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Abstract: A light and displacement-compensation-based iPPG algorithm is proposed in this paper
for heart-rate measurement in complex detection conditions. Two compensation sub-algorithms,
including light compensation and displacement compensation, are designed and integrated into
the iPPG algorithm for more accurate heart-rate measurement. In the light-compensation sub-
algorithm, the measurement deviation caused by the ambient light change is compensated by the
mean filter-based light adjustment strategy. In the displacement-compensation sub-algorithm, the
measurement deviation caused by the subject motion is compensated by the optical flow-based
displacement calculation strategy. A series of heart-rate measurement experiments are conducted
to verify the effectiveness of the proposed method. Compared with conventional iPPG, the average
measurement accuracy increases by 3.8% under different detection distances and 5.0% under different
light intensities.

Keywords: heart-rate measurement; iPPG; light compensation; displacement compensation

1. Introduction

Heart rate represents the number of heartbeats per minute (beat per minute, bpm),
which is an effective indicator of human health [1]. There exists a high requirement for
heart-rate measurement in multiple tasks such as household healthcare [2,3], medical
treatment [4], and search and rescue [5]. Conventionally, the heart-rate measurement
requires the subject to be equipped with contact measuring equipment. However, the
subject cannot carry contact measurement devices in certain special environmental and
task conditions. In such cases, the heart rate should be measured in a non-contact [6] way.

A series of sensors, including microwave radars, pressure sensors, and near-infrared
cameras, can be used for non-contact heart-rate measurement. A wave of a fixed frequency
shining on the object will produce a reflected wave of the same frequency. When the wave
shines on the human heart (fixed-frequency vibration), a fixed-frequency mutation will be
produced on the reflected wave according to the Doppler effect. In paper [7], a low power
microwave radar is used to irradiate the human body, and the heart rate is measured by
measuring the frequency mutation of the reflected wave. In paper [8], the pressure sensor
is pasted onto the human body. The pressure sensor data will produce periodic fluctuations
in the human heartbeat. The human heart rate can be calculated by analysis of the data
fluctuations. The blood vessel pressure of human skin will change periodically when the
human is in the heartbeat process. The temperature will also change with the same period.
Paper [9,10] use a near-infrared camera to irradiate the human body and measure the
human heart rate by measuring the temperature change period in a specific area. However,
such sensors are not universal enough, which affects their popularization to some extent.
By contrast, RGB video analysis-based heart-rate measurement has been widely used in
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recent years. Research [11] shows that RGB video analysis-based heart-rate measurement
has the same accuracy as professional measurement equipment (such as radar).

iPPG (imaging Photoplethysmography) is the current mainstream RGB video analysis-
based non-contact heart-rate measurement method [12–14]. In the method, exposed human
skin images are captured and analyzed for pulse signal measurement. The pulse rate is
equivalent to the heart rate. However, there still exist large differences in the signal-to-noise
ratio (SNR) [15] by different detection and calculation strategies. The main reason for this is
that different parts of the human body have different reflexes to ambient light, and the same
area of the human body has different reflect abilities from different light spectrums [16–18].
In current studies, human facial [19,20] images are usually used for heart-rate measurement.
In paper [21], specific spectral components are added to ambient light to improve the SNR.
Another image registration algorithm is proposed in [22] to increase the SNR.

In paper [23], independent component analysis (ICA) was directly used to analyze the
ambient reflected light of the R, G, and B channels, respectively. The method is simple but
not robust enough to the subject motion, and the relationship between signals of different
channels is unclear. Another principal component analysis (PCA) was proposed [24] to
extract signals from the three channels. Compared with ICA, PCA can effectively reduce
calculation time. In paper [25], the facial region was first divided into four sub-regions, and
then the underlying signal set was obtained by the blind source separation of signals from
different human skin regions. The heart-rate signal was recovered by spectral clustering of
the underlying signal set. Based on this idea, a multi-objective optimization strategy was
proposed [26] for signal selection in the blind source separation process. More accurate
measurement results can be obtained based on this strategy.

The above research can achieve high measurement accuracy under ideal conditions.
However, the accuracy will be significantly reduced when the ambient light changes or the
subject moves. Paper [27] establishes two orthogonal chrominance signals based on the
skin reflection model and uses the difference between the chrominance signals to cancel
the specular reflection component to obtain a more accurate heart rate. Subsequently,
the team proposed the CHROME (Chrominance-Based) [28] method and the color space
normalization [29] method in turn to solve the interference caused by motion artifacts. In
paper [30], joint blind source separation and ensemble empirical mode decomposition were
used to reduce the interference caused by illumination. In paper [31], the image jitter is
corrected based on a multi-task convolutional neural network, and the heart-rate signal is
denoised by empirical mode decomposition and permutation entropy. Paper [32] proposes
a gray level compensation algorithm to compensate for the change of gray level caused by
the ambient light.

Based on the above methods, accurate heart-rate measurement can be achieved un-
der small ambient light or displacement changes. However, when there is a relatively
large change in the ambient light or the subject’s motion, the accuracy of the iPPG-based
algorithm will be greatly disturbed. Based on this problem, a light and displacement-
compensation-based iPPG algorithm is proposed in this paper. The method takes ordinary
RGB video data as input to achieve the accurate measurement of human heart rate. Two
sub-algorithms are designed and integrated into the conventional iPPG algorithm: the
light-compensation sub-algorithm and the displacement-compensation sub-algorithm. The
proposed method can better adapt to complex detection conditions. Firstly, the measure-
ment deviation caused by the ambient light change is compensated by a light compensator.
Secondly, the measurement deviation caused by the subject motion is compensated by a
displacement compensator. The optical flow method [33,34] is used for the displacement
calculation. A series of experiments in different detection conditions are conducted to verify
the effectiveness of the proposed method. The experimental results show that the heart-
rate measurement method proposed in this paper can effectively improve the accuracy of
heart-rate measurement.

The rest of this paper is organized as follows: Section 2 details the basic procedure of
the proposed method. The four phases of the proposed method are detailed in the later
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four sections (Section 3, Section 4, Section 5, and Section 6), respectively. Experiments are
conducted in Section 7. Section 8 concludes the paper.

2. Overview of the Heart-Rate Measurement

Shown in Figure 1 is the heart-rate measurement flow chart. The method takes RGB
video as input. The RGB video frame rate should be no less than 30 fps (frames per second),
and the duration time should be no less than 20 s.

The whole process consists of four stages. Firstly, a series of spatial processing, includ-
ing Gaussian smoothing, skin-color detection, and color decomposition, are conducted.
Secondly, a light-compensation algorithm is proposed to compensate for the skin-reflect
light changes caused by the ambient light change. The skin-reflect lights of the R, G, and
B channels are compensated, respectively. Thirdly, a displacement-compensation algo-
rithm is designed to compensate for the light intensity changes caused by the subject’s
motion. The Lucas–Kanade(LK) optical flow algorithm is used for the subject displace-
ment calculation. Finally, a band-pass filter is embedded in the CHROME algorithm for
heart-rate measurement.

Figure 1. Heart-rate measurement flow chart.

3. Spatial Processing
3.1. Gaussian Smoothing

In spatial processing, the Gaussian smoothing is first applied to all the frames to
reduce image noise. The Gaussian function is defined as:

G(x, y) =
1

2πσ2 e−
x2+y2

2σ2 , (1)

where σ is the standard deviation, which is set to 1 in this paper. The intensity value of each
pixel is updated to the average intensity value of itself and the nearby elements multiplied
by a certain weight, w.

I′(x, y) =

4
∑

i=0

4
∑

j=0
wij × I(x + i − 2, y + j − 2)

25
, (2)

where (x, y) is the initial intensity value of pixel (x, y) and I′(x, y) is the updated intensity
value of I(x, y).
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w =


0.003 0.013 0.022 0.013 0.003
0.013 0.059 0.097 0.059 0.013
0.022 0.097 0.159 0.097 0.022
0.013 0.059 0.097 0.059 0.013
0.003 0.013 0.022 0.013 0.003

 (3)

3.2. Skin-Color Detection Color Decomposition

H component of the HSV (Hue, Saturation, Value) color space and Cb and Cr compo-
nents of the YCbCr space are selected for skin-color detection. The following constraints
are designed: 

1 ≤ H ≤ 23
77 ≤ Cb ≤ 127
133 ≤ Cr ≤ 173

(4)

Shown in Figure 2 is the skin detection result. It can be seen that the human facial
region is successfully distinguished from the other areas. Finally, all the pixels in all the
frames are decomposed into the red, green, and blue components, respectively.

I(x, y) ∈ {R(i, j), G(i, j), B(i, j)}, (5)

where R(x, y), G(x, y), and B(x, y) are the red, green, and blue component of pixel (x, y),
respectively.

Figure 2. Result of skin-color detection.

4. Light Compensation
4.1. Light-Compensation Algorithm

A light compensator (see Algorithm 1) is proposed to compensate for the pixel intensity
change caused by the ambient light change. Shown in the above algorithm is the process of
the light-compensation algorithm. In the algorithm, the pixel intensities of the R, G, and B
channels are compensated independently. The light-compensation algorithm assumes that
the mean intensity value of any pixel with a fixed size is constant. Firstly, a mean filter with
a window size of 2a × 2b is applied to all the frames:

gn(i, j) =

a
∑

p=−a

b
∑

q=−b
I′t(i + p, j + q)

2a × 2b
, t ∈ [1, N], (6)

where gn(i, j) is the mean pixel intensity of the area with the size of 2a × 2b, which is
constant to C (the constant). The center coordinates of the area is (i, j); n is the order
of frames.

gn(i, j) ∈ {Rn(i, j), Gn(i, j), Bn(i, j)} (7)
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Algorithm 1: Light-compensation sub-algorithm

Input: R = {R1, ..., RN}, G = {G1, ..., GN}, B = {B1, ..., BN};
//N represents the number of frames
Output: R∗ = {R∗

1 , ..., R∗
N}, G∗ = {G∗

1 , ..., G∗
N}, B∗ = {B∗

1 , ..., B∗
N};

1 for i = 1; i < P + 1; i ++ do
2 for j = 1; j < Q + 1; j ++ do
3 // P × Q represents the size of all the frames
4 for n = 1, n < N + 1, n ++ do
5 // the first frame
6 if i==1 then
7 // mean intensities of the R, G, and B channels
8 mean_R1(i, j) = mean(R1(i, j))
9 mean_G1(i, j) = mean(G1(i, j))

10 mean_B1(i, j) = mean(B1(i, j))

11 // the other frames
12 else
13 mean_Rn(i, j) = mean(Rn(i, j))
14 mean_Gn(i, j) = mean(Gn(i, j))
15 mean_Bn(i, j) = mean(Bn(i, j))
16 // light compensation of the R, G, and B channels
17 R∗

n(i, j) = Rn(i, j) + mean_Rn(i, j)− mean_R1(i, j)
18 G∗

n(i, j) = Gn(i, j) + mean_Gn(i, j)− mean_G1(i, j)
19 B∗

n(i, j) = Bn(i, j) + mean_Bn(i, j)− mean_B1(i, j)

The intensities of each pixel in each frame are then added with the difference between
gn(i, j) and g1(i, j).

I∗n(i, j) = I′n(i, j) + gn(i, j)− g1(i, j), (8)

where I∗n(i, j) is the compensated light intensities of pixel (i, j).

4.2. Results of Light Compensation

Shown in Figure 3 is the light-compensation result. The upper shows the snapshots
of the RGB video (20 s), and the lower shows the filtered curves. The red curve and green
curve represent the pixel intensities with and without light compensation, respectively.
The shaded area between the two curves represents the compensation values. It can be
seen from the figure that the filtered curve has a large deviation relative to the initial state
without light compensation. In the compensated curve, the deviation is eliminated.

Figure 3. Results of light compensation.
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5. Displacement Compensation

The LK algorithm is first used to evaluate the specific pixel’s displacement between
any adjacent frames, and then the displacement is compensated for each pixel on each
frame. In the LK algorithm, three typical assumptions are first introduced:

Constant Brightness: Pixels of the target image in the scene appear to be unchanged
as they move from frame to frame.

Temporal Persistence (Small Movement): The motion of the objects on the image
varies slowly over time.

Spatial Consistency: Adjacent points on the same surface in the scene have similar
motion and are projected relatively close to the image plane.

Suppose I(x, y, t) is the pixel value of the pixel point (x, y) at time t. After time dt, the
subject’s specific point at pixel coordinate (x, y) moves to (x + dx, y + dy). According to
the first assumption, there is:

I(x, y, t) = I(x + dx, y + dy, t + dt). (9)

According to the second assumption, the motion of the subjects on the image is
small. Hence, the function I(x + dx, y + dy, t + dt) can be expanded at (x, y, t) using
Taylor’s formula.

I(x + dx, y + dy, t + dt) = I(x, y, t) +
∂I
∂x

+
∂I
∂y

+
∂I
∂t

+ ϵ, (10)

where ϵ represents the higher-order remainder of Taylor’s formula, which can be ignored.
Therefore, there is:

∂I
∂x

+
∂I
∂y

+
∂I
∂t

= 0. (11)

Which is equivalent to:

∂I
∂x

∂x
∂t

+
∂I
∂y

∂y
∂t

+
∂I
∂t

= 0, (12)

where ( ∂x
∂t , ∂y

∂t ) = (u, v) is the optical flow of the pixel to be resolved. The velocity compo-
nents along the x and y directions are denoted as u and v, respectively. The above formula
can be written as:

[
Ix Iy

][u
v

]
= −It. (13)

This formula shows that the temporal pixel value differential at the same coordinate
position is the production of the spatial pixel value differential and the velocity relative to
the observer at that position. However, as the solution of the above binary linear equation
is not unique, other constraints are required.

According to the third assumption, it can be assumed that within a window of size
m × m, the optical flow of the image is a constant value. Hence, the following equation can
be obtained: 

Ix1 Iy1
Ix2 Iy2
...

...
Ixm Iym

 = −


It1
It2
...

Itm

 ⇔ A
−→
V = −b. (14)

The final result can be calculated by:
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[
u
v

]
=


n
∑

i=1
I2
xi

n
∑

i=1
Ixi Iyi

n
∑

i=1
Ixi Iyi

n
∑

i=1
I2
yi


−1−

n
∑

i=1
Ixi Iti

−
n
∑

i=1
Iyi Iti

. (15)

Displacement measurement experiments are conducted to verify the effectiveness
of the algorithm. The results are shown in Figure 4. Select three random points on the
human body in the video and track the movement. The trajectory curves are shown as the
color lines. It can be seen that the optical flow method-based displacement measurement
algorithm can accurately track the coordinates of specific pixels when the subject moves,
then the light intensity change of a specific point on the video can be obtained.

Figure 4. Displacements of specific pixels in the video.

6. Heart-Rate Measurement
6.1. Design of the Filter

The human heart rate ranges approximately from 1.0 Hz to 1.667 Hz. In this paper,
a Butterworth band-pass filter is used to filter out the high-frequency and low-frequency
noises. The magnitude of the frequency response (first order) is given by

H(jω) =
jωτ1

1 + jωτ1

1
jωτ2

(16)

[
W1, W2

]
=

[
1
τ1

, 1
τ2

]
, (17)

where the passband is [W1, W2]. The filter performance is influenced by two aspects: the
order of the filter and the range of the filter passband.

Shown in Figure 5 is the frequency response of the band-pass filter. The red zone
represents the range of the human heart rate. The order is 256 on the left curve, and
the passband ranges from 0.8 to 1.9 on the right curve. It can be seen that the stopband
falls faster with the increase of the filter order, and the filter pass width is widened as
the passband widens. Based on the above analysis, a 256th-order band-pass filter with a
passband from 0.8 Hz to 1.9 Hz is utilized to let through the maximum frequency of human
heart rate without attenuation.

Figure 5. The frequency response of the band-pass filter.
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6.2. Color Decomposition

This paper uses the CHROME algorithm to measure the robustness. First, decompose
the light as follows:

Ck = ICk (ρCdc + ρCk + Sk), (18)

where Ck is the C channel intensity of a particular pixel in graph k. C ∈ {R, G, B}. ICk
represents the intensity of Ck in the camera’s exposure stage. ρCdc represents the fixed
coefficient of reflection of light from the skin surface, which is fixed but different in different
channels: ρRdc > ρGdc > ρBdc . ρCk represents the component of dynamic disturbance caused
by the pulse. Sk represents the specular reflection component due to motion, which is the
same in different channels.

The CHROME algorithm combines the signals of the R, G, and B channels in different
proportions to eliminate the static component and the additional specular reflection com-
ponent and outputs the pulsating diffuse reflection component. The combination mode is
as follows: {

Xs = 3R(n)− 2G(n)
Ys = 1.5R(n) + G(n)− 1.5B(n)

, (19)

where R(n), G(n), and B(n) are the normalized signals of the R, G, and B channel. Xs and
Ys are filtered by the band-pass filter, respectively, after the filters X f and Yf are obtained.
Finally, the heart-rate signal is formed by the following formula:

S = X f − αYf . (20)

The filtering results are shown in Figure 6. The three figures on the left are the partial
filtering results of the R, G, and B channels, respectively. The figure on the upper right
shows the result of X f and Yf , and the figure on the lower right shows the value of S. As
can be seen from the figure, the filtered data of the R, G, and B channels fluctuate greatly,
which makes it difficult to filter effective heartbeat signals from them. The fluctuation of
S obtained by X f and Yf is relatively uniform. Follow-up heart-rate data extraction can
be performed.

Figure 6. Color decomposition of one specific pixel.

6.3. Heart-Rate Measurement

cycle =

n
∑

i=1
cyclei

n
(21)

The time interval between any two adjacent peaks in the pixel value curve is regarded
as a heartbeat cycle, and the average of all heartbeat cycles is considered as the heart rate
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of the human. As shown in Equation (21), cyclei is the ith heartbeat cycle, and cycle is the
average heart rate of the human.

Shown in Figure 7 is the pixel value of a specific point on the RGB video. The horizontal
coordinate represents the time, and the vertical coordinate represents the pixel value after
standardization. The data have been filtered and standardized. The processed data values
are between −0.5 and 0.5. It can be seen from the figure that the curve has obvious periodic
characteristics. The height of each wave crest and trough are not the same; the main reason
for this is that there is a certain difference in the heartbeat amplitude of each human. The
time between the two peaks (or troughs) in the curve is the heartbeat cycle of the human
hour. To ensure measurement accuracy, a 20-s video is collected to calculate the average
heartbeat cycle. It can be seen that a total of 18 complete heartbeat cycles exist in the curve.
The mean cycle time is 18.82 s. Hence, the heart rate is 60/(18.82/18) = 57.4 bpm.

Figure 7. Pixel value of one specific pixel.

7. Experiment

The experimental scene is shown in Figure 8. A built-in camera of a laptop computer
is used for the subject’s facial videos collection. The subject sits in front of the laptop with
their face facing the camera of the laptop to facilitate image acquisition. The size of the
frame is 1920 × 1080 pixels, and the frame rate is 30 fps. Video capture duration is no less
than 20 s. The subjects are asked to remain as still as possible during the data collection. A
total of five subjects participated in the data collection. Meanwhile, a medical heart-rate
measurement device is used as the control group. The measurement device is fixed on the
human’s arm at the same horizontal height as the human’s heart. The data and images of
the control group are collected at the same time. Each subject captured five videos in each
set of experimental conditions (specific light and detection distance). The real-time heart
rate of the subjects during the collection of each video is recorded at the same time.

Figure 8. The experimental scene.
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Shown in Figure 9 are the heart-rate measurement results under various human–
camera distances. The light intensity is approximately 300 lux in this group. It can be
seen that the subjects’ heartbeat fluctuates at different distance conditions, but the overall
change is small. The heart rate calculated by the proposed method is less than the actual
heart rate. The main reason for this is that part of the human heartbeat is light and filtered
by filters. There exists a large deviation in heart-rate measurement by all the methods. The
average measurement accuracy is 7.4% by the traditional iPPG-based algorithm, and the
average measurement accuracy increases to 3.6% with the proposed method. The results
show that the proposed method can increase the heart-rate measurement accuracy at any
human–camera distances.

Figure 9. Heart-rate measurement results under various human–camera distances.

Figure 10 show the variances under various human–camera distances. The greater the
variance, the greater the fluctuation and the worse the stability of the measurement results.
It can be seen from the results that the measurement results using the conventional IPPG-
based algorithm have a large fluctuation, which is much higher than that of the proposed
method. The data fluctuation is suppressed to a large extent using the proposed method.
At the same time, it can be seen that the human–camera distance has little influence on the
measurement accuracy under the two methods. This means that the method proposed can
achieve high-precision heart-rate measurements at a distance of less than 3 m. Generally, the
average measurement accuracy is improved by 3.8% at different distances by the proposed
compensation algorithm.

Figure 10. Variances under various human–camera distances.

Shown in Figure 11 are the heart-rate measurement results under different light
intensities. The human–camera distance in this group is 1.0 m. It can be seen from the figure
that the subjects’ heart rates fluctuate to some extent under different lighting conditions,
but the overall change was small. At the same time, with the increase in light intensity
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the difference between the measured results and the real heart rate gradually decreased.
The main reason for this is that there exists more noise under low light conditions, and
some image noise cannot be effectively filtered out, which results in a high heart-rate
measurement. The environmental noise is effectively filtered with the increase of light
intensities. On the contrary, the weaker heartbeat of the human part was filtered out
by the filter, and the measured value was slightly lower than the true value. On the
whole, the average measurement accuracy is 7.8% without compensation, and the average
measurement accuracy increases to 2.8% by the proposed method.

Figure 11. Heart-rate measurement results under different light intensities.

Figure 12 shows the variances under different light intensities. It can also be seen
that large variances exist in heart-rate measurement by the iPPG-based algorithm. The
variance is greatly suppressed by the proposed method. In the case of low light intensity,
the algorithm based on iPPG is more sensitive to light, and the variance is larger under
low-light conditions, indicating that the measurement results fluctuate greatly under low-
light conditions. However, the proposed method can guarantee a low variance under any
illumination conditions, indicating a good consistency of measurement results.

Figure 12. Variances under different light intensities.

8. Discussion and Conclusions

Aimed at the problem of the low robustness of current heart-rate measurement meth-
ods in complex detection conditions, a light and displacement-compensation-based iPPG
algorithm is proposed in this paper for heart-rate measurement. The method consists of
four main procedures: spatial processing, light compensation, displacement compensation,
and measurement. Only an RGB video with a human face is required in this method.

The input video is first processed by a Gaussian fuzzy filter, and then the video is
decomposed frame by frame. The light-compensation module is used to compensate for the
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influence caused by ambient light on the measurement results. Displacement compensation
is used to compensate for the influence caused by the subject’s movement in a small range.
To measure the displacement of the humans, a displacement measurement method based
on the optical flow method is introduced in this study. The measurement deviation caused
by the ambient light change and subject motion is compensated by the two compensation
sub-algorithms. In the final measurement stage, the CHROME algorithm is first used to
decompose and reassemble the image, then the band-pass filter is used to filter the input
data frame by frame and pixel by pixel, and the clutter outside the human heart-rate range
is filtered out. Finally, the heart rate is calculated.

A series of experiments in different detection conditions (various light intensities
and various human–camera distances) are conducted to verify the effectiveness of the
proposed method. Compared with traditional methods, the proposed method can achieve
higher measurement accuracy and lower measurement variance. Specifically, the following
conclusions are drawn:

(1) The average measurement accuracy is improved by 3.8% by the proposed compen-
sation algorithm under different distance conditions.

(2) The average measurement accuracy is improved by 5.0% by the proposed compen-
sation algorithm under different light intensities.

(3) To achieve a higher accuracy of heart-rate measurement, the detection distance
should not exceed 2 m and the lighting intensity should not be less than 200 lux.

The proposed method can be used for heart-rate measurement under small movements
of the human body. However, when the motion range of the human body is large, the
processing capacity of the optical flow method makes it unable to accurately measure the
heart rate. In future work, the key points of the face should be identified under large-scale
human movement, and then the heart-rate measurement could also be realized under
large-scale human movement.
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