia-Pinillos, F.; Chicano-Gutierrez, J.M.; Perez-Castilla, A.; Soto-Hermoso, V.; Molina-Molina, A.; Ruiz-Alias, S.A. Level of Agreement between the MotionMetrix System and an Optoelectronic Motion Capture System for Walking and Running Gait Measurements. Sensors 2023, 23, 4576. [Google Scholar] [CrossRef]
- Bahamonde, R. Review of the biomechanical function of the elbow joint during tennis strokes: Review article. Int. Sportmed. J. 2005, 6, 42–63. [Google Scholar]
- Eygendaal, D.; Rahussen, F.T.; Diercks, R.L. Biomechanics of the elbow joint in tennis players and relation to pathology. Br. J. Sports Med. 2007, 41, 820–823. [Google Scholar] [CrossRef]
- Rogowski, I.; Creveaux, T.; Sevrez, V.; Cheze, L.; Dumas, R. How Does the Scapula Move during the Tennis Serve? Med. Sci. Sports Exerc. 2015, 47, 1444–1449. [Google Scholar] [CrossRef]
- Gillet, B.; Rogowski, I.; Monga-Dubreuil, E.; Begon, M. Lower Trapezius Weakness and Shoulder Complex Biomechanics during the Tennis Serve. Med. Sci. Sports Exerc. 2019, 51, 2531–2539. [Google Scholar] [CrossRef] [PubMed]
- Martin, C. Tennis serve biomechanics in relation to ball velocity and upper limb joint injuries. J. Med. Sci. Tennis 2014, 19, 35–39. [Google Scholar]
- Elliott, B. Biomechanics and tennis. Br. J. Sports Med. 2006, 40, 392–396. [Google Scholar] [CrossRef]
- Kibler, W.B.; Chandler, T.J.; Livingston, B.P.; Roetert, E.P. Shoulder range of motion in elite tennis players. Effect of age and years of tournament play. Am. J. Sports Med. 1996, 24, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Roetert, E.P.; Ellenbecker, T.S.; Brown, S.W. Shoulder Internal and External Rotation Range of Motion in Nationally Ranked Junior Tennis Players: A Longitudinal Analysis. J. Strength. Cond. Res. 2000, 14, 140–143. [Google Scholar]
- Kraemer, W.; Triplett, N.; Fry, A.; Koziris, L.; Bauer, J.; Lynch, J.; McConnell, T.; Newton, R.; Gordon, S.; Nelson, R. An In-Depth Sports Medicine Profile of Women College Tennis Players. J. Sport. Rehab 1995, 4, 79–98. [Google Scholar] [CrossRef]
- Gillet, B.; Begon, M.; Sevrez, V.; Berger-Vachon, C.; Rogowski, I. Adaptive Alterations in Shoulder Range of Motion and Strength in Young Tennis Players. J. Athl. Train. 2017, 52, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Ellenbecker, T.S.; Roetert, E.P.; Bailie, D.S.; Davies, G.J.; Brown, S.W. Glenohumeral joint total rotation range of motion in elite tennis players and baseball pitchers. Med. Sci. Sports Exerc. 2002, 34, 2052–2056. [Google Scholar] [CrossRef] [PubMed]
- Elliott, B.; Fleisig, G.; Nicholls, R.; Escamilia, R. Technique effects on upper limb loading in the tennis serve. J. Sci. Med. Sport. 2003, 6, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Kibler, W.B.; Ludewig, P.M.; McClure, P.W.; Michener, L.A.; Bak, K.; Sciascia, A.D. Clinical implications of scapular dyskinesis in shoulder injury: The 2013 consensus statement from the ‘Scapular Summit’. Br. J. Sports Med. 2013, 47, 877–885. [Google Scholar] [CrossRef]
Racket Acceleration | Racket Velocity | Racket Vertical Position | ||||
---|---|---|---|---|---|---|
Cocking | Acceleration | Cocking | Acceleration | Cocking | Acceleration | |
Dominant shoulder flexion | ||||||
Dominant shoulder abduction | ||||||
Dominant shoulder medio-lateral rotation | (−0.68) | −0.76 | 0.84 | (0.57) | ||
Dominant elbow flexion | (0.50) | −0.93 | (−0.58) | −0.96 | ||
Dominant forearm pronation/supination | (−0.52) | (0.59) | ||||
Dominant wrist flexion/extension | (−0.56) | (0.62) | (0.62) | (0.53) | ||
Dominant wrist radio-ulnar deviation | ||||||
Trunk flexion/extension | (0.63) | −0.81 | −0.72 | −0.84 | ||
Trunk inclination | (0.66) | (0.54) | ||||
Trunk axial rotation | 0.76 | 0.75 | ||||
Dominant hip flexion | ||||||
Dominant hip abduction | (0.65) | |||||
Dominant hip medio-lateral rotation | (0.62) | −0.71 | 0.76 | |||
Dominant knee flexion | (0.69) | 0.83 | −0.90 | |||
Dominant ankle flexion | (0.62) |
Joint Angle | Degree of Freedom | Player 1 | Player 2 | Player 3 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Slow | Fast | AD * | Slow | Fast | AD * | Slow | Fast | AD * | ||
Neck | Flexion (−)/extension (+) | 12.8 | 12.5 | 0.3 | 46.9 | 47.1 | 0.2 | 41.7 | 39.7 | 2.1 |
Left (−)/right (+) inclination | 22.0 | 18.8 | 3.2 | 11.4 | 6.2 | 5.2 | 3.4 | 7.8 | 4.4 | |
Left (+)/right(−) rotation | 2.5 | −3.6 | 6.2 | −30.7 | −28.4 | 2.3 | −3.8 | −3.4 | 0.5 | |
Trunk | Flexion (−)/extension (+) | 13.6 | 14.9 | 1.3 | 9.0 | 1.9 | 7.1 | 7.7 | 14.2 | 6.5 |
Left (−)/right (+) inclination | −24.1 | −27.6 | 3.5 | −34.8 | −25.2 | 9.5 | −40.8 | −40.6 | 0.2 | |
Left (+)/right (−) rotation | −4.5 | −2.0 | 2.5 | 0.6 | −2.2 | 2.7 | 5.2 | 9.6 | 4.3 | |
Pelvis | Anteversion (−)/retroversion (+) | −19.6 | −20.6 | 1.0 | −47.8 | −44.9 | 2.9 | −28.2 | −27.0 | 1.2 |
Left (−)/right (+) inclination | −22.8 | −18.6 | 4.1 | −19.3 | −17.5 | 1.8 | −10.7 | −14.1 | 3.3 | |
Left (+)/right (−) rotation | −25.2 | −25.2 | 0.0 | 13.4 | 23.6 | 10.2 | −16.1 | −17.6 | 1.6 | |
Dominant Shoulder | Abduction(−)/adduction (+) | −93.0 | −94.9 | 1.9 | −91.7 | −93.7 | 2.0 | −98.8 | −101.0 | 2.2 |
Flexion (+)/extension (−) | 47.6 | 40.9 | 6.6 | −11.7 | −16.7 | 4.9 | 23.6 | 24.8 | 1.2 | |
Medial (+)/lateral (−) rotation | −84.8 | −78.1 | 6.7 | −89.5 | −69.8 | 19.7 | −91.2 | −100.7 | 9.5 | |
Dominant Elbow | Flexion (+) | 37.6 | 23.7 | 13.9 | 14.8 | 11.6 | 3.2 | 20.7 | 24.2 | 3.5 |
Dominant Forearm | Pronation (+) | 130.6 | 94.9 | 35.7 | 105.1 | 94.8 | 10.3 | 81.5 | 77.5 | 3.9 |
Dominant Wrist | Flexion (+)/extension (−) | −6.8 | −20.7 | 13.9 | −13.7 | −16.7 | 3.1 | −16.1 | −12.6 | 3.6 |
Radial (−)/ulnar (+) deviation | 32.2 | 19.5 | 12.7 | 23.0 | 25.2 | 2.2 | 3.8 | 12.7 | 8.9 | |
Right Hip | Flexion (+)/extension (−) | 16.6 | 17.8 | 1.3 | 41.8 | 39.7 | 2.0 | 18.9 | 16.4 | 2.5 |
Abduction (−)/adduction (+) | 12.6 | 11.9 | 0.7 | 6.9 | 3.1 | 3.8 | 4.4 | 5.6 | 1.2 | |
Medial (+)/lateral (−) rotation | 9.6 | −2.6 | 12.2 | −9.2 | −22.5 | 13.3 | −17.0 | −12.3 | 4.6 | |
Right Knee | Flexion (−) | 0.2 | 10.6 | 10.4 | −13.1 | −33.5 | 20.4 | 2.4 | 1.7 | 0.7 |
Medial (+)/lateral (−) rotation | −13.9 | −26.6 | 12.7 | −15.0 | −11.4 | 3.6 | −18.3 | −16.2 | 2.1 | |
Right Ankle | Flexion (+) | −13.9 | −17.5 | 3.6 | −40.9 | −33.5 | 7.4 | −47.5 | −46.1 | 1.4 |
Left Hip | Flexion (+)/extension (−) | 23.4 | 27.6 | 4.1 | 59.9 | 61.3 | 1.4 | 36.7 | 34.6 | 2.1 |
Abduction (−)/adduction (+) | −31.7 | −28.6 | 3.1 | 9.0 | 12.8 | 3.8 | −10.2 | −15.1 | 4.9 | |
Medial (+)/lateral (−) rotation | −11.6 | 0.0 | 11.6 | 16.6 | 13.6 | 3.1 | 1.6 | −3.3 | 4.9 | |
Left Knee | Flexion (−) | −18.1 | −16.5 | 1.6 | 2.0 | −11.9 | 14.0 | −16.6 | −14.7 | 1.9 |
Medial (+)/lateral (−) rotation | −15.5 | −19.5 | 4.0 | −3.9 | 0.2 | 4.1 | 0.8 | −0.8 | 1.6 | |
Left Ankle | Flexion (+) | −16.0 | −21.1 | 5.1 | −41.9 | −32.2 | 9.7 | −41.8 | −40.7 | 1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacquier-Bret, J.; Gorce, P. Kinematics of the Tennis Serve Using an Optoelectronic Motion Capture System: Are There Correlations between Joint Angles and Racket Velocity? Sensors 2024, 24, 3292. https://doi.org/10.3390/s24113292
Jacquier-Bret J, Gorce P. Kinematics of the Tennis Serve Using an Optoelectronic Motion Capture System: Are There Correlations between Joint Angles and Racket Velocity? Sensors. 2024; 24(11):3292. https://doi.org/10.3390/s24113292
Chicago/Turabian StyleJacquier-Bret, Julien, and Philippe Gorce. 2024. "Kinematics of the Tennis Serve Using an Optoelectronic Motion Capture System: Are There Correlations between Joint Angles and Racket Velocity?" Sensors 24, no. 11: 3292. https://doi.org/10.3390/s24113292
APA StyleJacquier-Bret, J., & Gorce, P. (2024). Kinematics of the Tennis Serve Using an Optoelectronic Motion Capture System: Are There Correlations between Joint Angles and Racket Velocity? Sensors, 24(11), 3292. https://doi.org/10.3390/s24113292