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Abstract: With the introduction of deep learning, a significant amount of research has been conducted
in the field of computer vision in the past decade. In particular, research on object detection (OD)
continues to progress rapidly. However, despite these advances, some limitations need to be overcome
to enable real-world applications of deep learning-based OD models. One such limitation is inaccurate
OD when image quality is poor or a target object is small. The performance degradation phenomenon
for small objects is similar to the fundamental limitations of an OD model, such as the constraint
of the receptive field, which is a difficult problem to solve using only an OD model. Therefore, OD
performance can be hindered by low image quality or small target objects. To address this issue, this
study investigates the compatibility of super-resolution (SR) and OD techniques to improve detection,
particularly for small objects. We analyze the combination of SR and OD models, classifying them
based on architectural characteristics. The experimental results show a substantial improvement when
integrating OD detectors with SR models. Overall, it was demonstrated that, when the evaluation
metrics (PSNR, SSIM) of the SR models are high, the performance in OD is correspondingly high as
well. Especially, evaluations on the MS COCO dataset reveal that the enhancement rate for small
objects is 9.4% higher compared to all objects. This work provides an analysis of SR and OD model
compatibility, demonstrating the potential benefits of their synergistic combination. The experimental
code can be found on our GitHub repository.

Keywords: deep learning; neural networks; super-resolution; object detection; face recognition

1. Introduction

Deep learning (DL) has facilitated tremendous progress in the computer vision do-
main in recent years. Cutting-edge results have been consistently achieved using public
benchmark datasets such as ImageNet [1], Pascal VOC [2], and MS COCO [3]. As new
challenges emerge in Kaggle competitions, researchers are increasingly focused on applying
successful DL models to real-world applications, including autonomous driving, visual
inspection, robotics, medical image analysis, and masked face recognition [4,5].

Object detection (OD) is a critical technique for addressing various computer vision
problems. The development of detection networks, such as Faster R-CNN [6] and You Only
Look Once (YOLO) [7], has enabled the practical implementation of vision applications with
exceptional performance and rapid processing capabilities. Nonetheless, a fundamental
limitation exists that cannot be resolved solely by OD: performance degradation when
image quality is low, e.g., in the presence of image noise [8]. This performance degradation
is particularly pronounced when detecting small objects [9]. We found that employing
image super-resolution (SR) to convert low-quality input images into high resolution can
overcome this issue, analogously to how wearing glasses can improve poor vision [9].
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Although previous studies [10,11] have applied SR to OD tasks, an in-depth analysis of
the fusion of various SR architectures and object detectors remains unexplored. To address
this, we investigate well-known DL-based SR models and representative OD models
reported in the literature, assessing the compatibility of these models for detailed profiling.
The selection criteria for SR models involved classifying neural network models based
on their architectural characteristics and selecting high-performance models from each
group, using peak signal-to-noise ratio (PSNR) and structural similarity index measure
(SSIM) [12] as performance indicators. We conducted comprehensive experiments with the
MS COCO [3] and Widerface [13] datasets, examining the performance change in object
detectors according to the SR method and quantifying the improvement in object detector
performance using the SR method.

In this paper, we start with the definition of the single-image SR task (Section 3),
followed by the classification of major SR models (Section 4) and OD models (Section 5)
based on their structural characteristics, providing a brief explanation of their architectural
components. We then compare the OD performance improvement of well-known SR and
OD models (Section 6), summarizing and sharing key findings from the experimental results
(Section 7). In our experiments, we employ multiple degradation methods to simulate
various low-resolution image conditions by applying various degradation methods to the
original images. As a result, our experiment showed that the OD performance increased
when the SR method was applied to the low-resolution image, and it was confirmed that,
in particular, the performance improvement was the largest for small objects. The main
contributions of this study are as follows:

• We observe that, as the PSNR and SSIM values of the SR models increased, the perfor-
mance improvement rate of the OD models also increased. Interestingly, even when
the PSNR and SSIM values were reduced for SR models utilizing adversarial learning,
OD performance still increased.

• We introduce the performance enhancement rate as a metric to empirically analyze
the compatibility between SR models and object detectors based on their structural
features. Our analysis reveals that pre-upsampling-based SR models have negligible
impact, and transformer-based object detectors exhibit higher compatibility with SR
models than other detection models. This insight is expected to guide future research
in addressing the limitations of transformer-based detectors.

• We conducted experiments using the latest OD model and SR models like the transformer-
based ones. In the recent transformer-based SR models, despite improvements in
PSNR and SSIM metrics for bicubic interpolation (BI) degradation, a decrease in OD
performance was observed. Conversely, OD performance improvements were noted
for both blur downscale (BD) and downscale noise (DN) degradation. For the recent
transformer-based object detector, such as DETR, performance augmentation was
indeed observed. However, the extent of performance improvement, when compared
to alternative models, remained modest.

• We provide experimental evidence according to which, even when SR models are trained
independently, combining them with OD models can improve OD performance.

2. Background

SR, a low-level computer vision task, aims to enhance image or video quality. In recent
years, research has explored the interconnectedness of SR and high-level computer vision
tasks. For example, Pang et al. [14] demonstrated improved small-scale pedestrian detection
by jointly training the SR and classification modules. Wang et al. [15] proposed a method to
enhance semantic segmentation performance by training the SR and semantic segmentation
modules concurrently. Xiao et al. [16] proposed a method of applying video super-resolution
(VSR) to online video. Ju et al. [17] proposed super-resolution photometric stereo network
(SR-PSN) to acquire high-resolution 3D surface structures.

There are two main branches for combining OD and SR: directly applying SR on the
image, and applying SR on features extracted from the detector backbone. Various methods
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have been proposed for SR on input images [11,18], while Zheng et al. [19] used deblurring
to improve the input image. Moreover, SOD-MTGAN [10] utilized SR for regions of interest
(RoIs). On the other hand, Noh et al. [20] applied SR to features extracted from the backbone.

In the literature, most studies trained models jointly. However, if performance im-
provement occurs without joint training, it has the advantage of being easy to use by
attaching two models. This is also due to the fact that the training recipe becomes rather
complicated if models are trained jointly. Thus, in this study, we will experiment with
vanilla combinations (i.e., SR–OD) that confirm the performance improvement only from
the structural point of view of the SR and OD models. With a good combination of the per-
formance improvement confirmed here, we expect to be able to achieve greater performance
improvement through joint training later.

3. Single Image Super-Resolution Methods

An SR method can be approached differently depending on whether the input data
type is a video or a single image. The scope of SR methods in this study is limited to
single-image SR (SISR) to determine whether SR improves the detection performance of an
object detector.

Conventional SR methods can primarily be classified as example-based, reconstruction-
based, and interpolation-based [21]. Example-based SR methods, which show the best
performance among the previously mentioned methods, are also referred to as learning-
based methods because they are based on machine learning. To capture the relationship
between LR and HR images, example-based SR methods learn a mapping function based
on machine learning methods such as sparse representation [21], local linear regression [22],
and random forest [23].

Example-based SR methods have evolved to train DL-based SISR models based on a
rich HR–LR image pair dataset.

ILR = D(IHR + n1) + n2 (1)

where D and n denote a downsampling method and noise, for Gaussian noise, blur ⊂ n.
An LR image ILR of a dataset is commonly generated via a downsampling method, such
as bicubic interpolation in the original HR image IHR, as shown in Equation (1). Well-
known degradation methods commonly used in SR experiments include BI, BD, and DN.
BI generates LR output through downsampling only with bicubic interpolation. BD blurs
an HR image using a 7 × 7 Gaussian kernel with a standard deviation of 1.6 and generates
an LR image through BI. DN generates a temporary LR image through BI degradation via
the addition of Gaussian noise at noise level 30 to the generated LR image [24]. Complex
degradation that involves BD or DN is employed to simulate a more complex image as a
real image is more complex than that obtained by simply using BI.

The DL-based SR model is highly dependent on the performance of the degradation
method as it learns a mapping function that reverses the degradation method (i.e., from LR
to HR). Accordingly, recent studies have been proposed to generate LR images similar to
reality by compounding degradation such as BI, BD, and DN [25,26].

ISR = N(ILR) (2)

The general principle of a CNN-based SR model is shown in Equation (2). An SR
model N generates an image ISR of the same resolution as that of the original image IHR
using downsampled ILR as its input and learns to equalize it to IHR. N learns LR–HR
denoising and mapping functions through this process and can generate an HR image
robustly, even when a new LR image is used as input.

Initial models, such as the SR convolutional neural network (SRCNN) [27], have been
used to simulate the conventional SR algorithm using a simple CNN model. With the
advancement of CNN models, studies for SR tasks, such as VDSR [28], based on deeper
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and more complex models [29], have been proposed. Recently, various DL architectures
have been applied to SR tasks, such as the super-resolution generative adversarial network
(SRGAN) [30]. At the same time, studies to implement the CNN architecture for sparse
coding and the reference-based approach, which are traditional concepts employed before
DL, such as SCN [31] and CrossNet [32], have been conducted.

Upsampling Methods in SISR

Upsampling methods have the most significant impact on SR model performance as
they restore LR images to HR images. The effect of these methods varies depending on the
timing of the application and how the upsampling method is implemented [9].

The structure according to the upsampling position of an SR model is shown in
Equations (3) and (4). Here, U denotes the upsampling function, C denotes the convolution
filter, including the bias term, activation function, and batch normalization (BN), and i
denotes the index of the layer.

Npre = U(ILR) ∗ C1 ∗ C2 ∗ . . . ∗ Ci (3)

Npost = U(ILR ∗ C1 ∗ C2 ∗ . . .) ∗ Ci (4)

Initial DL-based SR models, including SRCNN [27] or VDSR [28], were primarily
pre-upsampling models that used interpolation to enlarge input images, as shown in
Equation (3). However, one disadvantage of pre-upsampling models is that their operation
is inefficient, which is why post-upsampling models, such as FSRCNN [33] and ESPCN [34],
upsample the feature map at the end of the network, as shown in Equation (4). However, it
was pointed out that these post-upsampling models are not advantageous for obtaining
good results as they perform upsampling only once.

Nprog = Un(. . . (U1(ILR ∗ C1 ∗ . . .) ∗ Cm ∗ . . .)) ∗ Ci (5)

Niter = Un(Dn−1 . . . (D1(U1(ILR ∗ C1 ∗ . . .)))) ∗ Ci (6)

A progressive upsampling (reconstruction) method, such as Nprog of Equation (5),
which performs upsampling through several stages, as in the Laplacian pyramid SR net-
work (LapSRN) [35], is proposed to solve this problem. Furthermore, an iterative up-
sampling and downsampling model, which performs upsampling and downsampling
(D) recursively, rather than upsampling only once, is also proposed, as shown in Niter of
Equation (6). A representative example is DBPN [36].

4. Taxonomy of Super-Resolution Architectures

This study investigates 35 DL-based SR models and classifies them hierarchically
according to their main architectural features, as shown in Figure 1. In other words, they
are classified primarily based on their learning methods, i.e., supervised or unsupervised
learning. Furthermore, supervised learning methods are subdivided into single-flow and
residual learning architectures. Except for the initial model or a few models, residual
learning has been used for most models. Residual learning is generally a structure that uses
skip connections, which adds an input value of a convolution operation to an output value,
preventing gradient vanishing. This structure allows for additional layers to be stacked on
top of a shallow model. Skip connections, in addition to preventing vanishing gradients,
play an important role in the SR task. This is due to the fact that residual learning in an SR
model generally fuses the output of a CNN with the conventional interpolation method.
Due to this structural advantage, the number of models that use skip connections has
increased (Figure 2). In Section 4.2, we explain details for residual learning approaches. We
represented the compilation of shapes used for figures, as shown in Figure 3.
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Figure 1. Hierarchically structured taxonomy of representative deep learning-based SR models.
* indicates the model used in the experiment. The dotted line indicates a model also included in other
architectural styles, and the black background is an architecture using a multi-scale receptive field.
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4.1. Single-Flow Architecture

The operation direction of SR models comprises a single flow; thus, this model design
is concise, which is an advantage. However, these models are difficult to deepen for high-
level feature extraction as there is no skip connection or multi-path.

SRCNN [27] is the first model to apply CNN to an SR task. SRCNN is a pre-upsampling
model that uses a grayscale LR image upsampled through bicubic interpolation as input.
It consists of a simple network structure with three convolution layers (64 channels of a
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9 × 9 kernel, 32 channels of a 5 × 5 kernel, and one channel of a 5 × 5 kernel). The patch
extraction and representation layer, which is the first layer, extract patches with features
from an LR input. In the nonlinear mapping layer, which is the second layer, multidimen-
sional patches are mapped nonlinearly to other multidimensional patches. HR images are
reconstructed from these multidimensional patches in the reconstruction layer, which is the
final layer [27]. Mean squared error (MSE) was used as the loss function, and SRCNN was
slightly better than the conventional SR method in terms of PSNR and SSIM. Attempts to
stack the network deeply resulted in unstable learning and performance degradation.

The efficient sub-pixel convolutional neural network (ESPCN) [34] is the first model
that involves sub-pixel upsampling. Shi et al. [34] proposed a method for upscaling through
sub-pixel convolution after extracting features from an LR image to alleviate the high
computational complexity of overall SR operation. This method outputs feature maps using
n2 filters to perform ×n upscaling, as shown in Figure 4, and combines the feature maps into
n feature maps of the upscaled scale. As sub-pixel convolution is an operation on the feature
map of the LR image scale, where the computational complexity is significantly reduced,
compared to the pre-upsampling method. As a result, this method was used in several
subsequent post-upsampling models. However, it has the disadvantage of generating
checkerboard artifacts, which are a type of noise.

Figure 4. Sub-pixel convolution of ESPCN [34]. Each color represents the differences between feature
map channels.

The fast super-resolution convolutional neural network (FSRCNN) [33] was proposed
to address the limitation that SRCNN cannot be executed in real time (24 fps). Since existing
SRCNNs use bicubic interpolation to upsample input LR images, FSRCNN has a post-
upsampling structure that uses transposed convolution (deconvolution) at the network’s
end. Inputting LR images without preprocessing significantly increased computational
efficiency. In comparison to SRCNN, FSRCNN has four additional convolutional layers,
and PReLU [37] is used as the activation function instead of ReLU. The feature map is
reduced in the second layer using a 1 × 1 convolution in the third layer, and then expanded
again with a 1 × 1 convolution in the fourth layer. Consequently, an execution speed was
increased from 1.3 fps to 24 fps or more depending on the CPU.

Multi-Degradation Architecture

With a multi-degradation architecture, several degradation methods have been applied
to an input image to realize SR.

The super-resolution network for multiple degradation (SRMD) [38] was released in
2018. SRMD uses a single-flow structure that does not apply residual learning. Rather than
using residual learning, Zhang et al. [38] used a variety of techniques, including ReLU, BN,
and the Adam optimizer [39], to adequately set the depth of the model and ensure effective
model training. This model is characterized by upsampling SR subimages to fit the HR
scale through sub-pixel convolution. By concatenating an LR image with the corresponding
degradation maps and passing them through a CNN, several SR subimages of the LR scale
are generated. Degradation maps stretch each dimension of the vector, which is generated
by using principal component analysis to reduce the dimension of a blur kernel vector and
concatenating it with the noise-level value to match the scale of the LR image. This model
approaches SR by inputting degradation information directly into the CNN.
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4.2. Residual Learning-Based Architecture

Residual learning can be classified as a globally connected or locally connected method
according to the skip connection range. The globally connected method employs interpo-
lation to combine an upsampled LR image and the output of a model at the network’s
end. This method was proposed in the VDSR model and was intended to learn residuals
with HR using a CNN based on SR via the conventional interpolation method. The locally
connected method uses a skip connection inside and outside the convolution block. This
structure is useful for extracting high-level features because it stabilizes learning even when
the models are stacked deeply, and it is commonly used in various models that adopted
ResNet [40], such as SRGAN [41], and enhanced deep super-resolution (EDSR) [42].

4.2.1. Upscaling Depth and Width of Model

Attempts have been made to improve performance in SR tasks by increasing network
capacity. VDSR [28] and EDSR [42] are representative examples of this approach. The VDSR
and EDSR models improved performance by significantly increasing network capacity
when compared to existing models.

VDSR [28] is based on modified VGGNet [29] and uses a global skip connection to
connect the input and output. An LR image used as input is upsampled to the HR scale
through bicubic interpolation. VDSR is a ground-breaking model composed of 20 layers,
which is significantly deeper layering than existing models. VDSR converges a model
effectively by applying a high learning rate and gradient clipping at the start of learning.

EDSR [42] is based on a modified SRResNet [41]. In SR, an image has a fixed pixel
value range; therefore, the BN layer is not required. Moreover, the use of the BN layer can
degrade information in the extracted features. As a result, Lim et al. [42] did not use the
BN layer in EDSR, reducing computational costs by 40%. As well as reducing computa-
tional costs, the model’s learning capacity was increased by upscaling both its width and
depth [42]. The EDSR model won first place in the NTIRE 2017 challenge [43]. Lim et al. [42]
demonstrated that network width and depth are strongly related to performance even in
SR tasks by showing PSNR and SSIM values close to those of models released since 2018.
However, there is a limit to the degree of performance improvement that can be realized by
upscaling a model. Furthermore, with large-scale models, inference is slow, and the risk of
overfitting is increased [44,45].

4.2.2. Recursive Architecture

As shown in Figure 5, EDSR [42] demonstrated that expanding the depth and width
of a network improved the SR performance; however, the number of parameters is sig-
nificantly increased. By recursively using the same convolution layer multiple times, a
recursive architecture is designed to extract higher-level features while keeping the number
of parameters small.
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The deeply-recursive convolutional network (DRCN) [46] extracts features using the
same convolutional layer several times. To generate their respective sub-outputs, these
features are connected directly to the construction layer via a skip connection. Sub-outputs
are combined to derive the final output. Due to the fact that the same bias and param-
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eters are used repeatedly, there are issues with exploding and vanishing gradients. The
gradient problem was addressed by two techniques: (i) taking the average value of the
features produced by the same convolution and (ii) applying a skip connection to the
reconstruction layer.

As shown in Figure 6a, the very deep persistent memory network (MemNet) [47]
receives an LR image bicubic-upsampled as input. This model directly transmits input
and feature maps, which are output-passed through memory blocks, to the reconstruction
module. In the reconstruction module, feature maps are used to create each intermediate
SR image and then fuse them to generate an SR image. MemNet convolution consists of BN,
ReLU, and convolution layers in the form of pre-activation. A memory block comprises
recursive and gate units, where the recursive unit is a residual block with two convolution
layers. The structure of the recursive unit allows it to pass the same residual block multiple
times. The feature map output from each convolution layer and the output from the memory
blocks are directly connected to the gate unit (i.e., 1 × 1 convolution). The gate unit is
structured to remember features that may fade away whenever they pass through a layer.
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The deep recursive residual network (DRRN) [49] uses the ResNet structure as a
backbone. However, the residual block is replaced by a recursive block that is used to stack
several convolution layers. DRRN, unlike DRCN, recursively uses the entire block rather
than a single convolution layer. To learn consistently, DRCN employs a multi-supervision
strategy. Due to these structural characteristics in DRRN, the model is simplified.

The dual-state recurrent network (DSRN) [44] performs upsampling and downsam-
pling recursively using the same transposed convolution and convolution layer. This is in
contrast to DRCN and DRRN, which recursively use the same convolution layer. The con-
cept of performing recursive upsampling and downsampling is similar to DBPN [36].
However, unlike DBPN, the process is not densely connected. Compared with DRRN,
although the performance is similar at a sampling rate of ×2 and ×3, it is slightly degraded
at a sampling rate of ×4, and it shows a significant difference from DBPN in that the PSNR
is 1% or lower. Like DRCN, DRRN adopts a multi-supervision strategy, i.e., the final output
is created by averaging all intermediate n outputs generated every n times.

The non-local recurrent network (NLRN) [50] is a DL model for estimating non-local
self-similarity that was previously widely used in image restoration. Some features contain
information about each image, which is referred to as self-similarity. A non-local module is
used to generate feature correlation to determine self-similarity. Through 1 × 1 convolution,
the non-local module extracts the correlation from each pixel in a specific area of the
feature map’s neighborhood q × q. In addition, NLRN increases parameter efficiency
and propagates correlations with neighboring pixels in adjacent recurrent states, taking
advantage of the RNN architecture. Strong correlations for various degradations can be
estimated through the inter-state flow between these feature correlations.
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The super-resolution feedback network (SRFBN) [48] is a structure that operates one
feedback block recursively, as shown in Figure 6b. However, similar to the DBPN [36],
the outputs of each convolution in the feedback block are densely connected via recursive
upsampling and downsampling. By bicubic upsampling an input LR image and adding it
to the feedback block, the overall design can be considered a model that ultimately learns
residuals. Although the performance for BI degradation did not differ significantly from
that of EDSR [42], better performance than that of relational dependency networks (RDNs)
was generally shown [24] for the complex degradation problem of BD and DN. SRFBN uses
curriculum learning, which trains learning models in a meaningful order, from the easy
samples to the hard ones. As a result, SRFBN may be a good fit for a complex SR degradation
problem. The model for BD generated by complex degradation is specifically trained by
comparing two front outputs among four outputs with Gaussian blurred HR (intermediate
HR) and L1 loss three times. In addition, the model is trained by comparing two outputs
at the back with the original HR. Compared to RDN, SRFBN shows better results for a
complex degradation image SR problem after applying curriculum learning [48]. Note that
SRFBN is constructed with parameters equivalent to 8% of those in EDSR by adopting a
recursive architecture.

4.2.3. Densely Connected Architecture

Feature maps from each convolution block are transmitted to the input of subsequent
blocks, as in DenseNet [51]. This structure significantly reduces the number of parameters
by enhancing the reuse of features and mitigating the gradient vanishing problem in object
classification tasks [51]. In particular, low-dimensional features contain critical information
in an SR task. This is due to the fact that even low-dimensional features can have high-
frequency details (e.g., edges and textures) that must be restored in HR images [52]. Unlike
ResNet’s skip connection, a densely connected architecture concatenates and uses features
rather than simply adding them. This architecture ensures that important features from
low to high dimensions do not vanish while passing through layers.

SRDenseNet [52] uses a post-upsampling method that employs a network in which
dense blocks are applied to transposed convolution. The dense block structure connects
the output of the n-th convolution layer from the n + 1 layer to the N layer in a by-pass
form. It can transmit the extracted feature to the bottom of the network without distorting
it because the feature map generated as a result of the convolution in the dense block is
used as input to the next layer via concatenation with the feature map transmitted through
a by-pass.

RDN [24] was modified on the basis of SRDenseNet, and the residual dense block
(RDB) was employed by adding skip connection to the dense block. The structures of the
RDN and RDB are shown in Figure 7a. The RDB is designed to learn the local pattern of
an LR image using all the outputs of the block immediately before reconstructing an SR
image. Since the dense connection rapidly increases the number of channels, the number of
channels is reduced through 1 × 1 convolution in the RDB.
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Figure 7. Representative models of densely connected architecture. (a): (i) RDN structure [24].
(ii) Residual dense block in RDN. (b): (i) DBPN structure [36]. (ii) Up-projection unit in DBPN.

DBPN [36] uses a densely connected architecture and iteratively performs upsam-
pling and downsampling, as shown in Figure 7b. This differs from existing models that
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perform upsampling only once. DBPN performs upsampling twice in the up-projection
unit. The progress of the up-projection unit is as follows:

Freduct = Conv(1, Fin) (7)

FH1 = Deconv(Freduct) (8)

FL = Conv(FH1)− Freduct (9)

FH2 = Deconv(FL) + FH1 (10)

where Freduct, FH , and FL indicate the feature map-reduced dimensions by 1 × 1 convolution
(i.e., Conv(1, x) in Equation (7)), the feature map upsampled to HR scale, and the feature
map downsampled to LR scale, respectively. FH1 can be considered an upsampling error
as it differs from the original input feature map. The down-projection unit also performs
downsampling twice in this structure. This process demonstrated good performance in the
×8 BI track of the NTIRE 2018 challenge [53]. However, the structure is complex, and the
computational cost increases as the number of parameters increases.

The enhanced super-resolution generative adversarial network (ESRGAN) [54] is
based on SRResNet. First, the BN layer is removed, as in EDSR. Second, three dense blocks
(consisting of five layers of convolution with leaky ReLU) are stacked in the residual block,
with the skip connections connected before and after the dense block. The residual-in-
residual dense block (RRDB) is a modified architecture that is used as a GAN generator
in ESRGAN.

The cascading residual network (CARN) [55] is modified through the application of
group convolution and point convolution to ResNet. The existing residual block consists of
convolutions and ReLU, whereas the residual-e block in CARN stacks two group convolu-
tions and ReLU and adjusts the number of channels by a 1 × 1 convolution. By stacking
residual-e blocks and a 1 × 1 convolution alternately, the cascading block densely connects
the output to form a single module that comprises the network. A final network is con-
structed by stacking a cascading block and a 1 × 1 convolution alternately. The number of
parameters is reduced by changing the existing convolution to a group convolution while
using the dense connection that reuses features as much as possible.

4.2.4. GAN-Based Architecture

When only the pixel-wise loss function is used in an SR task, the fine texture of a
generated image tends to be blurry. A GAN-based SR model was proposed to address this
problem. Adversarial learning establishes a relationship in which the generator generates
an SR image and the discriminator distinguishes whether the image is real or fake. In
general, it is built by adding a discriminator similar to VGGNet [29] to the existing SR
model (generator). Although the images appeared to be better visually, the PSNR and SSIM
values indicated deterioration.

SRGAN [41] is a GAN-based SR model that uses SRResNet, adopting the modified
ResNet structure as a generator and a structure similar to VGGNet as a discriminator,
as shown in Figure 8. The feature map-wise MSE loss was used rather than the pixel-wise
MSE loss, as the existing models do not adequately represent the fine-grained texture and
the SR image is blurred overall. Sub-pixel convolution is used for upsampling. The feature
map-wise MSE loss calculates errors by comparing SR and HR images with the feature
map obtained by passing through a pretrained VGG19 [41].
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EnhanceNet [56] also grafted the feature map-wise loss onto the GAN. The difference
between EnhanceNet and SRGAN is that it uses a nearest-neighbor upsampling because
checkerboard artifacts are generated when using transposed convolution. The potential
loss of information is prevented by applying connected residual learning globally, which
adds bicubic upsampled images of input LR images.

SRfeat [57] also uses a generator that adopted the ResNet structure. A 9 × 9 filter is used
for the first convolution layer, whereas the output of each residual block is compressed
through 1 × 1 convolution and added through a skip connection immediately before
sub-pixel upsampling. SRFeat attempted to maximize representation through a feature
discriminator that uses GAN-based learning for feature maps to generate feature maps that
more accurately represent actual features. Three types of loss are employed to achieve this
goal: (i) the perceptual loss of the feature map-wise MSE, (ii) the image-wise GAN loss,
and (iii) the feature map-wise GAN loss.

ESRGAN [54] also uses the feature map-wise MSE loss by employing VGG19. Com-
pared to SRGAN, it is different in that feature maps are compared before passing them
through the activation, which is used to show sharper edges and obtain more visually
pleasing results. In addition, Wang et al. [54] proposed a network interpolation technique as
follows. Given ϕ = αϕpixel + (1 − α)ϕGAN for 0 < α < 1, where ϕpixel and ϕGAN denote the
parameters trained using pixel-wise loss and the GAN method, respectively. This method
removes unpleasant artifacts and meaningless noise while retaining the high visual quality
obtained through adversarial learning.

For super-resolution by neural texture transfer (SRNTT) [58], it is stated that the tex-
ture generated by GAN-based SR models must be a fake texture that seems real. SRNTT
attempted to address this problem by grafting a reference-based method onto a GAN.
The Wasserstein GAN gradient penalty [59], which measures the distance between distribu-
tions, was used as the adversarial loss and was modified based on the L1 norm to achieve
more stable learning than in existing GANs.

4.2.5. Reference-Based Architecture

SR is an ill-posed problem as there may be multiple corresponding HR images for a
single LR image [45]. To address this issue, SR methods that makes use of similar textures
in other images were proposed as a reference. Although this method can produce more
visually sophisticated results, the quality of the results may vary depending on the similarity
of the referenced image.

The end-to-end reference-based super-resolution network using cross-scale warping
(CrossNet) [32] obtains a feature map for a similar texture by comparing the reference
(Ref) image and the SR image with a flow estimator, which is a network that estimates
optical flow, after generating an SR image by using an existing SR model. Slightly modified
FlowNetS [60] was used as a flow estimator. The proposed flow estimator decodes a new
SR image by fusing the Ref features with the features of the SR images generated from
the existing SR model. EDSR [42] was used as the SR model, and U-Net [61] were used as
the encoder and decoder in CrossNet, respectively. The charbonnier penalty function [62]
is used as a loss function that compares SR and HR images. Although the flow estimator
could be learned end-to-end, its loss was not explicitly defined.

SRNTT [58] calculates the similarity between the LR image patch and the reference
image patch through dot product by using the feature map extracted using VGGNet [29],
as shown in Figure 9. Then, the feature map extracted from the LR patch is partially replaced
with the feature map from the reference patch with high similarity.

Ltexture = ∑
l

λl ||Gr(ϕl(ISR) · S∗
l )− Gr(ϕl(IRe f ) · S∗

l )||F (11)

The texture loss Ltexture in Equation (11) was used for texture similarity training [58].
|| · ||F and ϕ denote the Frobenius norm and the feature space, respectively. Gr(·) com-
putes the Gram matrix, and λl is a normalization factor corresponding to the feature size
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of layer l [58]. S∗
l represents a weighting map for all LR patches calculated as the best

matching score [58]. Compared to CrossNet, the texture loss for the Ref image Ltexture is
explicitly defined.

Ltotal = Lpixel + L f eat + Ladv + Ltexture (12)

As shown in Equation (12), the total loss function of SRNTT consists of the pixel-wise
MSE loss Lpixel , the feature map-wise loss L f eat, the adversarial loss (WGAN-GP loss)
Ladv, and the texture loss Ltexture. Unlike CrossNet, SR images can be created end-to-end,
and textures with high similarity in the local patch are searched and imported.
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Figure 9. (i) Overall architecture of SRNTT [58]. (ii) The process of texture transfer using the feature
map of a reference image Fn(Re f ↓↑) and an LR image Fn(LR ↑).

The texture transformer network for image super-resolution (TTSR) [63] captures the
relevance between an LR image and a reference image using Transformer architecture [64].
TTSR starts with the SRNTT model and removes all BN layers and the reference part. SRNTT
employs a pretrain VGGNet [29] as a texture extractor, whereas TTSR uses a Learnable
ConvNet (i.e., learnable texture extractor (LTE)) with five convolution and two pooling
layers. This LTE is trained end-to-end and used to calculate the relevance (similarity)
between the LR image and reference image using Q, K, V (query, key, value) attention
in the feature map-wise; where Q, K, V denote the LR↑ patch feature, the Ref↓↑ patch
feature, and the Ref patch feature, respectively. Also, ↑ and ↓ represent bicubic upsampling
and bicubic downsampling, respectively, i.e., ↓↑ means performing downsampling and
upsampling sequentially to match distributions of the Ref patch with the LR↑ patch.

The TTSR transfers the textures of patches by following this process. (i) Relevance
embedding: The hard/soft attention map and similarity are calculated using the normalized
inner product of the LR↑ patch feature Q and the Ref↓↑ patch feature K. (ii) Hard attention:
The transferred texture features T are generated using hard attention by replacing the
Ref↓↑ patch feature K with the Ref patch feature V. (iii) Soft attention: After concatenating
T with the LR patch feature F and performing convolution on them, this is multiplied
element-wise with the soft attention map S and added again with the LR patch feature F
as follows:

Fout = F + Conv(Concat(F, T))⊙ S (13)

4.2.6. Progressive Reconstruction Architecture

Since post-upsampling methods upsample the feature map from the end of the net-
work to the final scale only once, they cannot extract features from the HR image space. A
progressive reconstruction architecture gradually upsamples the feature map in the middle
of the network to compensate for this problem.
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The sparse coding-based network (SCN) [31] is a model that simulates the conventional
sparse coding concept using CNN and has a structure that performs gradual upsampling.
Through the patch extraction layer, the model performs sparse coding using the learned
iterative shrinkage and thresholding algorithm (LISTA) [65] subnetwork, followed by HR
patch recovery and a combination of the output patch. The LISTA subnetwork operates in
two recurrent stages, each of which consists of two fully connected layers and an activation
function that uses a specific threshold. In addition to the fully connected layer, the threshold
value used for activation is learned.

LapSRN [35] consists of two branches responsible for feature extraction and image
reconstruction (Figure 10), respectively. LapSRN gradually upsamples an input image and
extracts HR features from the image in the feature extraction branch. LapSRN is designed to
enable the stable learning of a model through a residual connection between LR and HR in
the image reconstruction branch. Transposed convolution is used as an upsampling method.
Furthermore, because the model has several intermediate outputs, the Charbonnier loss,
which is derived from the L1 loss, is used to effectively control outliers.

(
)

(
)

+ +

(
)

+

Figure 10. LapSRN architecture [35]. The top blue arrows represent the feature extraction branch,
and the bottom yellow arrows represent the image reconstruction branch.

SRNTT and TTSR are based on progressive reconstruction to use the feature map of
the reference image according to each scale.

4.2.7. Multi-Path Architecture

The multi-path architecture comprises the network flows in multiple branches, and ex-
tracts features of different roles for each path. The features are transmitted and used in their
original form, or they are fused. This multi-path can be categorized either as global or local.

Global Multi-Path

Each feature map output from multiple convolutional layers is transmitted immedi-
ately before the reconstruction layer and used together for image reconstruction. In other
words, it does not rely solely on the features extracted from the final convolution layer.
Due to the nature of an SR task, features that can be extracted from shallow layers have an
impact on the reconstruction process.

RDN [24] connects several RDB blocks through dense connection and global skip
connection. First, high-dimensional features are extracted through the mainstream, and for
the local patterns to be preserved, the output of each RDB block is transmitted through
a global skip connection immediately before the upsampling layer. Models constructed
in this form include SRDenseNet [52], DBPN [36], CARN [55], and a multi-scale residual
network (MSRN) [66]. Although SRFeat [57] also used a global multi-path, the feature map
output from each block is compressed using 1 × 1 convolution and element-wise sum,
which is performed through the skip connection immediately before the upsampling layer.

MemNet [47], DRCN [46], and the cascaded multi-scale cross network (CMSC) [67]
generate intermediate output SR images with feature maps extracted from each block and
convolution layer and weighted sum intermediate outputs to generate the final output.
This is a multi-supervision strategy that can be categorized as a global multi-path because
the feature maps output in each step are used as they are.
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Context-wise network fusion (CNF) [68] fuses each output using several SRCNN [27]
models with varying filter sizes. The roles of each unique model are used well by employing
the global multi-path form, and their results can be combined adequately.

ISR = F(S1,...,SM)(x) =
M

∑
j=1

Wj×Sj(x) + bj (14)

where ISR denotes the final SR image, and the equation represents a method for multiplying
and adding SR (S1, ..., SM) images of each model by the weight of the fusion layer. CNF first
trains each independent model individually, then freezes all independent models learned
in the previous step and trains the fusion layer. Following these steps, the CNF model is
fine-tuned from beginning to end.

LapSRN [35] used the feature extraction branch and image reconstruction branch
separately for each purpose, as shown in Figure 10. This can also be classified as a global
multi-path form because the features extracted from each module were used unaltered.

Local Multi-Path

This structure transmits features to multiple paths within a block. The information
distillation network (IDN) [69] consists of a feature extraction block (FBlock), a distillation
block (DBlock), and a reconstruction block (RBlock), as shown in Figure 11a. FBlock extracts
LR image feature maps using two 3 × 3 filters. DBlock consists of an enhancement unit
and a compression unit. The enhancement unit uses many local paths through a structure
that divides the channel of the feature map output from the third internal convolution by
1
n , concatenates 1

n with the input of the unit, and transmits the remaining n−1
n to the next

convolution layer. At the end, the concatenated feature map and the feature map extracted
from the original direction are combined. Furthermore, group convolution is used in the
enhancement unit’s second and fourth convolution layers to reduce computational costs
and prevent an increase in the number of deep network parameters, which is why relatively
few filters were used per layer. Subsequently, the output of the enhancement unit is used
by reducing its dimension via a 1 × 1 convolution known as a compression unit. In RBlock,
SR results are generated by upsampling the feature map extracted through transposed
convolution and adding it to the bicubic upsampling LR image.
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Figure 11. Representative models of multi-path architecture. (a): (i) IDN structure [69]. (ii) Distillation
block in IDN. (b): (i) MSRN structure [66]. (ii) Multi-scale residual block in MSRN. This shows a
schematic of a block consisting of multi-scale receptive fields in parallel.

CMSC [67] used a global multi-path and constructed a stacked multi-scale cross
(SMSC) module that crosses the flow of features and stacks it in a network. The multi-scale
cross (MSC) module connects multiple filters of various scales in parallel and averages the
inputs of the module element-wise. The averaged feature map is applied to the outputs of
parallel-connected filters, each filter connected via a skip connection. The SMSC module is
stacking and repeating MSC modules.

The MSRN [66] model uses both global and local multi-paths. MSRN is based on a
concept similar to CMSC; however, it has three main differences from CMSC, as shown in
Figure 11b. The first difference is that the proposed multi-scale residual block (MSRB) module
has a relatively simple structure. The MSRB is made up of two 3 × 3, 5 × 5 convolution layers
and a ReLU, followed by a 1 × 1 convolution layer, as a local multi-path structure. Second, it
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uses the feature map by compressing it with a 1 × 1 reduction layer rather than generating
an intermediate image as the output of each block. Third, it is a post-upsampling model
that uses an LR image as an input and uses sub-pixel convolution. MSRN is more efficient
than CMSC, which has a pre-upsampling structure because it operates in the LR image
space. In addition to these differences, CMSC adopts the multi-supervision strategy using
intermediate SR results, whereas MSRN uses feature maps generated by concatenation
from blocks without using BN. This is probably the reason why MSRN outperforms CMSC
by approximately 1% based on PSNR.

4.2.8. Multi-Scale Receptive Field

While a 3 × 3 convolution filter scale is widely used, the multi-scale receptive field
architecture uses various filter sizes, such as 5 × 5 and 7 × 7.

Models that use the multi-scale receptive field structure include CNF [68], CMSC [67],
and MSRN [66]. A multi-scale receptive field was applied to each SRCNN in CNF [68]
using different filter sizes or layers. In addition, an MSC module with stacked filters (two
3 × 3, 3 × 3 and 5 × 5, two 5 × 5, and 3 × 3 and 7 × 7) was used in CMSC [67]. MSRN [66]
operates in parallel by stacking two layers of 3 × 3 and two layers of 5 × 5 filters.

The advantage of these models is that they can take various inputs of contextual
information, and the disadvantages are that the number of parameters increases as a filter
larger than the commonly used 3 × 3 filters is used, and the model can be heavier because
multi-scale filters are often applied in parallel.

4.2.9. Attention Architecture
Channel Attention

Since SENet [70] using a channel attention mechanism achieved good performance
in image classification tasks, various studies about channel attention have used it for SR.
An LR image is primarily composed of low-frequency information. In an SR task, it is
important to extract high-frequency information, such as edges and textures, required
for reconstructing HR images from LR sources [71]. Of a landmark work, RCAN [71],
SAN [72], and CVANet [73] effectively extracted high-frequency information through
channel attention.

As shown in Figure 12a, the residual channel attention network (RCAN) [71] grafted
the channel attention onto SR using global average pooling (GAP), as in SENet. The weight
of each channel is adjusted by applying GAP, ReLU, and a sigmoid function, sequentially.
Subsequently, feature maps are added by a skip connection to attention weights across
channels. For stable learning, residual learning is applied to both local and global spatial
information. RCAN showed that channel attention was effective even for low-level vision
tasks (i.e., SR) that process pixel-wise.
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Figure 12. Representative models of attention architecture. (a): (i) Overall RCAN structure [71].
(ii) Residual group, including residual channel attention block (RCAB), in RCAN. (iii) RCAB. (b) Pro-
cess of performing non-local module in NLRN [50].
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The second-order attention network (SAN) [72] superseded RCAN and performed
channel attention as the second-order factor, which comprises GAP and covariance normal-
ization. Second-order channel attention can reconstruct features adaptively using higher-
order statistical features rather than first-order features.

Non-Local Attention

Self-similarity means that a region in an image is similar to another region in the same
image. According to NLRN [50], the self-similarity for a specific pixel is more distributed
around a proximate pixel than a distant pixel, and the correlation is extracted using a
1 × 1 convolution with a limit on the surrounding area, as shown in Figure 12b. By limiting
the surrounding area, the influence on the surrounding features is increased, while the
effect of noisy features is attenuated. NLRN incorporates correlations with neighboring
pixels in pixel values at each position through a non-local module.

Transformer

TTSR [63] is proposed to use transformer architecture for the SR task. As mentioned
in Section 4.2.5, TTSR applies the hard/soft attention method using (query, key, value)
attention to the reference-based SR.

The hybrid attention transformer (HAT) [74] addresses the limitation of traditional
transformer-based models, which fail to fully exploit the architecture’s benefits due to
their reliance solely on the discrete information of input pixels. As shown in Figure 13, it
introduces the HAT approach that merges a channel attention-based convolution block
with the self-attention mechanism inherent in existing transformer models. Leveraging this,
HAT showed superior image reconstruction capabilities compared to alternative models
and currently achieved the SOTA across various benchmark datasets in the SR tasks.

Figure 13. (i) Overall HAT structure [74]. (ii) Residual hybrid attention group (RHAG). (iii) Hy-
brid Attention Block(HAB) in RHAG, CAB, and SAB mean channel-attention and self-attention.
(iv) Overlapping cross-attention block (OCAB) in RHAG.

The dual aggregation transformer (DAT) [75] integrates spatial and channel features
both inter-block and intra-block, applying spatial self-attention and channel self-attention
alternately within the transformer block to enable effective inter-block feature aggregation
capturing global information, as shown in Figure 14. Furthermore, for intra-block feature
aggregation, DAT introduces an adaptive interaction module (AIM) that combines the
transformer’s self-attention block with a convolution block, and a spatial-gate feed-forward
network (SGFN) method that separates channels in the feed-forward network and incor-
porates a spatial-gate to enhance the utilization of spatial information. This approach has
enabled DAT to achieve outstanding performance in SR tasks.
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Figure 14. (i) Overall DAT structure [75]. (ii) Dual spatial transformer block (DSTB) and dual channel
transformer block (DCTB). (iii) Spatial-gate feed-forward network (SGFN) in DSTB and DCTB.

4.3. Unsupervised-Based Super-Resolution Methods

DL-based SR models are trained using pairs of LR images generated by degrading
HR images. Real-world images tend to have a different representation distribution from
LR images generated in experiments; thus, SR for real-world images frequently performs
poorly. Recently, methods to learn real images based on unsupervised learning have been
proposed to address this problem.

Zero-Shot SR (ZSSR) [76] generates an LR image by degrading eight image pairs that
perform flip and rotation augmentation on an input LR image. The LR image is replaced
with a fake HR image in the process, as shown in Figure 15, and the relationship between the
two images is trained by generating a fake LR image. Since the degradation can be specified
as a hyperparameter, an SR model can be trained for various degradation conditions.
However, one of the drawbacks is that the degradation must be estimated empirically
based on the SR result.

Downscale

CNN

CNN
Inference

Augment

Same
weight

Train

Test

Figure 15. Overall zero-shot SR structure [76]. The top blue arrows represent the process of training a
CNN using input images, and the bottom blue arrow represents the SR process after training.

Maeda et al. [77] proposed unpaired image super-resolution using pseudo-supervision
for learning SR by targeting real images with three GAN models. The overall structure is
shown in Figure 16. GY↓X learns to generate an LR image that has a distribution similar
to the distribution of the real image from HR images, and GXY↓ converts the distribution
of the real image into the image distribution learned by an SR model. RCAN [71], which
learns to generate a texture that replicates the distribution of the real image in a GAN form,
was used as the UY↓Y model. To perform SR well, it transfers the domain from the real
image distribution to the image distribution learned by the SR model.
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Figure 16. Overall structure of unpaired image super-resolution using pseudo-supervision [77].
The green arrows represent a process of learning with LR images generated from HR images, and the
blue arrows represent a process of generating SR from a real image.

5. Object Detection Works Briefing

As shown in Figure 17, OD models are primarily classified into two-stage and single-
stage methods. The two-stage method involves searching for regions where an object
is likely to exist, either through selective search or by using a region proposal network
(RPN), and then classifying the object for the corresponding regions. The single-stage
method searches for regions where an object will probably be and classifies the object
for the searched regions at the same time. In general, single-stage methods outperform
two-stage methods in terms of network inference speed, whereas two-stage methods
outperform single-stage methods in terms of accuracy. Recently, a transformer-based OD
model has been proposed as a single-stage approach that outperforms two-stage detectors
and achieves state-of-the-art performance on various benchmark datasets.

Figure 17. Tree of object detection models. OD models can be classified into two-stage and single-
stage frameworks.

5.1. Two-Stage Network

Representative two-stage network technologies include R-CNN [78], Faster R-CNN [6],
and Mask R-CNN [79].

R-CNN [78] is an initial two-stage network based on DL in which region proposal,
feature extraction, and classification are all performed in separate models. First, thousands
of potential candidate object regions are extracted using a selective search algorithm [80],
and each proposed region is then passed through a CNN for feature extraction. An SVM
is applied to the extracted features to classify objects. This is a bottleneck process because
each proposal’s inference is performed separately.
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SPPNet [81] employed a spatial pyramid pooling (SPP) structure to accelerate feature
extraction for images or subimages of an arbitrary size/scale, which are bottlenecks in
R-CNN. SPP is a method for classifying feature maps into multi-scale predefined bins from
which output features of the same size can be generated regardless of input sizes. SPPNet
projects a region of interest (RoI) onto a feature map and feeds it to the SPP structure for
CNN features to be extracted for all RoIs with a single inference. R-CNN is inefficient
because it performs N inferences after generating cropped and warped patches to fit the
N RoIs generated by the region proposal method to the CNN input. In the Fast R-CNN,
the SPP structure is then devolved into a structure known as the RoI pooling layer. SPPNet
has several drawbacks as it uses region proposals and a separate SVM classifier.

Faster R-CNN [6] improved the overall processing speed and detection performance
using an RPN by replacing the existing region proposal method, which was a bottleneck in
R-CNN and Fast R-CNN. The previously used selective search method performs super-
pixel-based segmentation and merges various super-pixels to derive bounding boxes
around a region as output. Due to the fact that it incurs enormous computational costs and
does not take into account the semantics of an input image, this method increases the risk
of false positives. Conversely, detection performance is maintained even when the number
of proposal candidates is small because the RPN learns the position where the object is
likely to be based on the position of the target object. In addition, speed is enhanced as the
feature extractor and backbone are shared. Faster R-CNN detects objects faster than the
existing R-CNN or Fast R-CNN because it is designed to perform end-to-end detection
from the proposal stage by attaching a box regression head and a classification loss head to
the network’s end. However, there are some limitations in applying it to real-time video.

The region-based fully convolutional network (RFCN) [82] is a model that replaced
the RoI pooling and FC layers of Faster R-CNN with an FCN structure to preserve the RoI
positional information. As an FCN output, a position-sensitive score map is generated. Box
regression and classification heads are attached to the FCN, allowing for detection to be
performed without additional structures. RFCN has the advantage of being faster and have
more consistent performance as it uses the FCN structure.

Mask R-CNN [79] involves a simple method for adding a mask prediction head in
a parallel structure to the basic structure of Faster R-CNN, enabling OD in pixel units.
The mask prediction head is composed of a simple fully convolutional structure. The mask
prediction head does not increase computational costs significantly because the backbone
network weight is shared between the box regression head and classification head. Re-
cently, Mask R-CNN has been applied in various studies owing to its outstanding detection
performance and high detection speed. In addition, Mask R-CNN has shown enhanced
performance compared to its initial release by being fused with the feature pyramid net-
work [83], focal loss [84], and GIoU loss [85].

5.2. Single-Stage Network

Representative examples of single-stage networks include YOLO [7], RetinaNet [84],
RefineDet [86], and EfficientDet [4].

YOLO [7] is the most used OD method in real-world applications, such as autonomous
driving or face detection. YOLO detects objects by selecting the highest score through
the extraction of bounding boxes for each cell and the score for a class after dividing
the receptive field into 7 × 7 grid cells. YOLO has a single neural network structure,
but its processing speed is extremely fast because all layers are composed of convolutions.
However, its accuracy is slightly lower than those in two-stage-based methods because
YOLO cannot effectively detect a small target object or an image that contains cluttered
background as only one class can be predicted in one cell. Advanced versions of YOLO,
i.e., YOLOv2 [87] and YOLOv3 [88], have been developed to overcome these limitations.
The latest version of YOLO uses CSPNet [89] as a backbone to reduce inference cost while
increasing input resolution and applies various augmentation techniques when training
the model to efficiently improve detection performance for small objects [90].
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SSD [91] is a model that detects objects by predicting the box regression value and class
score for each multi-scale feature map generated from a CNN model and then collects them
through non-maximum suppression (NMS). A separate complex structure is not required as
the multi-scale features are feature maps generated after performing convolution, and SSD
has the advantage of rapidly capturing small-to-large objects because detection is directly
performed on feature maps of various scales. SSD has influenced many subsequent studies
with its simple network structure and outstanding detection performance.

RetinaNet [84] uses the following focal loss to address the class imbalance problem that
occurs because negative samples are commonly found when training a detection model.

Focal Loss(pt) = −(1 − pt)
γ log(pt) (15)

where pt denotes the prediction score and γ denotes the hyperparameter for focusing.
In Equation (15), (1 − pt)γ is considered a scaling factor that reduces the contribution of
samples that can be easily classified in the learning process and weights the samples that are
difficult to classify. It has a single-stage structure that calculates the box and class label after
extracting the multi-scale feature map based on FPNs. Consequently, RetinaNet achieves
high detection performance and processing speed due to its simple structure and focal
loss function. In particular, the proposed focal loss function has been applied to various
detectors because it is simple to use and effective.

RefineDet [86] is a one-stage detector that takes satisfactory advantage of two-stage
detectors. RefineDet consists of an anchor refinement module (ARM) that generates refined
anchors and an OD module (ODM) that performs detection and classification. The ARM
generates an anchor for each cell and determines whether each anchor is in the foreground
after dividing an input image into cells, as in YOLO. Furthermore, the ARM simultaneously
adjusts the position of the anchors. Filtered anchors are fed into the subsequent ODM
and used to perform bounding box regression and classification. Therefore, RefineDet’s
detection performance is superior to that of other existing one-stage detectors because
it performs two-step cascaded regression. Although its appearance is similar to that of
a two-stage detector, it does not require a separate model for region proposals, as in the
R-CNN series, and it has a processing speed advantage because inference is performed on
a single network.

EfficientDet [4] is a computationally efficient detection model that comprises a weighted
bidirectional feature pyramid network (BiFPN) that effectively extracts multi-scale features.
EfficientDet’s BiFPN removes unnecessary edges to improve an FPN’s computational effi-
ciency and takes top–down and bottom–up processes into account to improve accuracy.
In addition, a fast normalized fusion method was proposed to consider weightings during
the fusion of each layer of an FPN by emphasizing that the contribution of each scale to the
output feature map must vary when differently scaled feature maps are fused. Compound
scaling, which considers factors that determine the size and computational cost of a model,
such as input depth, width, and resolution, was introduced and applied to the EfficientDet
model by experimentally finding the optimal coefficient.

Transformer-Based Network

Transformer [64] is an encoder–decoder model based on attention, which was initially
proposed for sequential data processing such as natural language processing and has
shown excellent performance. Several attempts have recently been made to apply the
transformer to the image domain. In the field of image classification, models such as
ViT [92] and Deit [93] divide the image into grid-type patches and sequentially input them
to the transformer have achieved SOTA. DETR [94] and Deformable DETR [95] demonstrate
the potential of transformer-based models in the field of OD.

DETR [94] is a single-stage detector that uses self-attention to perform OD. The
study [94] emphasizes the importance of a post-processing method, such as NMS, be-
cause existing detectors typically have an anchor structure that collapses near-duplicate
predictions for one target object. To address this issue, a transformer-based model, DETR,
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that learns how to match target objects and predictions one-to-one, was proposed. In DETR,
RoI candidates are searched for using predefined image embedding features called N
image queries rather than anchors. Image queries do not make redundant predictions
due to Hungarian matching. Training a model based on the transformer can be time-
consuming, the processing speed is not slower than that of Faster R-CNN, and its detection
performance is also good. However, it has been reported that the detection performance
is significantly degraded when the target is small, as the receptive field is limited by its
structural characteristics.

DINO [96] addresses the performance degradation issue in detecting small objects,
previously encountered by DETR [94], through contrastive denoising training and mixed
query selection approaches. The contrastive denoising training involves training with a
total of 2N queries, both positive and negative, for a single ground truth bounding box.
Each query is augmented with different levels of noise, with the bounding box having lesser
noise represented as a positive query, and the other as a negative query. This approach
allows for the positive query to predict the actual ground truth bounding box, while the
negative query is guided to predict the "no object" background, thereby overcoming the
traditional issue of performance degradation in scenarios with small or overlapping objects.
Mixed query selection combines the static anchor and content query approach of the
original DETR [94] with the dynamic anchor and content query method from Deformable
DETR [95], utilizing dynamic anchors and static content queries. This fusion enables the
model to leverage better positional information for extracting more comprehensive content
features from the encoder, thus enhancing performance.

Co-DETR [97] significantly advances the performance and computational efficiency of
DETR-based detectors by facilitating more effective training. It identifies that the one-to-one
set matching strategy employed by DETR-based detectors underperforms compared to
the one-to-many label assignment approach used in traditional object detection models
such as Faster R-CNN [6] and RetinaNet [84]. To address this, Co-DETR enhances encoder
supervision by integrating a versatile auxiliary head, employing a collaborative hybrid
assignments training method. This method generates customized positive queries based on
label assignment for each auxiliary head, improving detector performance while maintain-
ing the benefits of end-to-end training. Applied to state-of-the-art DETR-based detectors,
including Deformable-DETR [95], DAB-DETR [98], and DINO [96], this approach now
demonstrates SOTA performance across various OD benchmark datasets.

6. Experiment

Each representative SR model was selected from the architecture categories classified
in Section 4 to experiment on the change in OD performance according to the various SR
model’s architectures. Note that the reference-based architecture was excluded from the
experiment because its performance varies depending on the similarity between reference
and LR images.

The experimental process is described as follows. (i) The OD datasets are degraded
with ×2 and ×4 reduction coefficients via BI, BD, and DN methods. (ii) The degraded
datasets are restored using each SR model. (iii) The performance of the object detectors
is measured based on the dataset generated by each SR model. Note that we trained
detectors for the Widerface dataset [13], and used the pretrained detectors for the MS
COCO dataset [3].

6.1. Datasets

The publicly available MS COCO [3] and Widerface [13] datasets were used for general
OD and face detection in the experiment, respectively. These datasets contain image files in
JPEG format, but the SR models provided by the authors were trained with PNG format
images. As a result, using those models directly in the experiment will significantly degrade
performance. The difference in compression type between JPEG and PNG image formats is
responsible for this phenomenon. Due to the fact that JPEG is a lossy compression format
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and PNG is a lossless compression format, the representation distributions of the training
data and test data differ. Thus, we converted the DIV2K [99] dataset from PNG format to
JPEG format, then retrained all SR models on the JPEG version of the DIV2K. Furthermore,
the MS COCO dataset categorizes objects to be detected into small, medium, and large
based on their size. Similarly, the WiderFace dataset classifies objects into easy, medium,
and hard based on the detection rate. Therefore, our experiment considers a variety of
object types and sizes.

6.2. Training Details

To experiment in the same environment, we train the SR model first and then evaluate
the performance of the pretrained OD model using the outputs of SR models. Thus, images
generated by the SR model must be in an input format suitable for the OD model in
terms of image channels. Although the recently proposed SR models primarily receive
three RGB channels in the RGB color space and output three RGB channels, occasionally a
model receives the luminance channel of the YCbCr color space and outputs one channel,
e.g., DRRN [49] and MSRN [66]. Thus, we modified the input and output channels of the
models to three channels.

The main training information for each model is summarized in Table 1 (The codes are
available at https://github.com/dnap512/SROD (accessed on 15 April 2024)). We train the
SR models on the DIV2K training set for 300 epochs, with an Adam [39] optimizer using L1
loss. The initial learning rate is set to 1 × 10−4, and it drops by a factor of 0.5 after 200 epochs.
We use MSE loss to train DRRN because DRRN trained with MSE loss outperformed DRRN
trained with L1 loss. Since MSE convergence is slower than that of L1 loss, the DRRN model
is trained for 1000 epochs; the learning rate decreases by a factor of 0.5 after 500 epochs.
The batch size and patch size are set as suggested by the authors of each model, and flip
and rotation augmentations are applied. ESRGANs are trained in two steps. In the first
step, the generator RRDB is fine-tuned for 250,000 iterations at an initial learning rate of
2 × 10−4 using only the L1 loss from the BI pretrained model provided by the authors.
Second, the RRDB trained in step 1 is used as a generator and trained for 400,000 iterations
with GAN loss as a discriminator. In Table 1, RRDB denotes the RRDB trained in step 1.

Table 1. Training details for the SR models selected as an experimental group. UM: upsampling
method, UL: upsampling location, Key feature: key feature of the architecture.

SR Model Publication Loss Function UM UL Key Feature

DRRN [49] CVPR’17 MSE Bicubic Pre Recursive
EDSR [42] CVPRW’17 L1 Sub-pixel Post Scaling model
DBPN [36] CVPR’18 L1 Deconv Iterative Dense and Back-projection
MSRN [66] ECCV’18 L1 Sub-pixel Post Multi-path and Multi-scale receptive field
RCAN [71] ECCV’18 L1 Sub-pixel Post Channel attention
RRDB [54] ECCVW’18 L1 Sub-pixel Post Residual-in-residual dense block
ESRGAN [54] ECCVW’18 L1 + GAN + Lperceptual Sub-pixel Post RRDB + Adversarial learning
HAT [74] CVPR’23 L1 Sub-pixel Post Residual Hybrid Attention
DAT [75] ICCV’23 L1 Sub-pixel Post Dual Aggregation Block

For the transformer-based SR Models, HAT and DAT, given their larger number of
parameters compared to traditional CNN-based SR models, training is conducted over
1000 epochs utilizing the Adam optimizer with L1 loss. The learning rate is set at 2 × 10−4,
and an exponential moving average gradient decent is additionally employed to enhance
the training process.

6.3. Results and Analysis
6.3.1. Analysis Summary

(i) If only the SR output format and OD input format are compatible, OD performance
will improves by super-resolving LR images without joint training. (ii) OD performance

https://github.com/dnap512/SROD
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improves proportionally to the PSNR and SSIM metrics of the SR model. (iii) Analysis with
model architectures: (a) SR model trained with GAN architecture significantly improves
OD performance even though PSNR and SSIM are low. (b) The performance improvement
rate of the transformer-based OD model is the highest. (iv) OD performance improves
particularly high for small objects on average. (v) For the latest DETR-based OD models,
due to their commendable performance even at the baseline, they exhibit a relatively
modest rate of performance improvement.

6.3.2. MS COCO Result

The experimental results (i.e., mAP) obtained on the MS COCO dataset are summa-
rized in Appendix A Figure A8. Also, we calculate the performance enhancement rate ∆P
of the target compared to the baseline, and visualize it in Figure 18.
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Figure 18. Relative OD enhancing index of each SR model for each degradation
method (i.e., BI, BD, and DN). Given ∆PSR;d

∆Pmax(SR);d
for d = {BI, BD, DN} and SR =

{DRRN, MSRN, DBPN, RCAN, EDSR, RRDB, ESRGAN}, we compute the relative OD enhancing
index. (Dataset: MS COCO 2017 validation set [3]).

The baseline means the OD result for an image upsampled with the bicubic upsam-
pling method from the LR image. The performance enhancement rate between the baseline
and the OD result of the data generated using SR models is calculated as follows:

∆P = (
mAPSR

mAPBaseline
− 1)× 100 (16)

where mAPSR and mAPBaseline denote the mAP performance of the detector for the SR data
and the baseline results, respectively.

As shown in Appendix A Figure A8, OD performance improves significantly in most
conditions when compared to bicubic interpolation. However, in the case of HAT and
DAT for BI, despite achieving the highest PSNR, their performance declined compared
to the baseline on the COCO dataset. The OD model with pretrained weight is used in
this experiment, and only the SR model is newly trained. This means that, if only the SR
output format and OD input format are compatible, OD performance will improve by
super-resolving LR images without joint training.
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6.3.3. Widerface Result

The overall experimental results of the Widerface dataset are summarized in
Appendix A Figure A9, and the performance enhancement rate is obtained by experi-
menting similarly as on MS COCO. Notably, OD performance on Widerface is significantly
higher than for MS COCO when bicubic interpolation (i.e., baseline) is used.

6.3.4. Enhancing Detection Using Each SR Model
MS COCO

The average enhancement rate of OD performance of each SR and OD model is shown
in Table 2. Note that the rate of DN performance enhancement is generally higher than
that of BI and BD. Since the denoising effect of the compared SR models is superior to the
DN baseline (i.e., bicubic interpolation), the detection performance of the subsequent OD
model appears to be affected.

The enhancement rate of object detection performance of each SR model for the MS
COCO dataset is shown in Table 3. Generally, the performance enhancement rate increases
when the PSNR value of an SR model is high. However, there are exceptions; for HAT
and DAT, while achieving high PSNR in BI, they exhibit lower performance compared to
the baseline on MS COCO datasets, e.g., EDSR, which recorded a relatively lower PSNR
value and showed better performance than that of RRDB in BI and DN. Also, ESRGAN
outperformed all other models when it came to BI and BD performance enhancement
rates.It appears that representing textures in greater detail by applying adversarial learning
improved performance. The DN performance enhancement rate of ESRGAN is less than
that of RRDB or EDSR, due to unpleasant artifacts in SR images and the inability to
adequately remove noise compared to EDSR, as shown in Appendix A Figure A3.

Table 2. Average object detection performance enhancement rate of each SR model for the MS COCO
2017 validation set [3]. The enhancement rate was calculated by setting bicubic interpolation as the
baseline, and AP-all performance was averaged for all object detection models. (Bold: the highest
value, underline: the second-highest value, (n.): Relative Index).

The Average Performance Enhancement Rate for MS COCO [3]

SR Model BI BD DN All Average Relative Index

DRRN [49] 3.1 (0.23) 1.2 (0.12) 16.3 (0.03) 6.9 0.13
DBPN [36] 10.3 (0.78) 6.2 (0.64) 382.6 (0.87) 133 0.76
MSRN [66] 10.2 (0.77) 5.9 (0.61) 384.1 (0.88) 133.4 0.75
RCAN [71] 11.8 (0.90) 7 (0.72) 401 (0.91) 139.9 0.57
EDSR [42] 13.1 (1.00) 7.6 (0.79) 436 (1.00) 152.2 0.93
RRDB [54] 11 (0.83) 8.1 (0.84) 281.9 (0.64) 100.3 0.77
ESRGAN [54] 12.1 (0.92) 9.6 (1.00) 404.2 (0.92) 142 0.95
HAT [74] −8.8 (-) 7.8 (0.81) 366.7 (0.84) 121.9 -
DAT [75] −11.7 (-) 6.7 (0.69) 406 (0.93) 133.7 -

Average 5.7 6.7 342.1 118.1 -

Table 3. The enhancement rate of object detection performance of each SR model for the MS COCO
dataset [3]. On average, AP-small is higher than AP-all. AP-all: enhancement rate for all objects,
AP-small: enhancement rate for small objects.

The Enhancement Rate for MS COCO [3]

Detector EfficientDet YOLOv3 Faster R-CNN RetinaNet DETR DINO Co-DETR Average

AP AP-all AP-small AP-all AP-small AP-all AP-small AP-all AP-small AP-all AP-small AP-all AP-small AP-all AP-small AP-all AP-small

DRRN [49] −2.0 12.1 25.6 23.4 11.4 20.1 18.5 55.8 6.2 24.4 −5.7 −6.9 −5.7 −7.8 6.9 17.3
DBPN [36] 40.5 71.0 137.9 127.1 172.9 199.0 259.6 339.1 315.5 306.3 1.7 4 3.3 4.3 133.1 150.1
MSRN [66] 39.6 71.3 139.7 126.5 176.0 219.2 253.8 306.4 318.8 288.3 2.4 0.4 3.4 3.3 133.4 145.1
RCAN [71] 42.2 82.6 144.6 133.9 182.9 207.1 270.3 343.5 331.3 327.7 3.3 3.7 5 6.9 139.9 157.9
EDSR [42] 44.9 86.8 151.7 140.3 195.9 224.8 290.4 381.3 371.8 352.6 4.9 6.6 6.1 10.1 152.2 171.8
RRDB [54] 44.3 82.3 149.3 137.0 192.6 217.0 280.1 344.6 346.9 348.6 3 3 5.7 8.1 146 162.9
ESRGAN [54] 37.8 55.5 140.4 108.4 189.1 190.8 284.0 301.0 340.6 273.4 0.5 −7.4 1.4 −5 142 131
HAT [74] 46.1 103.9 121.8 113.3 160.2 205.8 238 224.1 281.3 291.9 2.2 3.5 3.7 7.6 121.9 135.7
DAT [75] 46.6 95.1 133.6 115.3 170.9 187.4 254.6 302.2 329.5 288.9 −0.3 −2.3 0.9 0 133.7 140.9

Average 37.8 73.4 127.2 113.9 161.3 185.7 238.8 288.7 293.5 278 1.3 0.5 2.6 3.1 123.2 134.7
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The ranking regarding the total average enhancement rate of the detection perfor-
mance is equal to the DN ranking in Table 2, because the DN value is too high. For a fair
comparison, we averaged each degradation enhancement rate using min-max normaliza-
tion to adjust the scale. In the case of HAT and DAT, since the performance enhancement
rate in BI decreased, the relative index was not indicated. Consequently, ESRGAN achieved
the highest enhancement rate of 0.95. Although RRDB and ESRGAN have the same model
structure, the latter showed a higher enhancement rate. This indicates that adversarial
learning improves detection performance. Figure 19 presents a graph showing the PSNR
value of each SR model and the normalized value of the OD performance enhancement rate.
The trend is roughly proportional to the PSNR index (excluding ESRGAN; marked star),
confirming that a higher PSNR index enhances OD performance in pixel-wise training. As
shown in Appendix A Figures A1–A6, even though the SR models trained with adversarial
and content loss achieve lower PSNR compared to those trained only with pixel loss, they
bring significant gains in perceptual quality [45,56,100]. Furthermore, with adversarial loss,
a higher enhancement rate for OD can be obtained even if the PSNR indicator is low.
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Figure 19. Relative OD-enhancing index per PSNR index for each SR model. Note that ESRGAN [54]
is a model that trained RRDB [54] backbone with adversarial learning. With the adversarial loss,
a higher enhancement rate for OD can be obtained even if the PSNR indicator is low. (Dataset for OD:
COCO 2017 validation set [3], Dataset for PSNR: Set5 [101] ×4).

Widerface

The performance enhancement rate in Table 4 demonstrates a trend similar to the
PSNR index of the SR model. In BI and BD, DRRN and ESRGAN perform worse than the
baseline. Additionally, for HAT, while recording the worst performance in BI, it achieves
the best performance in BD and the second-best performance in DN. Although DRRN
has the lowest performance enhancement rate on the MS COCO dataset, it also has the
lowest performance enhancement rate on the Widerface dataset. ESRGAN has a negative
value on Widerface despite having the highest enhancement rate for BI and BD on MS
COCO. Note that the inability to represent the facial features properly and the unpleasant
artifacts (Appendix A Figure A7) are the reasons for the performance degradation. Overall,
the extremely high DN performance enhancement rate is observed on the MS COCO dataset
because the SR model eliminated the Gaussian noise. The SR model fails to significantly
improve the performance rate of the OD detector when detecting faces. As shown in the
sample images of Appendix A Figures A4–A6, the SR model frequently destroys the texture
of facial features, which appears to have affected face detection. The proportion of human
faces in the DIV2K training dataset is low, and it appears that face-related features are not
learned sufficiently, thereby causing faulty restoration.
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Table 4. Average object detection performance enhancement rate of each SR model on the Widerface
validation set [13]. The enhancement rate was calculated by using bicubic interpolation as the baseline
and averaging AP performance across all object detection models. (Bold: the highest value, underline:
the second-highest value).

The Enhancement Rate for Widerface [13]

SR Model BI BD DN All

DRRN [49] −0.77 −0.23 11.9 3.63
ESRGAN [54] −1.1 −0.23 47.9 15.52
DBPN [36] 0.13 0.83 55.07 18.68
MSRN [66] 0 0.87 55.77 18.88
RRDB [54] 0.17 0.8 56.03 19
RCAN [71] 0.13 0.83 56 18.99
EDSR [42] 0.13 0.97 57.2 19.43
HAT [74] −1.6 1.13 56.73 18.75
DAT [75] 0.6 0.93 56 19.18

Average −0.26 0.66 50.29 16.9

Thus, we further experimented with RRDB and ESRGAN by sampling 2400 images
from the Widerface training set. Table 5 shows the average comparative performances of all
detectors on the Widerface validation hard set, and sample images for Table 5 are shown
in Appendix A Figure A7. The performance of ESRGAN decreases compared to RRDB
when training with DIV2K, however ESRGAN improves compared to that of RRDB when
training with the Wideface dataset. Thus, according to Table 5 results, we confirm that
training an SR model using adversarial learning can have a positive effect on face detection
performance if the features of objects are sufficiently trained.

Table 5. Results of comparing the AP for the Wider Face validation hard set of all object detection
models by training RRDB [54] and ESRGAN [54] with DIV2K [99] and Widerface training set [13],
respectively.

The AP for Widerface [13]

Training data DIV2K Widerface

SR Model RRDB [54] ESRGAN [54] RRDB ESRGAN

with BI 0.596 0.579 0.605 0.606
with BD 0.612 0.605 0.620 0.627
with DN 0.399 0.368 0.418 0.441

Average 0.536 0.517 0.548 0.558

6.3.5. Performance Improvement of Object Detector
MS COCO

The performance enhancement rate of OD models for each SR is shown in Table 3,
where AP-all is the enhancement rate for all objects, and AP-small is the performance
enhancement rate for small objects. As shown in Table 3, AP-small is higher than AP-all
on average. Small objects could not be adequately detected in images with poor quality
or noise in OD; however, SR has proven to be a solution. DETR has the highest average
performance enhancement rate for each SR model, and RetinaNet exhibited the highest
performance enhancement rate for detecting small objects.

Overall, the performance enhancement rate of the detectors tends to be higher when
the detector’s performance is lower. We compute the performance maintenance rate of each
detector for the baseline as follows:

Pdegradation =
mAPBicubic image

mAPOriginal image
× 100 (17)
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The detailed figures on MS COCO are shown in Table 6, which is similar to the reverse
order of performance enhancement, except for DETR, which has a transformer architecture.
Therefore, it can be inferred that detection performance can be significantly enhanced
without changing the structure of the OD model, even with a detector of relatively low
performance, if SR is used to increase the input image quality.

Table 6. The AP performance maintenance rate of an object detection model for a bicubic upsam-
pling image.

The AP Maintenance Rate of Detectors for MS COCO [3]

Detector EfficientDet YOLOv3 DETR Faster R-CNN RetinaNet DINO Co-DETR Average

Maintenance rate 60.1% 58.0% 52.5% 50.8% 49.4% 71.9% 71.9% 59.2%

In particular, the performance enhancement rate of DRRN seems to be significantly
lower than those of other SR models, and this difference appears to depend on the location
and method of upsampling. DRRN is a recursive architecture with a pre-upsampling
model that uses the bicubic upsampling result for LR as input. Therefore, performance is
reduced due to the significant influences of bicubic interpolation used for more complex
degradation methods, such as BD and DN. As a result, the post-upsampling structure
enhances the performance of the detector via SR, and performing upsampling in the model
as an upsampling method, e.g., transposed convolution or sub-pixel, results in a higher
performance enhancement rate.

Widerface

The average performance enhancement rates for all SR models for each detector are
shown in Table 7. The performance enhancement rate for small objects is higher in most
cases (similar to the MS COCO results), and YOLOv3 achieved the highest average perfor-
mance enhancement rate, while EfficientDet achieved the lowest. The enhancement rate of
the medium set is greater than that of the hard set in the EfficientDet case, which appears
to be due to incomplete learning about face detection considering that the enhancement
rate increased as the object became smaller in the MS COCO dataset. The overall enhance-
ment rate in Widerface is not that large compared to that in the MS COCO. There was no
significant change in BI, and it showed a relatively high enhancement rate due to the effect
of denoising in DN and MS COCO.

Table 8 shows the performance maintenance rate by comparing OD performance
(mAP) for the original images and OD performance (mAP) for bicubic upsampling images
for each degradation method. Note that the performance maintenance rate is also in the re-
verse order of the performance enhancement rate for the Widerface and MS COCO datasets.

The enhancement rate of OD performance generally follows a similar trend to that of
the PSNR index, as shown in Table 9. The OD performance benchmark for the original MS
COCO and WiderFace datasets is summarized in Table 10.

Table 7. Performance enhancement rate of each object detection model for the easy, medium, and hard
sets while each degradation is shown, including the case of using all SR models for the Widerface
validation set [13].

The Enhancement Rate for Widerface [13]

Detector Easy Medium Hard Average

EfficientDet 1.62 3.07 7.43 4.04
Faster R-CNN 5.86 7.84 11.74 8.48
RetinaNet 9.8 13.1 20.87 14.59
YOLOv3 22.27 34.06 56.41 37.58
DETR 27.06 30.03 36.64 31.24
DINO 7.3 8.52 11.12 8.98
Co-DETR 10.63 12.42 17.13 13.39
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Table 7. Cont.

The Enhancement Rate for Widerface [13]

Detector BI BD DN Average

EfficientDet 0.74 2.84 8.54 4.04
Faster R-CNN −0.57 1.06 24.96 8.48
RetinaNet 0.34 0.92 42.5 14.59
YOLOv3 0.33 2.38 110.03 37.58
DETR −2.08 −4.11 99.92 31.24
DINO −0.29 0.64 26.58 8.98
Co-DETR −0.2 0.89 39.49 13.39

Table 8. The baseline performance maintenance rate for each degradation of the detector model for
the Wider Face validation set [13].

Detector BI BD DN All

YOLOv3 96.7 95.8 50.5 81
RetinaNet 96.4 96.7 59.5 84.2
Faster R-CNN 96.8 96.3 66.7 86.6
EfficientDet 96.7 95.4 80.3 90.8
DINO 97.3 97.2 65.8 86.8
Co-DETR 96.7 96.5 61 84.7

Average 98 98.1 62.1 86.1

Table 9. Set5 [101] benchmark results of the experimental SR models demonstrated using the
PSNR/SSIM [12] method.

SR Model Scale BI BD DN

Bicubic (baseline) 2 34.42/0.9395 29.73/0.8583 24.64/0.5283
ESRGAN [54] 2 35.27/0.9310 34.46/0.9181 27.98/0.8427
DRRN [49] 2 35.54/0.9444 34.89/0.9306 29.57/0.7348
DBPN [36] 2 36.87/0.9545 35.82/0.9393 30.67/0.8615
MSRN [66] 2 36.93/0.9549 35.82/0.9391 30.77/0.8634
RCAN [71] 2 37.05/0.9553 35.99/0.9402 30.87/0.8660
EDSR [42] 2 37.13/0.9557 36.00/0.9404 30.89/0.8665
RRDB [54] 2 37.18/0.9558 36.12/0.9411 30.93/0.8677
DAT [75] 2 37.76/0.9597 36.05/0.9411 28.89/0.7649
HAT [74] 2 37.98/0.9604 36.18/0.9423 29.50/0.7963

Bicubic (baseline) 4 27.68/0.8102 28.25/0.8077 22.93/0.5380
ESRGAN 4 27.71/0.8129 29.83/0.8434 24.96/0.7276
DRRN 4 28.53/0.8369 30.35/0.8609 25.10/0.6917
DBPN 4 29.47/0.8682 31.70/0.8893 26.63/0.7790
MSRN 4 29.53/0.8674 31.60/0.8882 26.67/0.7795
RCAN 4 29.74/0.8715 31.96/0.8927 26.81/0.7850
EDSR 4 29.84/0.8744 31.96/0.8928 26.87/0.7861
RRDB 4 29.90/0.8752 32.03/0.8944 26.88/0.7869
DAT 4 31.51/0.8844 31.39/0.8841 25.17/0.6863
HAT 4 31.63/0.8859 31.48/0.8850 26.08/0.7736

Table 10. OD performance (mAP) benchmark of representative DL-based OD models. Note that OD
model was used with pretrained weights.

MS COCO [3] Benchmark (mAP)

Detector Small Medium Large All

Faster R-CNN [6] 0.252 0.456 0.546 0.420
RetinaNet [84] 0.240 0.443 0.522 0.404
YOLOv3 [88] 0.270 0.492 0.576 0.438
DETR [94] 0.207 0.459 0.611 0.420
EfficientDet [4] 0.400 0.581 0.679 0.544
DINO [96] 0.414 0.619 0.736 0.580
Co-DETR [97] 0.425 0.627 0.751 0.589
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Table 10. Cont.

Wider Face [13] Benchmark (mAP)

Detector Easy Medium Hard Average

Faster R-CNN 0.928 0.897 0.691 0.839
RetinaNet 0.941 0.910 0.691 0.847
YOLOv3 0.941 0.928 0.823 0.897
DETR 0.776 0.781 0.595 0.717
EfficientDet 0.943 0.926 0.613 0.827
DINO 0.923 0.898 0.733 0.851
Co-DETR 0.942 0.924 0.757 0.874

7. Discussions
7.1. Applicability of SR and OD End-to-End Models

As discussed in Section 1, this study aimed to find a method to overcome the limita-
tions of detection models, which have a significantly low detection performance for LR
input or small object targets. Several experiments have shown that the SR model mitigates
the detection performance degradation problem due to LR input and dramatically enhances
detection performance for small objects. In particular, the effect is maximized in models
with high detection performance for large objects but low detection performance for small
objects due to the structural characteristics of each model, e.g., DETR. We believe that this
study has provided us with an opportunity to consider the possible effects of incorporating
the SR model and detection model into an end-to-end structure. While most SR methods
were confirmed to increase OD performance, several SR methods negatively affected OD
performance. This is presumed to be a result of the data dependency (e.g., domain) used in
the training.

7.2. Compatibility of GAN-Based SR Method and Detection Model

We found that the overall performance enhancement rate of EfficientDet was low,
and the performance enhancement rate of ESRGAN was significantly reduced compared to
that of RRDB in EfficientDet, as shown in Table 3. Comparing EfficientDet to other general
OD models, two differences are observed: weighted fusion is performed by weighting
each scale feature map in the feature map fusion process, and the depth-wise separable
convolution proposed by MobileNet [102] is used. In addition, although ESRGAN, which
is an adversarial learning-based SR model, generates detailed textures, it is limited in that
it is a fake texture that looks like the real image [71].

Based on this fact, it is considered that two main factors influenced the lower perfor-
mance enhancement rate of ESRGAN. First, the feature extracted from the fake texture
generated by the GAN-based SR model differs from the real image feature, which can
be a problem in the weighted fusion process. Second, there is an architectural distinction
between classic and depth-wise separable convolution. To be specific, depth-wise separable
convolution performs a convolution operation on a separate kernel for each channel’s
feature map before applying point-wise convolution to combine the pixels of all channels
into a single pixel. Classic convolution looks at information from all channels on the feature
map from the beginning of the operation. As a result, we can assume that the effect of
preventing the extraction of incorrect features by smoothing noise on the feature map
has occurred. Therefore, when using a depth-wise separable convolution-based detector
to solve real-world problems, the effect of improving detection performance using the
GAN-based SR model may fall short of expectations.

7.3. Super-Resolution and Instance Segmentation

In this study, we found that the OD model’s detection performance was enhanced
using SR as an input to OD models. We expect that this configuration is also applicable to
instance segmentation, which is a dense OD task. Since instance segmentation is a task that
models the relationship between pixels in the region corresponding to the instance, it is
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expected that there will be performance leverage by the GAN-based method rather than
the simple interpolation-based SR method.

7.4. Indirect Quantitative Performance Evaluation of GAN Using OD

Since GANs generally have the effect of improving visual quality, quantitative per-
formance evaluation is not easy. Currently, representative evaluation methods for GANs
include Frechet Inception Distance that aims to measure the similarity of a feature map,
and a turing test and Mean Opinion Score test that investigates the visual quality by asking
a question to people. The detection performance improvement by the GAN-based SR
model was quantitatively analyzed in this study using the performance enhancement rate.
Currently, representative evaluation methods for GANs include Frechet inception distance
(FID) that aims to measure the similarity of a feature map, and a Turing test and mean
opinion score (MOS) test that investigates the visual quality by asking a question to people.

7.5. Analysis of the Latest Transformer-Based SR Models

Leveraging the attention mechanism of the Transformer architecture, the newest SR
models exhibit superior performance (PSNR/SSIM) compared to CNN-based models in
addressing the simplest form of degradation, BI, even when trained on PNG format data.
However, in dealing with the most challenging degradation method, DN, these models
show lower performance (PSNR/SSIM) relative to previous models. This reduction in
performance is speculated to arise from differences in the format of image data.

7.6. Analysis of the Latest Transformer-Based OD Models

Since the advent of DETR, a plethora of new OD models based on DETR have been ex-
tensively researched, demonstrating superior performance compared to traditional models.
Consequently, while deep learning-based SR methods exhibit higher performance than the
baseline SR method of bicubic interpolation, the overall rate of performance improvement is
relatively low. This is because, even at the baseline, these models have shown commendable
performance when compared to alternative models.

8. Conclusions

This paper has focused on addressing the limitations of OD models, where detection
performance is degraded if an input image has a low quality, with noise or low resolu-
tion. We have examined a solution to this problem by properly fusing the OD and SR
models, and we investigated various SR and OD models to find the best combination.
By selecting several SR and OD models, we performed experiments to improve OD perfor-
mance. In addition, we employed well-known degradation methods to simulate real-world
low-quality images. Extensive quantitative experiments were performed using the MS
COCO dataset in a general OD experiment and the Widerface dataset in a face detection
experiment. The experimental results confirm that detection performance for small objects
was significantly improved in most OD models (9.4%), and a suitable combination for
fusing SR and OD models was sought via quantitative analysis. Our experimental results
are expected to be easily extended to various fields of real computer vision such as instance
segmentation. Future research will focus on addressing the performance degradation in SR
and OD observed in certain experiments by combining various modalities such as language
and text.
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Appendix A

Figure A1. Examples of inference by applying DETR [94] to SR images. SR images are the result of
applying each SR method to the LR COCO dataset [3] degraded by BI.
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Figure A2. Examples of inference by applying DETR [94] to SR images. SR images are the result of
applying each SR method to the LR COCO dataset [3] degraded by BD.
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Figure A3. Examples of inference by applying DETR [94] to SR images. SR images are the result of
applying each SR method to the LR COCO dataset [3] degraded by DN.

Figure A3. Cont.
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Figure A3. Examples of inference by applying DETR [94] to SR images. SR images are the result of
applying each SR method to the LR COCO dataset [3] degraded by DN.

Figure A3. Examples of inference by applying DETR [94] to SR images. SR images are the result of
applying each SR method to the LR COCO dataset [3] degraded by DN.
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Figure A4. Examples of inference by applying YOLOv3 [88] to SR images. SR images are the result of
applying each SR method to the LR COCO dataset [3] degraded by BI.

Figure A4. Cont.
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Figure A4. Examples of inference by applying YOLOv3 [88] to SR images. SR images are the result of
applying each SR method to the LR COCO dataset [3] degraded by BI.

Figure A4. Examples of inference by applying YOLOv3 [88] to SR images. SR images are the result of
applying each SR method to the LR COCO dataset [3] degraded by BI.

Figure A5. Examples of inference by applying YOLOv3 [88] to SR images. SR images are the result of
applying each SR method to the LR COCO dataset [3] degraded by BD.
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Figure A6. Examples of inference by applying YOLOv3 [88] to SR images. SR images are the result of
applying each SR method to the LR COCO dataset [3] degraded by DN.

Trained on 
Widerface

Trained on 
DIV2K

BI BD DN

HR

Figure A7. The result performing ×4 SR on the image of the ‘13_Interview_Interview_
On_Location_13_334.jpg’ image of the Wider Face validation set [13] through ESRGAN [54] trained
on Widerface [13] and DIV2K [43], respectively.
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DETR BI BD DN
HR

X2 Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT
mAP [ all ] 0.371 0.371 0.384 0.385 0.388 0.389 0.389 0.392 0.351 0.349 0.345 0.364 0.375 0.374 0.378 0.378 0.379 0.390 0.377 0.374 0.116 0.106 0.260 0.265 0.267 0.272 0.275 0.277 0.269 0.263 0.420
mAP [ small ] 0.140 0.150 0.162 0.163 0.170 0.170 0.171 0.179 0.130 0.127 0.119 0.141 0.153 0.151 0.166 0.164 0.161 0.170 0.152 0.151 0.029 0.035 0.078 0.077 0.081 0.091 0.088 0.094 0.082 0.079 0.207
mAP [ medium ] 0.405 0.396 0.415 0.417 0.420 0.420 0.421 0.429 0.376 0.372 0.366 0.390 0.406 0.404 0.409 0.410 0.411 0.427 0.406 0.402 0.124 0.121 0.270 0.278 0.281 0.283 0.286 0.284 0.278 0.272 0.459
mAP [ large ] 0.578 0.583 0.589 0.589 0.589 0.594 0.588 0.596 0.551 0.553 0.557 0.569 0.577 0.578 0.581 0.578 0.581 0.589 0.585 0.585 0.204 0.167 0.438 0.434 0.441 0.444 0.454 0.461 0.450 0.448 0.611

X4 Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT
mAP [ all ] 0.199 0.196 0.241 0.239 0.245 0.252 0.248 0.255 0.133 0.127 0.285 0.262 0.292 0.291 0.295 0.300 0.300 0.307 0.291 0.286 0.006 0.009 0.110 0.111 0.115 0.129 0.120 0.117 0.101 0.119
mAP [ small ] 0.043 0.048 0.053 0.052 0.053 0.058 0.055 0.057 0.023 0.022 0.077 0.068 0.078 0.077 0.079 0.083 0.079 0.087 0.073 0.071 0.001 0.002 0.017 0.016 0.018 0.019 0.019 0.014 0.017 0.017
mAP [ medium ] 0.195 0.202 0.245 0.245 0.250 0.256 0.253 0.250 0.128 0.121 0.290 0.269 0.302 0.301 0.304 0.311 0.312 0.318 0.300 0.290 0.006 0.011 0.095 0.096 0.103 0.110 0.101 0.095 0.096 0.103
mAP [ large ] 0.368 0.356 0.439 0.430 0.447 0.454 0.452 0.471 0.265 0.254 0.491 0.461 0.506 0.502 0.511 0.521 0.518 0.528 0.510 0.509 0.016 0.015 0.231 0.231 0.239 0.276 0.251 0.249 0.205 0.250

YOLOv3 BI BD DN
HR

X2 Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT
mAP [ all ] 0.402 0.407 0.415 0.415 0.418 0.418 0.419 0.419 0.394 0.394 0.372 0.404 0.412 0.411 0.414 0.414 0.414 0.417 0.412 0.410 0.182 0.228 0.322 0.327 0.330 0.333 0.334 0.337 0.329 0.323 0.438
mAP [ small ] 0.216 0.223 0.233 0.232 0.235 0.236 0.238 0.235 0.200 0.204 0.187 0.220 0.223 0.223 0.227 0.224 0.224 0.231 0.221 0.219 0.064 0.090 0.141 0.146 0.148 0.148 0.152 0.162 0.153 0.149 0.270
mAP [ medium ] 0.453 0.458 0.469 0.468 0.472 0.470 0.471 0.473 0.446 0.446 0.425 0.456 0.466 0.465 0.466 0.468 0.467 0.469 0.465 0.463 0.190 0.249 0.353 0.363 0.363 0.368 0.371 0.369 0.361 0.354 0.492
mAP [ large ] 0.562 0.562 0.568 0.568 0.570 0.568 0.571 0.570 0.557 0.556 0.540 0.559 0.563 0.562 0.563 0.565 0.562 0.568 0.566 0.563 0.295 0.355 0.494 0.496 0.503 0.503 0.501 0.504 0.495 0.490 0.576

X4 Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT
mAP [ all ] 0.231 0.270 0.298 0.298 0.303 0.310 0.307 0.303 0.216 0.201 0.315 0.319 0.339 0.337 0.341 0.345 0.344 0.345 0.337 0.334 0.022 0.044 0.176 0.178 0.183 0.191 0.188 0.176 0.163 0.181
mAP [ small ] 0.074 0.103 0.103 0.108 0.109 0.109 0.105 0.097 0.063 0.055 0.121 0.129 0.132 0.131 0.135 0.142 0.136 0.142 0.135 0.129 0.006 0.008 0.040 0.039 0.041 0.043 0.042 0.031 0.038 0.040
mAP [ medium ] 0.240 0.297 0.329 0.327 0.332 0.341 0.337 0.325 0.221 0.204 0.349 0.354 0.381 0.378 0.384 0.389 0.385 0.382 0.380 0.374 0.023 0.046 0.170 0.172 0.178 0.185 0.181 0.161 0.162 0.175
mAP [ large ] 0.394 0.441 0.484 0.484 0.495 0.501 0.496 0.500 0.376 0.352 0.499 0.503 0.520 0.521 0.524 0.528 0.527 0.537 0.524 0.518 0.038 0.084 0.334 0.332 0.341 0.355 0.356 0.346 0.299 0.340

RetinaNet BI BD DN
HR

X2 Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT
mAP [ all ] 0.349 0.354 0.366 0.367 0.370 0.371 0.373 0.377 0.337 0.335 0.315 0.346 0.358 0.357 0.362 0.361 0.362 0.373 0.358 0.357 0.102 0.130 0.250 0.255 0.258 0.261 0.262 0.275 0.256 0.252 0.404
mAP [ small ] 0.156 0.162 0.181 0.176 0.184 0.187 0.186 0.188 0.144 0.141 0.129 0.161 0.170 0.171 0.176 0.171 0.172 0.185 0.168 0.168 0.028 0.047 0.087 0.091 0.093 0.097 0.095 0.103 0.098 0.094 0.240
mAP [ medium ] 0.388 0.391 0.406 0.409 0.411 0.414 0.414 0.420 0.374 0.374 0.348 0.379 0.396 0.394 0.400 0.399 0.399 0.412 0.395 0.393 0.114 0.150 0.265 0.271 0.273 0.276 0.278 0.288 0.270 0.267 0.443
mAP [ large ] 0.488 0.494 0.505 0.503 0.508 0.510 0.508 0.514 0.481 0.476 0.468 0.495 0.495 0.495 0.500 0.499 0.501 0.507 0.500 0.498 0.169 0.201 0.399 0.405 0.407 0.412 0.409 0.419 0.399 0.402 0.522

X4 Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT
mAP [ all ] 0.172 0.195 0.232 0.230 0.237 0.243 0.241 0.244 0.144 0.134 0.251 0.242 0.274 0.272 0.276 0.280 0.281 0.292 0.270 0.265 0.008 0.013 0.116 0.113 0.120 0.129 0.124 0.124 0.110 0.119
mAP [ small ] 0.038 0.055 0.063 0.061 0.062 0.065 0.061 0.058 0.026 0.022 0.079 0.074 0.087 0.085 0.088 0.093 0.091 0.096 0.082 0.078 0.001 0.003 0.018 0.016 0.018 0.020 0.018 0.015 0.012 0.017
mAP [ medium ] 0.177 0.202 0.245 0.241 0.251 0.255 0.254 0.252 0.142 0.126 0.267 0.253 0.296 0.292 0.298 0.303 0.300 0.310 0.290 0.282 0.010 0.018 0.098 0.094 0.102 0.109 0.103 0.099 0.099 0.102
mAP [ large ] 0.300 0.333 0.393 0.389 0.396 0.405 0.405 0.415 0.263 0.253 0.407 0.397 0.437 0.435 0.441 0.440 0.443 0.458 0.435 0.429 0.018 0.028 0.235 0.235 0.243 0.258 0.251 0.246 0.212 0.238
FasterRCNN BI BD DN

HR
X2 Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT

mAP [ all ] 0.364 0.371 0.384 0.385 0.389 0.389 0.390 0.394 0.354 0.353 0.332 0.346 0.358 0.357 0.362 0.361 0.379 0.390 0.376 0.373 0.114 0.148 0.263 0.269 0.272 0.277 0.278 0.287 0.271 0.267 0.420
mAP [ small ] 0.180 0.191 0.202 0.202 0.206 0.209 0.206 0.208 0.162 0.161 0.138 0.161 0.170 0.171 0.176 0.171 0.190 0.203 0.188 0.184 0.032 0.052 0.098 0.106 0.108 0.108 0.104 0.115 0.106 0.106 0.252
mAP [ medium ] 0.400 0.403 0.421 0.422 0.425 0.427 0.426 0.435 0.389 0.386 0.364 0.379 0.396 0.394 0.400 0.399 0.416 0.428 0.411 0.409 0.128 0.165 0.277 0.282 0.284 0.292 0.293 0.299 0.283 0.275 0.456
mAP [ large ] 0.513 0.519 0.533 0.531 0.535 0.533 0.534 0.530 0.507 0.510 0.496 0.495 0.495 0.495 0.500 0.499 0.528 0.535 0.519 0.525 0.181 0.228 0.424 0.431 0.434 0.436 0.437 0.445 0.426 0.424 0.546

X4 Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT
mAP [ all ] 0.190 0.211 0.246 0.244 0.251 0.257 0.254 0.257 0.158 0.146 0.268 0.242 0.274 0.272 0.276 0.280 0.296 0.306 0.286 0.281 0.013 0.017 0.125 0.127 0.131 0.140 0.136 0.131 0.120 0.130
mAP [ small ] 0.041 0.062 0.063 0.062 0.067 0.068 0.066 0.063 0.028 0.026 0.088 0.074 0.087 0.085 0.088 0.093 0.100 0.105 0.096 0.094 0.002 0.002 0.020 0.022 0.020 0.022 0.021 0.017 0.022 0.020
mAP [ medium ] 0.191 0.221 0.257 0.256 0.262 0.267 0.266 0.261 0.153 0.139 0.285 0.253 0.296 0.292 0.298 0.303 0.315 0.323 0.304 0.298 0.012 0.017 0.103 0.105 0.113 0.119 0.114 0.108 0.107 0.109
mAP [ large ] 0.335 0.359 0.425 0.424 0.433 0.448 0.440 0.441 0.295 0.281 0.441 0.397 0.437 0.435 0.441 0.440 0.481 0.497 0.464 0.463 0.031 0.033 0.267 0.266 0.274 0.287 0.281 0.264 0.231 0.273

EfficientDet BI BD DN
HR

X2 Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT
mAP [ all ] 0.473 0.474 0.484 0.485 0.487 0.488 0.489 0.489 0.487 0.487 0.437 0.472 0.481 0.482 0.485 0.485 0.485 0.487 0.504 0.502 0.290 0.293 0.375 0.375 0.379 0.386 0.386 0.387 0.404 0.402 0.544
mAP [ small ] 0.288 0.289 0.303 0.305 0.309 0.308 0.306 0.307 0.299 0.295 0.214 0.284 0.299 0.296 0.305 0.302 0.303 0.300 0.320 0.318 0.108 0.123 0.170 0.175 0.180 0.182 0.181 0.176 0.193 0.193 0.400
mAP [ medium ] 0.523 0.521 0.533 0.533 0.536 0.536 0.536 0.539 0.535 0.535 0.488 0.522 0.531 0.532 0.533 0.535 0.535 0.537 0.549 0.545 0.317 0.323 0.405 0.405 0.409 0.419 0.420 0.421 0.437 0.433 0.581
mAP [ large ] 0.643 0.643 0.649 0.648 0.652 0.651 0.652 0.650 0.663 0.660 0.630 0.639 0.647 0.647 0.647 0.647 0.648 0.651 0.674 0.672 0.449 0.444 0.570 0.572 0.577 0.582 0.582 0.582 0.601 0.603 0.679

X4 Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT
mAP [ all ] 0.312 0.328 0.347 0.344 0.350 0.357 0.357 0.340 0.301 0.282 0.376 0.374 0.394 0.391 0.398 0.399 0.400 0.394 0.416 0.412 0.074 0.055 0.211 0.208 0.215 0.223 0.220 0.196 0.231 0.239
mAP [ small ] 0.104 0.118 0.119 0.117 0.121 0.125 0.121 0.104 0.092 0.082 0.144 0.147 0.157 0.157 0.162 0.164 0.161 0.163 0.177 0.176 0.010 0.011 0.040 0.040 0.045 0.047 0.045 0.031 0.058 0.054
mAP [ medium ] 0.328 0.350 0.374 0.371 0.379 0.387 0.389 0.359 0.310 0.286 0.413 0.403 0.434 0.431 0.439 0.439 0.441 0.429 0.457 0.452 0.075 0.065 0.198 0.194 0.202 0.214 0.209 0.175 0.220 0.224
mAP [ large ] 0.532 0.533 0.567 0.565 0.570 0.578 0.580 0.569 0.524 0.499 0.596 0.592 0.611 0.609 0.615 0.617 0.615 0.614 0.638 0.635 0.146 0.102 0.417 0.407 0.418 0.433 0.429 0.391 0.435 0.455

DINO BI BD DN
HR

X2 Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT
mAP [ all ] 0.534 0.532 0.538 0.540 0.542 0.543 0.543 0.544 0.518 0.516 0.506 0.524 0.536 0.535 0.538 0.538 0.538 0.541 0.537 0.535 0.396 0.379 0.411 0.417 0.421 0.424 0.425 0.424 0.428 0.421 0.580
mAP [ small ] 0.329 0.336 0.338 0.339 0.342 0.338 0.341 0.338 0.309 0.302 0.291 0.315 0.334 0.327 0.335 0.327 0.327 0.328 0.324 0.333 0.181 0.170 0.178 0.179 0.187 0.190 0.187 0.186 0.193 0.186 0.414
mAP [ medium ] 0.580 0.577 0.586 0.587 0.591 0.594 0.591 0.593 0.564 0.561 0.558 0.570 0.583 0.583 0.586 0.586 0.587 0.590 0.584 0.582 0.424 0.401 0.439 0.446 0.453 0.457 0.461 0.455 0.458 0.450 0.619
mAP [ large ] 0.725 0.723 0.728 0.726 0.728 0.729 0.728 0.731 0.721 0.719 0.719 0.718 0.722 0.722 0.724 0.722 0.724 0.728 0.723 0.723 0.627 0.595 0.639 0.647 0.648 0.651 0.650 0.654 0.655 0.647 0.736

X4 Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT
mAP [ all ] 0.399 0.390 0.395 0.395 0.400 0.406 0.401 0.383 0.333 0.314 0.445 0.433 0.435 0.440 0.442 0.447 0.443 0.435 0.448 0.438 0.222 0.160 0.229 0.232 0.235 0.249 0.241 0.208 0.261 0.249
mAP [ small ] 0.151 0.142 0.136 0.140 0.145 0.147 0.138 0.119 0.092 0.080 0.199 0.186 0.235 0.185 0.191 0.207 0.188 0.173 0.193 0.186 0.039 0.026 0.039 0.040 0.042 0.046 0.044 0.028 0.059 0.051
mAP [ medium ] 0.427 0.414 0.422 0.420 0.428 0.435 0.430 0.407 0.344 0.321 0.429 0.469 0.470 0.483 0.487 0.492 0.489 0.473 0.489 0.481 0.202 0.149 0.207 0.212 0.216 0.228 0.220 0.181 0.250 0.231
mAP [ large ] 0.663 0.646 0.656 0.656 0.661 0.666 0.662 0.654 0.599 0.573 0.696 0.679 0.595 0.687 0.689 0.691 0.686 0.686 0.695 0.688 0.449 0.326 0.471 0.478 0.477 0.506 0.488 0.450 0.500 0.497

Co-DETR BI BD DN
HR

X2 Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT
mAP [ all ] 0.542 0.541 0.547 0.548 0.551 0.551 0.553 0.551 0.526 0.525 0.512 0.532 0.544 0.543 0.546 0.546 0.548 0.549 0.544 0.542 0.400 0.384 0.423 0.427 0.439 0.438 0.440 0.435 0.438 0.432 0.589
mAP [ small ] 0.349 0.344 0.350 0.349 0.352 0.348 0.357 0.348 0.316 0.309 0.297 0.325 0.345 0.338 0.347 0.340 0.346 0.336 0.338 0.338 0.176 0.167 0.190 0.203 0.204 0.213 0.211 0.195 0.214 0.209 0.425
mAP [ medium ] 0.592 0.586 0.596 0.597 0.599 0.599 0.601 0.600 0.576 0.576 0.567 0.579 0.593 0.592 0.594 0.595 0.596 0.597 0.591 0.588 0.429 0.406 0.452 0.456 0.462 0.468 0.471 0.466 0.467 0.458 0.627
mAP [ large ] 0.735 0.737 0.746 0.742 0.744 0.748 0.746 0.744 0.736 0.735 0.730 0.731 0.738 0.739 0.739 0.735 0.740 0.743 0.737 0.740 0.641 0.609 0.665 0.667 0.675 0.677 0.680 0.677 0.679 0.672 0.751

X4 Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT
mAP [ all ] 0.409 0.397 0.405 0.405 0.411 0.415 0.412 0.389 0.352 0.330 0.455 0.442 0.454 0.450 0.454 0.457 0.456 0.442 0.456 0.446 0.222 0.159 0.240 0.241 0.248 0.260 0.254 0.219 0.273 0.258
mAP [ small ] 0.155 0.147 0.148 0.142 0.149 0.152 0.141 0.117 0.095 0.086 0.208 0.186 0.198 0.189 0.199 0.204 0.198 0.180 0.198 0.185 0.038 0.025 0.042 0.041 0.044 0.049 0.047 0.032 0.062 0.051
mAP [ medium ] 0.444 0.421 0.438 0.437 0.440 0.448 0.447 0.413 0.363 0.332 0.508 0.483 0.500 0.496 0.504 0.506 0.506 0.487 0.503 0.492 0.206 0.144 0.225 0.225 0.235 0.244 0.240 0.190 0.261 0.243
mAP [ large ] 0.684 0.665 0.674 0.677 0.686 0.691 0.687 0.673 0.636 0.606 0.710 0.699 0.713 0.711 0.707 0.708 0.706 0.705 0.715 0.707 0.458 0.335 0.495 0.493 0.502 0.527 0.520 0.469 0.530 0.523

Figure A8. Object detection performance for COCO val2017 [3] of YOLOv3 [88], EfficientDet [4],
RetinaNet [84], Faster R-CNN [6], DETR [94], DINO [96], and Co-DETR [97] according to each SR
model.
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DETR BI BD DN
HR

X2 Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT
easy 0.820 0.802 0.802 0.802 0.803 0.804 0.806 0.786 0.813 0.812 0.884 0.797 0.817 0.814 0.814 0.816 0.815 0.786 0.820 0.821 0.625 0.578 0.836 0.830 0.832 0.829 0.823 0.798 0.824 0.832 0.776

midium 0.813 0.797 0.800 0.800 0.801 0.800 0.802 0.787 0.805 0.806 0.856 0.789 0.807 0.805 0.805 0.806 0.806 0.783 0.809 0.810 0.582 0.576 0.792 0.788 0.790 0.787 0.780 0.758 0.781 0.788 0.781
hard 0.608 0.594 0.599 0.599 0.600 0.599 0.600 0.592 0.595 0.596 0.615 0.586 0.600 0.596 0.598 0.598 0.598 0.588 0.600 0.600 0.363 0.411 0.522 0.522 0.522 0.521 0.518 0.515 0.518 0.523 0.595
X4 Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT
easy 0.890 0.876 0.888 0.888 0.889 0.887 0.887 0.862 0.868 0.893 0.895 0.883 0.893 0.895 0.894 0.892 0.890 0.839 0.895 0.892 0.281 0.330 0.747 0.750 0.744 0.751 0.743 0.688 0.750 0.740

midium 0.847 0.832 0.845 0.846 0.847 0.844 0.843 0.807 0.823 0.854 0.857 0.842 0.855 0.857 0.854 0.854 0.851 0.798 0.857 0.853 0.234 0.327 0.649 0.657 0.651 0.659 0.648 0.575 0.657 0.648
hard 0.569 0.537 0.546 0.547 0.546 0.544 0.545 0.523 0.512 0.561 0.586 0.552 0.560 0.564 0.558 0.561 0.555 0.538 0.570 0.561 0.113 0.191 0.352 0.353 0.351 0.361 0.353 0.320 0.359 0.357

YOLOv3 BI BD DN
HR

X2 Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT
easy 0.940 0.941 0.942 0.941 0.941 0.941 0.941 0.941 0.938 0.939 0.936 0.940 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.943 0.768 0.827 0.909 0.908 0.910 0.910 0.909 0.908 0.907 0.907 0.941

midium 0.927 0.928 0.929 0.928 0.928 0.928 0.929 0.928 0.924 0.924 0.918 0.927 0.929 0.929 0.929 0.929 0.929 0.928 0.929 0.929 0.702 0.792 0.877 0.876 0.878 0.879 0.877 0.878 0.875 0.875 0.928
hard 0.826 0.824 0.827 0.827 0.827 0.827 0.828 0.825 0.817 0.818 0.770 0.819 0.821 0.822 0.822 0.823 0.822 0.821 0.821 0.821 0.515 0.643 0.708 0.711 0.714 0.716 0.714 0.718 0.714 0.712 0.823
X4 Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT
easy 0.927 0.922 0.930 0.930 0.931 0.930 0.930 0.925 0.923 0.935 0.930 0.930 0.936 0.935 0.935 0.936 0.937 0.931 0.935 0.935 0.365 0.570 0.812 0.816 0.819 0.820 0.816 0.787 0.819 0.809

midium 0.896 0.893 0.901 0.901 0.903 0.903 0.902 0.893 0.889 0.912 0.904 0.904 0.914 0.914 0.914 0.915 0.915 0.904 0.913 0.912 0.253 0.492 0.729 0.738 0.740 0.741 0.735 0.691 0.741 0.731
hard 0.692 0.695 0.704 0.702 0.709 0.711 0.711 0.693 0.664 0.731 0.702 0.717 0.736 0.734 0.739 0.738 0.739 0.730 0.735 0.734 0.115 0.279 0.459 0.467 0.473 0.478 0.475 0.443 0.477 0.475

RetinaNet BI BD DN
HR

X2 Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT
easy 0.941 0.939 0.941 0.941 0.940 0.941 0.940 0.939 0.939 0.939 0.934 0.939 0.941 0.941 0.942 0.942 0.941 0.940 0.942 0.942 0.784 0.804 0.890 0.890 0.892 0.892 0.889 0.890 0.889 0.890 0.941

midium 0.910 0.908 0.911 0.911 0.910 0.911 0.910 0.909 0.908 0.910 0.899 0.907 0.911 0.911 0.911 0.910 0.911 0.908 0.910 0.911 0.707 0.743 0.836 0.837 0.839 0.840 0.835 0.837 0.834 0.836 0.910
hard 0.688 0.679 0.688 0.686 0.689 0.688 0.689 0.686 0.683 0.683 0.663 0.675 0.685 0.684 0.685 0.685 0.684 0.681 0.684 0.685 0.451 0.512 0.577 0.580 0.582 0.584 0.582 0.582 0.579 0.580 0.691
X4 Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT
easy 0.918 0.913 0.922 0.923 0.923 0.922 0.922 0.916 0.910 0.928 0.923 0.918 0.930 0.930 0.930 0.930 0.929 0.924 0.931 0.929 0.506 0.496 0.765 0.767 0.772 0.776 0.766 0.729 0.776 0.760

midium 0.864 0.859 0.874 0.874 0.876 0.874 0.873 0.857 0.848 0.886 0.880 0.870 0.886 0.888 0.886 0.888 0.885 0.874 0.890 0.887 0.390 0.409 0.649 0.655 0.661 0.663 0.651 0.595 0.664 0.652
hard 0.581 0.584 0.598 0.596 0.602 0.601 0.600 0.570 0.554 0.614 0.616 0.597 0.617 0.617 0.617 0.618 0.614 0.601 0.623 0.616 0.186 0.224 0.377 0.378 0.384 0.390 0.384 0.336 0.390 0.387

FasterRCNN BI BD DN
HR

X2 Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT
easy 0.928 0.926 0.927 0.928 0.928 0.928 0.928 0.928 0.924 0.924 0.925 0.925 0.928 0.927 0.927 0.928 0.927 0.926 0.928 0.928 0.815 0.801 0.883 0.881 0.882 0.885 0.883 0.883 0.882 0.882 0.928

midium 0.896 0.894 0.896 0.896 0.897 0.897 0.897 0.896 0.892 0.892 0.887 0.891 0.896 0.895 0.896 0.896 0.896 0.894 0.896 0.896 0.737 0.745 0.827 0.827 0.827 0.830 0.828 0.831 0.825 0.827 0.897
hard 0.684 0.676 0.682 0.683 0.684 0.684 0.684 0.685 0.677 0.678 0.645 0.673 0.679 0.677 0.678 0.678 0.679 0.680 0.677 0.678 0.485 0.519 0.561 0.564 0.562 0.568 0.568 0.581 0.564 0.565 0.691
X4 Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT
easy 0.910 0.905 0.911 0.913 0.912 0.913 0.913 0.905 0.904 0.919 0.915 0.913 0.921 0.921 0.921 0.920 0.919 0.914 0.919 0.918 0.597 0.584 0.786 0.790 0.788 0.793 0.786 0.752 0.789 0.780

midium 0.863 0.855 0.863 0.865 0.864 0.866 0.864 0.850 0.844 0.873 0.871 0.866 0.875 0.878 0.877 0.877 0.875 0.865 0.876 0.873 0.484 0.500 0.673 0.679 0.679 0.685 0.678 0.637 0.682 0.674
hard 0.591 0.571 0.578 0.577 0.579 0.581 0.582 0.574 0.544 0.594 0.602 0.586 0.598 0.602 0.599 0.602 0.600 0.604 0.602 0.597 0.236 0.266 0.368 0.370 0.372 0.383 0.379 0.360 0.378 0.377

EfficientDet BI BD DN
HR

X2 Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT
easy 0.942 0.940 0.941 0.941 0.942 0.943 0.942 0.943 0.943 0.942 0.933 0.939 0.940 0.940 0.940 0.941 0.941 0.942 0.942 0.941 0.882 0.868 0.905 0.904 0.907 0.907 0.907 0.904 0.907 0.907 0.943

midium 0.923 0.922 0.922 0.923 0.923 0.923 0.924 0.924 0.925 0.923 0.905 0.919 0.921 0.921 0.921 0.921 0.921 0.923 0.923 0.921 0.833 0.829 0.870 0.870 0.873 0.874 0.873 0.870 0.875 0.875 0.926
hard 0.601 0.600 0.604 0.605 0.605 0.605 0.605 0.608 0.613 0.613 0.558 0.597 0.597 0.597 0.598 0.598 0.598 0.606 0.611 0.608 0.488 0.506 0.525 0.526 0.529 0.530 0.529 0.536 0.541 0.538 0.613
X4 Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT
easy 0.925 0.922 0.926 0.926 0.927 0.926 0.926 0.924 0.925 0.926 0.925 0.925 0.930 0.929 0.930 0.930 0.930 0.929 0.930 0.931 0.779 0.749 0.838 0.840 0.842 0.842 0.841 0.816 0.836 0.838

midium 0.887 0.886 0.894 0.894 0.895 0.895 0.894 0.887 0.889 0.893 0.889 0.894 0.902 0.901 0.902 0.903 0.902 0.898 0.899 0.903 0.673 0.667 0.754 0.757 0.761 0.764 0.760 0.720 0.757 0.759
hard 0.524 0.529 0.539 0.538 0.542 0.543 0.541 0.535 0.540 0.546 0.526 0.540 0.550 0.549 0.552 0.552 0.552 0.554 0.559 0.559 0.331 0.349 0.399 0.400 0.405 0.407 0.406 0.380 0.411 0.410
DINO BI BD DN

HR
X2 Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT
easy 0.930 0.926 0.926 0.925 0.926 0.926 0.926 0.922 0.922 0.922 0.931 0.919 0.925 0.926 0.926 0.926 0.926 0.923 0.926 0.926 0.786 0.718 0.889 0.887 0.888 0.889 0.888 0.874 0.888 0.890 0.923

midium 0.902 0.899 0.901 0.900 0.900 0.901 0.901 0.896 0.896 0.896 0.900 0.892 0.900 0.900 0.900 0.900 0.900 0.895 0.899 0.900 0.732 0.681 0.848 0.846 0.847 0.848 0.847 0.833 0.846 0.848 0.898
hard 0.728 0.722 0.727 0.726 0.727 0.728 0.728 0.725 0.719 0.721 0.692 0.716 0.721 0.721 0.722 0.722 0.722 0.720 0.721 0.721 0.516 0.523 0.608 0.612 0.610 0.614 0.614 0.618 0.615 0.615 0.733
X4 Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT
easy 0.915 0.911 0.920 0.921 0.919 0.920 0.920 0.904 0.899 0.924 0.924 0.919 0.924 0.924 0.924 0.924 0.924 0.903 0.925 0.923 0.568 0.512 0.806 0.810 0.806 0.811 0.805 0.738 0.807 0.801

midium 0.876 0.871 0.883 0.883 0.882 0.883 0.883 0.853 0.854 0.890 0.886 0.882 0.891 0.892 0.892 0.891 0.890 0.862 0.892 0.890 0.490 0.452 0.712 0.718 0.715 0.722 0.714 0.625 0.719 0.713
hard 0.617 0.611 0.615 0.616 0.617 0.619 0.621 0.594 0.577 0.636 0.630 0.628 0.634 0.636 0.634 0.639 0.634 0.624 0.647 0.638 0.269 0.271 0.408 0.410 0.408 0.422 0.419 0.366 0.419 0.416

Co-DETR BI BD DN
HR

X2 Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT
easy 0.941 0.938 0.940 0.939 0.940 0.940 0.941 0.940 0.937 0.937 0.942 0.936 0.941 0.941 0.940 0.942 0.941 0.940 0.941 0.942 0.794 0.758 0.901 0.899 0.899 0.901 0.900 0.891 0.899 0.902 0.942

midium 0.923 0.922 0.924 0.924 0.924 0.923 0.925 0.923 0.920 0.920 0.919 0.917 0.924 0.924 0.924 0.925 0.924 0.920 0.923 0.924 0.743 0.728 0.868 0.867 0.868 0.870 0.868 0.858 0.866 0.866 0.924
hard 0.745 0.741 0.746 0.746 0.748 0.746 0.748 0.746 0.742 0.742 0.710 0.734 0.740 0.740 0.742 0.742 0.741 0.743 0.741 0.741 0.516 0.547 0.631 0.633 0.632 0.637 0.637 0.636 0.635 0.635 0.757
X4 Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT Bicubic DRRN DBPN MSRN RCAN EDSR RRDB ESRGAN HAT DAT
easy 0.930 0.922 0.929 0.930 0.930 0.928 0.929 0.919 0.914 0.936 0.934 0.926 0.935 0.936 0.936 0.936 0.935 0.922 0.938 0.935 0.493 0.455 0.802 0.805 0.802 0.807 0.799 0.736 0.805 0.795

midium 0.896 0.890 0.900 0.901 0.901 0.900 0.900 0.877 0.873 0.909 0.903 0.895 0.908 0.910 0.909 0.910 0.908 0.889 0.911 0.908 0.426 0.414 0.719 0.725 0.724 0.731 0.722 0.632 0.729 0.719
hard 0.637 0.632 0.640 0.638 0.642 0.642 0.643 0.615 0.599 0.659 0.652 0.644 0.658 0.660 0.654 0.660 0.655 0.647 0.667 0.660 0.230 0.242 0.429 0.431 0.432 0.443 0.438 0.374 0.441 0.438

Figure A9. Object detection performance for the Wider Face validation set of YOLOv3 [88], Efficient-
Det [4], RetinaNet [84], Faster R-CNN [6], DETR [94], DINO [96], and Co-DETR [97] according to
each SR model.
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