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Abstract: We present a novel decision-making framework for accelerated degradation tests and
predictive maintenance that exploits prior knowledge and experimental data on the system’s state. As
a framework for sequential decision making in these areas, dynamic programming and reinforcement
learning are considered, along with data-driven degradation learning when necessary. Furthermore,
we illustrate both stochastic and machine learning degradation models, which are integrated in the
framework, using data-driven methods. These methods are presented as a valuable tool for designing
life-testing experiments and for maintaining lithium-ion batteries.

Keywords: degradation modelling; remaining useful life; accelerated degradation tests; predictive
maintenance; reinforcement learning

1. Introduction

As lithium-ion batteries have become increasingly common, estimating their remaining
useful life (RUL) has become a necessity due to their impact on system availability and
safety. RUL is especially useful for establishing predictive maintenance strategies due to
its prognostic value. Battery degradation models should also incorporate the effects of
different usages and environmental conditions on battery performance to make reliable
predictions of the RUL. Battery degradation behavior must be characterized through
accelerated degradation tests, which are planned based on optimal design theory to predict
RULs and discriminate among competing models. An optimal maintenance strategy can
be chosen by using reinforcement learning methods based on a good degradation model.
A brief overview of all these methods is presented in this article. Individually, they are
well-represented in the literature, but considering them together is a novel approach to
maintenance. Due to the fact that batteries are often used in uncontrolled environments, the
combined policy and model learning aspects of this approach seem particularly promising.

A lithium-ion battery’s state of health (SoH) decays exponentially during the degra-
dation process. Various methods can be used to estimate the SoH parameter, including
direct estimation from the discharge capacity or open circuit voltage (OCV), sensor fusion
algorithms, or indirect processing from equivalent series resistance (ESR). Several factors
contribute to the degradation of batteries, including battery chemistry, size, and operating
conditions. It is important to note, however, that the general trend is always characterized
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by an exponential decay, as shown in Figures 1 and 2 (see [1,2]). A detailed description
of the possible approaches to degradation modelling is provided in Section 2, followed
by a description of specific models that can be used to represent the exponential decay of
SOH in Section 3. Section 4 discusses the design of experiments for accelerated testing
(i.e., optimal designs), as well as reinforcement learning for maintenance planning. The last
section, Section 5, of the paper is a comment section.

Figure 1. SoH of the batteries tested in the NASA dataset [1]. Each SoH has been fitted with a single
exponential model. The R2 value of each fitting is also reported.

Figure 2. SoH of all batteries in the Toyota dataset [2] divided into three batches. Each subplot shows
the R2 value for an exponential model.

2. Approaches to Degradation Modelling

Within the context of prognostic and health management (PHM) fall several different
techniques used to analyze the degradation processes in lithium-ion batteries. The final
aim is usually the prediction of their remaining useful life (RUL). The literature presents
two distinct classes of approaches for this purpose, as detailed in [3,4].

• The first category is represented by physics of failure (PoF) models that are used in
prognostics and remaining useful life (RUL) estimation to understand the underlying
physical mechanisms that lead to the degradation and failure of a system over time.
These models are based on the fundamental principles of physics and engineering
to predict how various stresses and environmental factors influence the health and
performance of a component or system. For this reason, PoF models are not com-
monly employed in the case of energy storage systems due to the complex non-linear
degradation mechanisms that dominate the chemical wear-out of batteries [5,6].

• The second category is called data-driven methods because they rely on the analysis
of historical or real-time data to predict the future health and the degradation path of
a system. In order to do that, data-driven methods leverage patterns and information
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directly obtained from the system’s operational data as well as from the environmental
conditions (which are usually called covariates). Typically, data-driven models are
based on a multi-step procedure, starting from the data collection (either from the
actual system or from historical datasets) followed by a feature extraction phase, a
preprocessing phase (like anomaly detection, patter recognition, clustering, regression,
and so on), and a training phase. After that, the model needs to be validated before it
can be actually applied online on the system to estimate the RUL (eventually associated
with a confidence interval or an uncertainty assessment). In the context of lithium-ion
batteries, common data-driven models can be divided in the following sub-categories:

– Stochastic models based on probabilistic assumptions, which include general
path models [7], and stochastic processes like autoregressive integrated mov-
ing average (ARIMA) models [8], the Wiener process [9], the Brownian motion
process [10], the gamma process [11], and the inverse Gaussian process [12].

– Recursive mathematical filtering algorithm like the Kalman filter [13] and the
particle filter [14], as well as their improvements and extensions. These methods
are used to dynamically estimate the state of a battery, taking into account both
the measurements and the predicted system state.

– The alternative is represented by machine learning (ML) models. ML is a subset
of artificial intelligence that enables systems to learn and make predictions or
decisions without being explicitly programmed. It involves designing and de-
veloping algorithms and models that can learn patterns and relationships from
data and use them to make predictions or take actions. ML algorithms are de-
signed to improve their performance over time through experience, adjusting
and optimizing their models based on feedback and new data. In the case of
lithium batteries, common ML algorithms for PHM and RUL prediction include
but are not limited to: support vector machine [15], relevance vector machine [16],
random forest regression [17], artificial neural network [18], variational autoen-
coders [19], and deep neural networks. Examples of the latter are long short-term
memory network (LSTM) [20], temporal transformer network [21], deep neural
network [22], and echo state network [23]. An overall review of ML techniques
for RUL estimation of batteries in recent years is presented in [24].

The recent literature is increasingly favoring data-driven approaches due to challenges
in modelling battery degradation trends. Data-driven models offer enhanced accuracy of
RUL prediction with a consequent minor estimation error. Nevertheless, the downside
of these methods is that they typically necessitate a substantial amount of data regarding
the degradation trend of training batteries. The most effective means of acquiring such
data involves specifically designed degradation tests aimed at measuring the discharge
capacity of the battery over time, from the initial state to the failure threshold. However,
the development of new battery degradation tests faces significant constraints. Building a
battery degradation dataset requires testing a large number of batteries until the failure
threshold is reached. Advancements in technology have considerably extended battery
life, with failure conditions now achievable after over 1000 complete charge/discharge
cycles. Generating such datasets requires high costs, and it demands extensive time,
human resources, and specialized measurement equipment. Additionally, the diversity
in battery types (varying in size, chemistry, anode and cathode specifications, etc.) and
operating conditions (dependent on charge/discharge profiles, ambient temperature, etc.)
significantly impacts battery responses during degradation tests, leading to the necessity of
developing numerous tests tailored to battery size, chemistry, charge and discharge current,
temperature conditions, and more. Given these challenges, much of the recent literature
typically evaluates the proposed RUL prediction method on degradation datasets publicly
available. Several characteristics distinguish the most commonly used datasets for prognostic
and RUL prediction [1,2,25]. In NASA’s [1] study, four 2000 mAh lithium-ion batteries were
tested at standard operating conditions until 70% of rated capacity was reached (i.e., 24 °C
ambient temperature, 1 C discharge profile, and 0.75 C constant current–constant voltage
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charge profile). Toyota [2] presents data from 140 lithium-ion phosphate/graphite cells
with a nominal capacity of 1100 mAh. In the tests, the battery was charged and discharged
as fast as possible at 30 °C until 80% of the nominal capacity was reached. According to the
Center for Advance Life Cycle Engineering (CALCE) [25], prismatic cells with a capacity
of 1100 mAh and 1350 mAh were tested at room temperature with a standard constant
current–constant voltage (CC–CV) charging protocol at different C-rates until 80% of their
nominal capacity had been reached. Detailed information about the testing protocols can
be found in the references cited.

Stochastic and machine learning models have both advantages and disadvantages
when used for RUL prediction. Stochastic methods are based on explicit probabilistic
assumptions on the data-generating process. They have the advantage of an interpretable
parameterization, allowing one to infer the relationship among the independent variables
and the outcome, but it is required to establish assumptions consistent with the data-
generating process in order to obtain accurate predictions. As such, stochastic methods are
preferable when, in addition to prediction, analyzing the impact of independent variables is
also of interest. Machine learning (ML) techniques are able to learn and recognize complex
patterns based on experience, i.e., the aging patterns of batteries used in the training phase,
that can be used for prediction and estimation. Most ML algorithms have the advantage
of being able to handle non-linear patterns, which is an important ability when dealing
with battery aging, leading to more scalable models, being applicable in different situations.
The disadvantage of ML models is the need for huge amounts of data, which, as said
before in this section, is time-demanding and expensive. To cope with this problem, ML
models are usually accompanied by data augmentation techniques in order to create new
synthetic data.

ML methods can be divided into classical models and deep learning (DL) models.
Among classical ML models, the most used are support vector machine (SVM) and support
vector regressor (SVR), such as in [26,27]. In contrast, when focusing on DL models, LSTM
and Transformers are mainly used, due to their ability to deal with time series, and, with
the use of the attention mechanism, to focus on the most relevant parts of the input, as
in [28–30].

Another distinction that can be made when talking about ML models used for RUL
estimation is the method used to obtain the RUL value. Most of the models use an indirect
process to estimate the RUL, which is made in two, or in some cases three, phases. The
other approach is to directly predict the RUL from the capacity fade curve in one step.
Each approach has pros and cons: the indirect approach is more reliable when the capacity
fade curve is noisier but, at the same time, is more time-consuming and computationally
expensive; the direct approach is faster as it needs only one operation, but heavily relies on
which data are available and how they are obtained. All the approaches to degradation
modelling described above are developed and validated on single battery cells, either
testing their own cells or taking common degradation datasets such as NASA, TOYOTA
and CALCE as reference degradation trends for the cell. In contrast, studies of battery pack
degradation are seldom available. Battery packs can experience unbalancing issues caused
by the dependence between the cells, as well as the different intrinsic performances of each
cell. Such unbalanced states can lead to complex degradation processes and abnormal
discharge phenomena, which brings challenges in the SOH estimation of battery packs.
For this reason, the study of battery pack degradation is still an open research question,
made even bigger by the fact that publicly available datasets of battery pack degradation
are not available. Despite the lack of public datasets available, some works in recent
literature described and tested the degradation process of a battery pack enduring a life
cycle assessment. For instance, [31] proposes a combination of transferred deep learning
and Gaussian process regression, whereas an OCV-based method is presented in [32].
Battery pack degradation as a function of temperature is instead investigated in [33,34].
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3. Specific Degradation Models

One of the purposes of this paper is to provide an overview of various methodologies
documented in the literature for state-of-health (SOH) and remaining useful life (RUL)
estimation and prediction. It is important to highlight that the literature presents different
definitions of SOH. Therefore, building upon this observation, the paper reports the pro-
posed SOH definition for each method, respecting the definitions presented in the original
manuscripts. In this section, we want to describe in more detail some models to estimate
battery degradation, which may be classified as data-driven since their assumptions do
not take into account the physics of the degradation process. We will then show two ML
models, one for each approach, direct and indirect, explained in the previous section, in
order to obtain a global view of data-driven techniques.

3.1. General Path Models

General path models describe the degradation path through a parametric function
of time and stress conditions. The most popular general path model is the linear model
with random effects [7,35]. Consider the case of n batteries being tested for durability
under constant load. A sequence of voltage measurements is provided for each battery,
which is viewed as a sample unit randomly selected from a specified population of interest,
such as that of a production lot. Battery degradation may be regarded as the sum of two
components: a deterministic (unit-specific) function of time, for example a polynomial one,
and a random (noise) component. In this case, the regression model can be formulated
as follows:

Yi,t = B′
i xt + ϵi,t (1)

where

Yi,t is the SoH of the ith battery measured at the measurement time t(t = 1, . . . , T), which
is assumed to be common across the units;

xt = (1, t, t2, . . . , tp)′ where p is the degree of the polynomial time trend;

Bi = (Bi,0, Bi,1, . . . , Bi,p)
′ is the vector of length p + 1 of the regression coefficients for the

ith unit;

ϵi,t is the random noise for ith unit at measurement time t.

The following distributional assumptions are made for the random terms in Model (1):

Bi(i = 1, . . . , n) are random parameter vectors of length p + 1 drawn from a multivariate
normal distribution: Bi ∼ MVN(µB, ΣB)(i = 1, . . . , n);

noises ϵi,t(i = 1, . . . , n) follow an autoregressive (AR) process of order q:
ϵi,t = ∑

q
k=1 ϕkϵi,t−k + ui,t, where ui,t ∼ N(0, σ2);

Bi and ϵi,t are independent of each other.

Model parameters can be estimated by maximizing the likelihood (maximum like-
lihood method) or, if a prior distribution incorporating quantitative knowledge can be
assumed, by computing their posterior distribution (Bayesian approach). This second
estimation method is useful when information on model parameters can be obtained from
past studies. Then, given the failure threshold ylim, which is the lowest acceptable level of
the battery SoH, the predicted RUL of a battery of age τ is given by x f ail − τ, where x f ail is
the time when the battery reaches ylim, and is the numerical solution of:

Y(xt) = B′
i xt = ylim (2)

This empirical random-effects regression model of polynomial type is sufficiently flex-
ible to describe different behaviors of battery SoH observed during multiple simultaneous
experimental tests. Splines can be used in place of simple polynomials to represent more
irregular trends [7]. There are many parameters affecting battery degradation that are not
taken into account in the proposed model, such as temperature, current density, pressure,
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fuel flow, and reactant concentration. Even when specific controllers are present, these
parameters typically show little variation over time, even when they are kept constant
for long periods of time. Therefore, since this model assumes steady-state conditions, the
random noise ϵ exhibits an autocorrelated structure in each path. A degradation model
that incorporates the above parameters (if available) might produce a lower autocorre-
lation. Furthermore, the above model could be improved by including other variables
that influence the battery degradation process, such as temperature fluctuations, which
affect (almost) all battery types simultaneously. In conclusion, it is noteworthy that the
above model permits a separate quantitative evaluation of unit-to-unit heterogeneity and
correlated noise variability.

3.2. Stochastic Processes

Whereas general path models assume that degradation has a deterministic trend,
stochastic processes describe the evolution of degradation through a probability law on
state transitions. Different stochastic processes have different characteristics; therefore, the
choice of which one to adopt depends on the specific properties of the system under analysis.
A stochastic process representing a degradation pattern consists of a collection of random
variables indexed in time order: W1, . . . , Wt, . . . , WT . For example, using the Brownian
motion process [10], it is assumed that increments in degradation are independent and
normally distributed with null mean and variance equal to the temporal lag:

Wt+k − WT ∼ N(0, k) k ≥ 0

The Weiner process is a generalization of the Brownian motion, where increments
have a fixed non-null mean µ and their variance is scaled by a fixed positive factor δ2 [9]:

Wt+k − WT ∼ N(µ, δ2k) k ≥ 0

Another stochastic process that has been used to model degradation phenomena is the
autoregressive integrated moving average (ARIMA) process [8], which assumes that the
current degradation level is a function of past degradation levels and past measurement
errors. An ARIMA process of order (p, d, q) is defined as:

∆dWt = ϕ0 +
p

∑
j=1

ϕj∆dWt−j +
q

∑
j=0

ψjεt−j ϵt ∼ N(0, σ2)

where ∆d denotes d-order differing, ϵt are realizations of a normal white noise process,
ψ0 = 1, and ϕ0, ϕ1, . . . , ϕp, ψ1, . . . , ψq are real-valued parameters. Differently from the
Wiener, Brownian, and ARIMA processes, the Gamma process has the attractive feature
of monotonicity, which may be suitable for some degradation phenomena [11]. Using
the Gamma process, increments in degradation are independent and follow a Gamma
distribution with shape parameter equal to the temporal lag times a fixed factor α > 0 and
fixed scale parameter β > 0:

Wt+k − Wt ∼ Gamma(αk, β) k ≥ 0

Recently, the inverse Gaussian process has been also used to model degradation phe-
nomena [12]. In this case, increments in degradation follow an inverse Gaussian distribution.

3.3. Exponential Models

Lithium-ion batteries exhibit cumulative degradation and progressive wear-out, which
are the primary contributors to the decline of the battery life. Such wear-out usually leads to:

• An exponential decrease of the battery’s discharge capacitance over the battery’s
operational lifespan;

• An exponential rise in the equivalent series resistance (ESR) over the battery’s opera-
tional lifespan.
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The exponential degradation of discharge capacity and internal resistance is shown in
Figure 3, taking as an example five batteries from the Toyota dataset [2] that are randomly se-
lected. For this reason, literature widely discusses describing these phenomena through the
application of exponential degradation models. A commonly employed model within this
category, as found in numerous recent studies, is the double exponential model [14,36–39].
The double exponential model strikes a favorable balance between accuracy and complexity,
making it a good candidate for an accurate description of the battery degradation. As
a matter of fact, examples of application of the double exponential model can be found
considering the NASA dataset in [40], the CALCE dataset in [41], and the Toyota dataset
in [42]. The most common form of the double exponential degradation model available
in literature relies on four parameters, with two (i.e., a and c) representing the internal
impedance of the battery, and the other two (i.e., b and d) denoting the aging rate. In
essence, the state of health is a k-dependent function (where k is the number of cycles
endured by the battery and it stands for a time variable) expressed as follows:

SoHk = a · ebk + c · edk (3)

Figure 3. Discharge capacity and internal resistance of five batteries from the Toyota dataset.

As pointed out by multiple studies (see reference above), the double exponential
model is a rapid, accurate, and efficient way to estimate the discharge capacity of the
battery and to forecast its degradation process. However, in some cases, other exponential
degradation models can be used to improve the forecasting accuracy, allowing for a more
precise RUL estimation and an optimal maintenance management. A valid alternative
was published in [23]. In this case, a single exponential degradation model was assumed
in order to describe and predict the degradation trend of the battery’s discharge capacity.
More specifically, the discharge capacity Ck at the k-cycle depends only on two parameters,
one of them (i.e., a) linked to the internal impedance of the cell, and the other one used
to model the aging rate (i.e., b). Thus, the single exponential degradation model able to
describe the discharge capacity of the cell is expressed as follows:

Ck = C0 + a · eb/k (4)

As can be noted in (4), the single exponential model requires the estimation of only two
parameters. However, it is necessary to introduce an additive constant C0, which is different
for every battery, and it represents the initial capacity of the cell before its first working
cycle. It is important to note that this constant is different from the rated capacity expressed
by the manufacturer in the data sheet of the product, and thus it must be measured by
the user with a dedicated procedure before the actual installation on the field. In order to
estimate the real initial capacity C0 of a battery, it is necessary to fully charge the cell before
fully discharging it. An adequate resting time must be observed to ensure trustworthy
results due to the presence of stabilization processes, thermal dissipation, voltage recovery,
and hysteresis issues. The charge phase of this procedure must be carried out using a
constant-current constant-voltage (CC-CV) profile at low rate (i.e., low charge current) to
ensure that the 100% SOC condition has been reached. The discharge phase must be carried
out using a constant current profile at a discharge rate similar to the condition that the
battery will endure in the actual installation in the field. The initial capacity C0 is then
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obtained by integrating the current measured during the entire discharge cycle over the
discharge time interval. If the battery’s health indicator is defined as the ratio between the
current capacity Ck and the rated capacity Crated, then when using the single exponential
degradation model in (4), it is possible to forecast the degradation of the SOH as follows:

SoHk =
Ck

Crated
(5)

The proposed single exponential model has been tested on two publicly available
datasets, the NASA dataset in [23] and the Toyota dataset [4]. In both cases, the goodness
of fit of the single exponential model has been proven to be comparable to the double
exponential degradation model. However, the most interesting finding is related to the
extremely better performances that the single exponential model has in forecasting the
future degradation and the future SOH with respect to the double exponential model.
This led to significantly better performances in the estimation of the RUL. The latter is
the time difference between the current battery’s cycle and the future moment in which
the battery is supposed to reach the failure threshold. According to the application field,
the failure threshold can be set as the 70% or 80% of the rated capacity (i.e., when the
SOH reaches 0.7 or 0.8). Considering both failure thresholds, authors have proven the
ability of the single exponential degradation model to outperform the double exponential
model in [4,23]. Finally, it is important to mention that both single and double exponential
degradation models can be used to accurately predict the RUL of a battery following
different approaches:

• Using it as fitting model in a curve fitting toolbox. This is the most easy and least
complex algorithm but, at the same time, it is the less accurate.

• Using it as state space of a Kalman filter or particle filter. This is the most common
way found in literature for the double exponential model.

• Using it to train a machine learning (ML) algorithm like regression models and support
vector machine.

• Using it to train a deep learning algorithm. The case of a recurrent neural network
was investigated and tested in [23], pointing out better performances than the classical
filter algorithms and the ML algorithm.

The main advantage of both exponential models described above is the ability to correctly
characterize the battery degradation in light of the extremely high accuracy of fitting the battery
discharge capacity. However, this is also their intrinsic major limitation, since they need a
continuous measurement of the discharge capacity of the battery during its entire operating
life. Such measurement requires current transducers and online continuous monitoring of the
battery, which is not always reasonable because of cost, dimension, and resources constraints.

3.4. Polynomial Model

It is typically assumed that battery aging is a function of the number of cycles it has
been put through. Reference cycles are necessary for the definition and use of a health
index based on them. Nevertheless, the authors have shown in [43,44] how capacity fading
can be related to cumulative charge moved into the battery, regardless of the shape of the
cycle (this property requires a constant temperature and current and a 20% to 80% charge
state). It is possible to use the moved charge as a good indicator of battery health and as an
unambiguous battery usage indicator. Literature presents various models analyzing the
relationship between cell capacity C and moved charge q based on this consideration. An
aging curve model using a polynomial function of third degree was developed by [43]:

C(q) = b0 + b1q + b2q2 + b3q3 (6)

Based on experimental findings, aging curves become almost linear when the residual
capacity is under 95%, and a modified irrational function is applied to account for both
linear and square terms [44,45]:
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C(q) = b0 + b1
√

q + b2q + b3q2 (7)

Finally , letting SoH(q) = C(q)/Cin, where Cin is the initial capacity of the battery, and
dividing (7) by Cin, we obtain a degradation model for the SoH. In this scenario, SoH will
be measured on a “moved charge” scale (i.e., q f ail − qnow) rather than a time scale (such as
calendar time or number of cycles), where q fail is the solution to SoH(q) = 80%, and qnow
is the current value of the cumulative moved charge.

3.5. Transformer Model

To explain the indirect RUL estimation process, we focus on the Transformer model.
In recent years Trasformers became widely used for tasks linked to time series forecasting,
and so also to RUL estimation. They can be considered an evolution of recurrent neural
networks (RNNs) since they overcome many of their disadvantages. Transformers have
the ability to model long-term dependencies and are also computationally more efficient.
Furthermore, Transformers make use of the self-attention mechanism, which allows them
to give different weights to each sample of the input, in this case, the capacity fade curve, in
order to focus on the most important ones. When dealing with RUL estimation, Transform-
ers cannot be used to directly regress the RUL, since the next expected output is strictly
linked to the previous one, in particular yt = yt−1 − 1, and the model could learn only this
relation, propagating a previous error in the prediction. Therefore, in order to obtain an
indirect RUL estimation, we need two steps, with an optional one at the beginning:

• Denoising (optional): data are denoised using methods such as wavelet denoising, or
a denoising auto-encoder [30];

• Capacity forecasting: the capacity fade curve is forecasted until it reaches 80% of its
original value;

• RUL estimation: in the final step the RUL is estimated as the number of forecasts
made in the previous step before reaching the EoL threshold.

The input of the model could be the full capacity fade curve of the battery under study,
starting from the nominal capacity until the last measured value, or only a sliding window
of the curve, containing the last n capacity values.

3.6. Conv-LSTM with Attention Mechanism

We conclude this section with the analysis of a DL model used for direct RUL esti-
mation. LSTM is a type of RNN used for processing sequential data that addresses the
vanishing gradient problem, which can occur when trying to learn long-term dependencies
in sequential data. The LSTM architecture uses a memory cell that can store information
over time and selectively update or forget it based on the current input. In this case, the
model is composed of four main elements:

• Convolutional layers: whose purpose is to reduce the dimensionality of the input
and at the same time maintain the information contained in it;

• LSTM layers: to obtain temporal information contained in the data;
• Attention mechanism: similar to the self-attention used in Transformers, adds a

weight to each sample of the input;
• Dense layers: receive the weighted samples and produce the output.

Different from the indirect approach, the RUL is the output of the model, which avoids
the forecasting of future capacity degradation. The input of the model is a sliding window
of various data coming from battery aging tests, such as capacity degradation, temperature,
and cycle number. The need for various input features is because this approach relies more
on noise in the capacity fade curve, so using more features can deal with this problem.

4. Optimal Accelerated Testing and Maintenance Planning

For the design of accelerated degradation tests (ADT) and for planning maintenance
strategies, the models presented in the previous section are essential. Our proposed ap-
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proaches to both tasks are described in the following subsections, along with a brief review of
optimal designs for ADT.

4.1. Optimal Designs for Accelerated Testing

Design of experiments is a broad and essential methodology of statistics theory, allow-
ing one to assure data collection efficiency and suitable statistical modelling for estimation
and prediction purposes. Appropriate planning and conducting of the experiment allow
for obtaining highly informative data that ensure specific properties related to model esti-
mation, inference, and/or prediction. In this context, an optimal planning of ADT enables
one to find an efficient testing plan by considering one or more conditions imposed by
engineers; for instance, requirement conditions related to the total number of test units,
time and number of measurements, test stress levels, and similar. To this end, optimal
designs are increasingly applied and studied in this context, where specific design op-
timality criteria allow for compliance with the final reliability aim(s). Optimal designs
are model-dependent, and the design optimality is obtained based on the chosen design
criterion and the underlying statistical model(s). In this regard, the general equivalence
theorem provides the necessary and sufficient conditions for achieving and checking design
optimality [46,47]. The wide range of design criteria available in the optimal design theory
allows for obtaining optimal testing plans in the ADT field that align with the specific
technological and reliability aim(s).

In the literature, optimal designs for ADT based on stochastic process models are
extensively studied; more precisely, optimal designs for the Wiener process [48,49], the
Gamma process [50,51], and the inverse Gaussian process models [52,53] are defined by
considering both the constant stress loading and the step-stress loading [54]. Furthermore,
in some recent studies dealing with general path models and optimal designs for ADT,
primarily linear mixed-effects models are employed [55–57]. An important point to consider
in the ADT field is that, usually, some further knowledge exists on the degradation process
under study, for instance, available from the underlying product/process technology or
from studies performed to study similar products and/or processes. To this end, Bayesian
optimal designs are increasingly being studied and applied to obtain an efficient testing
plan. More specifically, this is because they allow for accounting for the available prior
information on the process under study by considering the uncertainties related to the
assumed statistical degradation models and/or model parameters.

As previously described, when considering optimal designs, the design optimality
is obtained based on the chosen design criterion. In this regard, when considering the
Bayesian design framework, it must be noted that the design criterion is a function of the
posterior distribution and is defined in terms of a utility function [58,59]. Therefore, to
obtain the final optimal design for the test plan, the expected utility function should be
optimized over the design space with respect to the future data (that is, the test outcome)
and model parameters. Thus, the utility function is a key point, and it could be defined by
considering the specific technological and reliability aim(s) and also issues related to costs;
for instance, we may consider the Kullback–Leibler divergence in defining it [60–62], as
well as utility functions for prediction of future observations [58].

It must be noted that few contributions are currently available in the literature deal-
ing with Bayesian optimal designs for ADT. For instance, Shi and Meeker (2011) develop
Bayesian optimal designs for accelerated destructive degradation tests based on a class
of nonlinear degradation models and by considering only one accelerating variable [63].
Assuming a drift Brownian motion in the degradation model, Li et al. (2015) deal with
Bayesian optimal designs for step-stress ADT [64]. Furthermore, Li et al. (2017) consider
step-stress accelerated degradation testing and the inverse Gamma process to model the
degradation path [65]; in this framework, they study Bayesian optimal design for ADT by
considering the objectives of relative entropy, quadratic loss function, and D-optimality [65].
More recently, Weaver and Meeker (2021) [66] consider modelling the degradation path
through linear mixed-effects models, and they develop a Bayesian criterion for the esti-
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mation of the quantile of the failure-time distribution for obtaining the optimal repeated
measures ADT. Finally, it must be noted that, currently, sequential Bayesian optimal de-
signs have gained considerable attention in the ADT field; more precisely, considering a
dynamic programming framework for decision making, they allow for the obtaining of
optimal maintenance policies. Currently, this line of research is an unexplored area, and
only one recent study deals with some of these points in the context of structural reliability
analysis [67]. Sequential Bayesian optimal designs appear especially well-suited for RUL
prediction since they allow one to build design policies adaptively based on the current
state, which depends upon earlier states. In this dynamic programming framework, each
state contains suitable information to make decisions and describe the system’s evolution.
It must be noted that two types of utility functions are defined and called rewards in this
context. The first is the so-called stage reward, which depends on the observations, the
design, and a given state. The second one is the terminal reward, which depends only on
the final state. Therefore, the total utility function is obtained as the sum of the two types of
rewards, the stage and the terminal one. To obtain the optimal Bayesian sequential design,
the expected total utility function is optimized iteratively, taking into account the particular
form of the defined transition function. To this end, appropriate utility functions are defined
for the stage rewards and the terminal reward in accordance with the ultimate technological
and reliability aim(s) and based on the characterization of the elements for establishing
predictive maintenance strategies (states, the defined transition function, and statistical
degradation model). The optimization presents a high challenge from a computational
perspective, mainly due to the huge design space. Hence, employing and defining suitable
algorithmic strategies, like simulation-based reinforcement learning, is crucial to iteratively
enhance the expected total utility function while ensuring a feasible computational effort.
In the ADT field, sequential Bayesian optimal designs are an unexplored area of research
that should be further and extensively developed by considering several issues. More
precisely, apart from suitable methods to deal with this computational challenge, further
developments in this field may be related to the definition of the stage and terminal rewards
related to the total utility function, as well as issues related to the inclusion of costs.

4.2. Maintenance Planning via Reinforcement Learning

There are different approaches to maintenance, according to the system type, the avail-
able data and the specific objectives of the maintenance activity. However, when real-time
data on the system state are available, it is natural to look for strategies for condition-based
or predictive maintenance, by leveraging up-to-date system information. In particular, rein-
forcement learning (RL) provides a useful framework to build such strategies, as recently
proposed, for example, by [68] for condition-based maintenance, where the system changes
state according to a degradation model and the selected maintenance action. With regard
to predictive maintenance, [69] considers the optimization of a parameterized policy to
choose inspection times, depending on the RUL and a system degradation model defined
as a stochastic process with independent increments. It is possible to express this problem
in the RL framework. Both [68,69] also include the estimation of the unknown degradation
model parameters within the optimization procedure.

With regard to degradation models, the work in [70] provides a useful reference for
the wide literature on this topic, in which the authors examine stochastic models from
several classes. One common output of these models is that they provide the probability
that the degradation level of the system crosses a set threshold in any given time interval,
which is in a one-to-one correspondence with the probability distribution of the RUL. In
this way, uncertainty about the future behavior of the system can be taken into account in
maintenance planning.

Often, in condition-based and predictive maintenance, the choice of the maintenance
action and the transition to the next degradation state depend only on the current degrada-
tion state, the maintenance decision, and additional events until the next decision time. This
fact leads to the Markov decision process (MDP) framework that constitutes the basis of RL
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algorithms [71], which are aimed at considering the long-term consequences of actions to
choose the best strategies and avoid ad hoc approaches. The MDP framework is suitable
for maintenance strategies for lithium-ion batteries based on the SoH, because the SoH at
the next decision time depends on the SoH at the current decision time and on the battery
usage and environmental conditions across the decision interval. For every such interval,
maintenance decisions can be limited to whether or not replace the battery or, depending
on the available control actions, can also include how much energy to transfer to or from
the battery. The RUL is the basic component of the value obtained from the operation of
the battery, which, summed over all intervals until the SoH falls under a set threshold, will
provide the cumulative reward of any specific strategy.

If the SoH is not directly observable, but only measured with an error, one has to
resort to partially observable MDP (POMDP) and the associated RL algorithms. In this
case, the degradation state is represented by a probability distribution called belief, which
is updated according to the Bayes rule as new indirect measures become available [72].

Many algorithms to solve MDPs are available (see [71]), which can be exact or approx-
imated, especially for large action or state spaces. In controlled conditions, if a degradation
model of the battery is completely known, a solution may be feasible by dynamic program-
ming or Monte Carlo RL, if we can compute expectations of the cumulative reward or at
least obtain an approximation by simulating trajectories the degradation model. On the
other hand, if usage and environmental conditions change dynamically, the increasing
complexity of the state space requires different approximate approaches (such as temporal
difference learning), possibly without a perfect knowledge of the additional dynamics in
the system, including the behavior of the degradation model itself. In this case, a class of
algorithms called Dyna agents is preferable, because it combines planning by simulation
(using the current knowledge of the model) with learning of both the policy and of the
model from actual observation of the environment and of the battery state.

In summary, we may state that existing contributions in RL methods for maintenance
applications can also be useful for making decisions on battery operations and substitution,
with different algorithms depending on what information is available: exact dynamic
programming if the degradation model is perfectly known; RL combined with model
learning if the latter is not perfectly known; solutions based on POMDP if the SoH of the
battery is not directly observable.

5. Conclusions

In this paper, we describe how degradation models can be used in accelerated testing
and maintenance planning for lithium-ion batteries. We have collected information about
each topic from the literature to formulate an optimal accelerated test design and predictive
maintenance plan. A key factor in decision making is the remaining useful life (RUL) of
the battery. According to our research, RUL can be measured in different units, includ-
ing charge/discharge cycles, calendar time, and moved charge. Calendar time must be
taken into consideration when performing predictive maintenance operations in changing
environments, and it must be matched to the battery’s lifetime unit. Under controlled
experimental conditions, this problem can be avoided. Additionally, we highlighted the
sequential nature of decision-making procedures, which suggests that degradation model
learning should be conducted in conjunction with them.

Author Contributions: Original draft preparation G.P., L.M., N.D.N. and A.M.; Supervision L.C.
and A.P.; Review and editing G.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.



Sensors 2024, 24, 3382 13 of 15

References
1. Saha, B.; Goebel, K. Battery Data Set, Nasa Ames Prognostic Data Repository. 2007. Available online: https://scirp.org/reference/

referencespapers?referenceid=3297577 (accessed on 10 January 2024).
2. Severson, K.A.; Attia, P.M.; Jin, N.; Perkins, N.; Jiang, B.; Yang, Z.; Chen, M.H.; Aykol, M.; Herring, P.K.; Fraggedakis, D.; et al.

Data-driven prediction of battery cycle life before capacity degradation. Nat. Energy 2019, 4, 383–391. [CrossRef]
3. Hu, X.; Xu, L.; Lin, X.; Pecht, M. Battery lifetime prognostics. Joule 2020, 4, 310–346. [CrossRef]
4. Patrizi, G.; Picano, B.; Catelani, M.; Fantacci, R.; Ciani, L. Validation of RUL estimation method for battery prognostic under

different fast-charging conditions. In Proceedings of the 2022 IEEE International Instrumentation and Measurement Technology
Conference (I2MTC), Ottawa, ON, Canada, 16–19 May 2022; pp. 1–6.

5. Safari, M.; Delacourt, C. Mathematical modeling of lithium iron phosphate electrode: Galvanostatic charge/discharge and path
dependence. J. Electrochem. Soc. 2010, 158, A63. [CrossRef]

6. Deshpande, R.D.; Uddin, K. Physics inspired model for estimating ‘cycles to failure’ as a function of depth of discharge for
lithium ion batteries. J. Energy Storage 2021, 33, 101932. [CrossRef]

7. Lu, C.J.; Meeker, W.O. Using degradation measures to estimate a time-to-failure distribution. Technometrics 1993, 35, 161–174.
[CrossRef]

8. Kim, S.; Lee, P.Y.; Lee, M.; Kim, J.; Na, W. Improved State-of-health prediction based on auto-regressive integrated moving
average with exogenous variables model in overcoming battery degradation-dependent internal parameter variation. J. Energy
Storage 2022, 46, 103888. [CrossRef]

9. Tang, S.; Guo, X.; Yu, C.; Xue, H.; Zhou, Z. Accelerated degradation tests modeling based on the nonlinear wiener process with
random effects. Math. Probl. Eng. 2014, 2014, 560726. [CrossRef]

10. Ge, Z.Z.; Li, X.Y.; Zhang, J.R.; Jiang, T.M. Planning of step-stress accelerated degradation test with stress optimization. Adv. Mater.
Res. 2010, 118, 404–408. [CrossRef]

11. Tseng, S.T.; Balakrishnan, N.; Tsai, C.C. Optimal step-stress accelerated degradation test plan for gamma degradation processes.
IEEE Trans. Reliab. 2009, 58, 611–618. [CrossRef]

12. Ye, Z.S.; Chen, L.P.; Tang, L.C.; Xie, M. Accelerated degradation test planning using the inverse Gaussian process. IEEE Trans.
Reliab. 2014, 63, 750–763. [CrossRef]

13. He, Z.; Yang, Z.; Cui, X.; Li, E. A method of state-of-charge estimation for EV power lithium-ion battery using a novel adaptive
extended Kalman filter. IEEE Trans. Veh. Technol. 2020, 69, 14618–14630. [CrossRef]

14. Li, L.; Saldivar, A.A.F.; Bai, Y.; Li, Y. Battery remaining useful life prediction with inheritance particle filtering. Energies 2019, 12, 2784.
[CrossRef]

15. Chen, Z.; Sun, M.; Shu, X.; Xiao, R.; Shen, J. Online state of health estimation for lithium-ion batteries based on support vector
machine. Appl. Sci. 2018, 8, 925. [CrossRef]

16. Guo, W.; He, M. An optimal relevance vector machine with a modified degradation model for remaining useful lifetime prediction
of lithium-ion batteries. Appl. Soft Comput. 2022, 124, 108967. [CrossRef]

17. Wang, G.; Lyu, Z.; Li, X. An Optimized Random Forest Regression Model for Li-Ion Battery Prognostics and Health Management.
Batteries 2023, 9, 332. [CrossRef]

18. Ismail, M.; Dlyma, R.; Elrakaybi, A.; Ahmed, R.; Habibi, S. Battery state of charge estimation using an Artificial Neural Network.
In Proceedings of the 2017 IEEE Transportation Electrification Conference and Expo (ITEC), Harbin, China, 7–10 August 2017;
pp. 342–349.

19. Jiao, R.; Peng, K.; Dong, J. Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Conditional Variational
Autoencoders-Particle Filter. IEEE Trans. Instrum. Meas. 2020, 69, 8831–8843. [CrossRef]

20. Zhang, Z.; Zhang, W.; Yang, K.; Zhang, S. Remaining useful life prediction of lithium-ion batteries based on attention mechanism
and bidirectional long short-term memory network. Measurement 2022, 204, 112093. [CrossRef]

21. Song, W.; Wu, D.; Shen, W.; Boulet, B. A Remaining Useful Life Prediction Method for Lithium-ion Battery Based on Temporal
Transformer Network. Procedia Comput. Sci. 2023, 217, 1830–1838. [CrossRef]

22. Ren, L.; Zhao, L.; Hong, S.; Zhao, S.; Wang, H.; Zhang, L. Remaining Useful Life Prediction for Lithium-Ion Battery: A Deep
Learning Approach. IEEE Access 2018, 6, 50587–50598. [CrossRef]

23. Catelani, M.; Ciani, L.; Fantacci, R.; Patrizi, G.; Picano, B. Remaining useful life estimation for prognostics of lithium-ion batteries
based on recurrent neural network. IEEE Trans. Instrum. Meas. 2021, 70, 3524611. [CrossRef]

24. Li, X.; Yu, D.; Søren Byg, V.; Daniel Ioan, S. The development of machine learning-based remaining useful life prediction for
lithium-ion batteries. J. Energy Chem. 2023, 82, 103–121. [CrossRef]

25. He, W.; Williard, N.; Osterman, M.; Pecht, M. Prognostics of lithium-ion batteries based on Dempster–Shafer theory and the
Bayesian Monte Carlo method. J. Power Sources 2011, 196, 10314–10321. [CrossRef]

26. Wei, J.; Dong, G.; Chen, Z. Remaining useful life prediction and state of health diagnosis for lithium-ion batteries using particle
filter and support vector regression. IEEE Trans. Ind. Electron. 2017, 65, 5634–5643. [CrossRef]

27. Zhang, Z.; Huang, M.; Chen, Y.; Zhu, S. Prediction of Lithium-ion battery’s remaining useful life based on relevance vector
machine. SAE Int. J. Altern. Powertrains 2016, 5, 30–40. [CrossRef]

28. Zhang, Y.; Xiong, R.; He, H.; Pecht, M.G. Long short-term memory recurrent neural network for remaining useful life prediction
of lithium-ion batteries. IEEE Trans. Veh. Technol. 2018, 67, 5695–5705. [CrossRef]

https://scirp.org/reference/referencespapers?referenceid=3297577
https://scirp.org/reference/referencespapers?referenceid=3297577
http://doi.org/10.1038/s41560-019-0356-8
http://dx.doi.org/10.1016/j.joule.2019.11.018
http://dx.doi.org/10.1149/1.3515902
http://dx.doi.org/10.1016/j.est.2020.101932
http://dx.doi.org/10.1080/00401706.1993.10485038
http://dx.doi.org/10.1016/j.est.2021.103888
http://dx.doi.org/10.1155/2014/560726
http://dx.doi.org/10.4028/www.scientific.net/AMR.118-120.404
http://dx.doi.org/10.1109/TR.2009.2033734
http://dx.doi.org/10.1109/TR.2014.2315773
http://dx.doi.org/10.1109/TVT.2020.3032201
http://dx.doi.org/10.3390/en12142784
http://dx.doi.org/10.3390/app8060925
http://dx.doi.org/10.1016/j.asoc.2022.108967
http://dx.doi.org/10.3390/batteries9060332
http://dx.doi.org/10.1109/TIM.2020.2996004
http://dx.doi.org/10.1016/j.measurement.2022.112093
http://dx.doi.org/10.1016/j.procs.2022.12.383
http://dx.doi.org/10.1109/ACCESS.2018.2858856
http://dx.doi.org/10.1109/TIM.2021.3111009
http://dx.doi.org/10.1016/j.jechem.2023.03.026
http://dx.doi.org/10.1016/j.jpowsour.2011.08.040
http://dx.doi.org/10.1109/TIE.2017.2782224
http://dx.doi.org/10.4271/2015-01-9147
http://dx.doi.org/10.1109/TVT.2018.2805189


Sensors 2024, 24, 3382 14 of 15

29. Martiri, L.; Azzalini, D.; Flammini, B.; Cristaldi, L.; Amigoni, F. Improving Remaining Useful Life Estimation of Lithium-Ion
Batteries when Nearing End of Life. In Proceedings of the 2023 IEEE MetroXRAINE, Milan, Italy, 25–27 October 2023; pp. 317–322.

30. Chen, D.; Hong, W.; Zhou, X. Transformer network for remaining useful life prediction of lithium-ion batteries. IEEE Access 2022,
10, 19621–19628. [CrossRef]

31. Che, Y.; Deng, Z.; Tang, X.; Lin, X.; Nie, X.; Hu, X. Lifetime and aging degradation prognostics for lithium-ion battery packs
based on a cell to pack method. Chin. J. Mech. Eng. 2022, 35, 4. [CrossRef]

32. Liu, H.; Deng, Z.; Yang, Y.; Lu, C.; Li, B.; Liu, C.; Cheng, D. Capacity evaluation and degradation analysis of lithium-ion battery
packs for on-road electric vehicles. J. Energy Storage 2023, 65, 107270. [CrossRef]

33. Mutagekar, S.; Jhunjhunwala, A. Understanding the Li-ion battery pack degradation in the field using field-test and lab-test data.
J. Energy Storage 2022, 53, 105216. [CrossRef]

34. Naylor Marlow, M.; Chen, J.; Wu, B. Degradation in parallel-connected lithium-ion battery packs under thermal gradients.
Commun. Eng. 2024, 3, 2. [CrossRef]

35. Guida, M.; Postiglione, F.; Pulcini, G. A random-effects model for long-term degradation analysis of solid oxide fuel cells. Reliab.
Eng. Syst. Saf. 2015, 140, 88–98. [CrossRef]

36. Duan, B.; Zhang, Q.; Geng, F.; Zhang, C. Remaining useful life prediction of lithium-ion battery based on extended Kalman
particle filter. Int. J. Energy Res. 2020, 44, 1724–1734. [CrossRef]

37. Xu, D.; Wei, Q.; Chen, Y.; Kang, R. Reliability Prediction Using Physics–Statistics-Based Degradation Model. IEEE Trans. Compon.
Packag. Manuf. Technol. 2015, 5, 1573–1581.

38. Xue, Z.; Zhang, Y.; Cheng, C.; Ma, G. Remaining useful life prediction of lithium-ion batteries with adaptive unscented kalman
filter and optimized support vector regression. Neurocomputing 2020, 376, 95–102. [CrossRef]

39. Ye, L.H.; Chen, S.J.; Shi, Y.F.; Peng, D.H.; Shi, A.P. Remaining useful life prediction of lithium-ion battery based on chaotic particle
swarm optimization and particle filter. Int. J. Electrochem. Sci. 2023, 18, 100122. [CrossRef]

40. Duong, P.L.T.; Raghavan, N. Heuristic Kalman optimized particle filter for remaining useful life prediction of lithium-ion battery.
Microelectron. Reliab. 2018, 81, 232–243. [CrossRef]

41. Wu, Y.; Li, W.; Wang, Y.; Zhang, K. Remaining Useful Life Prediction of Lithium-Ion Batteries Using Neural Network and
Bat-Based Particle Filter. IEEE Access 2019, 7, 54843–54854. [CrossRef]

42. Ansari, S.; Ayob, A.; Hossain Lipu, M.; Hussain, A.; Saad, M.H.M. Particle swarm optimized data-driven model for remaining
useful life prediction of lithium-ion batteries by systematic sampling. J. Energy Storage 2022, 56, 106050. [CrossRef]

43. Xiong, R.; Zhang, Y.; Wang, J.; He, H.; Peng, S.; Pecht, M. Lithium-ion battery health prognosis based on a real battery management
system used in electric vehicles. IEEE Trans. Veh. Technol. 2018, 68, 4110–4121. [CrossRef]

44. Barcellona, S.; Piegari, L. Effect of current on cycle aging of lithium ion batteries. J. Energy Storage 2020, 29, 101310. [CrossRef]
45. Barcellona, S.; Cristaldi, L.; Faifer, M.; Petkovski, E.; Piegari, L.; Toscani, S. State of health prediction of lithium-ion batteries.

In Proceedings of the 2021 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4. 0&IoT), Rome, Italy,
7–9 June 2021; pp. 12–17.

46. Kiefer, J. Optimum Experimental Designs. J. R. Stat. Soc. Ser. Methodol. 1959, 21, 272–319. [CrossRef]
47. Kiefer, J.; Wolfowitz, J. The equivalence of two extremum problems. Can. J. Math. 1960, 12, 363–366. [CrossRef]
48. Lim, H.; Yum, B.J. Optimal design of accelerated degradation tests based on Wiener process models. J. Appl. Stat. 2011,

38, 309–325. [CrossRef]
49. Jiang, P.; Wang, B.X.; Wang, X.; Qin, S. Optimal plan for Wiener constant-stress accelerated degradation model. Appl. Math. Model.

2020, 84, 191–201. [CrossRef]
50. Guan, Q.; Tang, Y. Optimal design of accelerated degradation test based on Gamma process models. Chin. J. Appl. Probab. Stat.

2013, 29, 213–224.
51. Duan, F.; Wang, G. Planning of step-stress accelerated degradation test based on non-stationary gamma process with random

effects. Comput. Ind. Eng. 2018, 125, 467–479. [CrossRef]
52. Wang, H.; Zhao, Y.; Ma, X.; Wang, H. Optimal design of constant-stress accelerated degradation tests using the M-optimality

criterion. Reliab. Eng. Syst. Saf. 2017, 164, 45–54. [CrossRef]
53. Wu, Y. An Optimal Design of Accelerated Degradation Tests Based on Degradation Performance. Open J. Stat. 2019, 9, 686.

[CrossRef]
54. Hu, C.H.; Lee, M.Y.; Tang, J. Optimum step-stress accelerated degradation test for Wiener degradation process under constraints.

Eur. J. Oper. Res. 2015, 241, 412–421. [CrossRef]
55. Weaver, B.P.; Meeker, W.Q.; Escobar, L.A.; Wendelberger, J. Methods for planning repeated measures degradation studies. Technometrics

2013, 55, 122–134. [CrossRef]
56. Weaver, B.P.; Meeker, W.Q. Methods for planning Accelerated Repeated Measures Degradation Tests (with discussion). Appl.

Stoch. Models Bus. Ind. 2014, 30, 658–671. [CrossRef]
57. Fang, G.; Pan, R.; Stufken, J. Optimal setting of test conditions and allocation of test units for accelerated degradation tests with

two stress variables. IEEE Trans. Reliab. 2020, 70, 1096–1111. [CrossRef]
58. Chaloner, K.; Verdinelli, I. Bayesian experimental design: A review. Stat. Sci. 1995, 10, 273–304. [CrossRef]
59. Ryan, E.G.; Drovandi, C.C.; McGree, J.M.; Pettitt, A.N. A review of modern computational algorithms for Bayesian optimal

design. Int. Stat. Rev. 2016, 84, 128–154. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2022.3151975
http://dx.doi.org/10.1186/s10033-021-00668-y
http://dx.doi.org/10.1016/j.est.2023.107270
http://dx.doi.org/10.1016/j.est.2022.105216
http://dx.doi.org/10.1038/s44172-023-00153-5
http://dx.doi.org/10.1016/j.ress.2015.03.036
http://dx.doi.org/10.1002/er.5002
http://dx.doi.org/10.1016/j.neucom.2019.09.074
http://dx.doi.org/10.1016/j.ijoes.2023.100122
http://dx.doi.org/10.1016/j.microrel.2017.12.028
http://dx.doi.org/10.1109/ACCESS.2019.2913163
http://dx.doi.org/10.1016/j.est.2022.106050
http://dx.doi.org/10.1109/TVT.2018.2864688
http://dx.doi.org/10.1016/j.est.2020.101310
http://dx.doi.org/10.1111/j.2517-6161.1959.tb00338.x
http://dx.doi.org/10.4153/CJM-1960-030-4
http://dx.doi.org/10.1080/02664760903406488
http://dx.doi.org/10.1016/j.apm.2020.03.036
http://dx.doi.org/10.1016/j.cie.2018.09.003
http://dx.doi.org/10.1016/j.ress.2017.03.010
http://dx.doi.org/10.4236/ojs.2019.96044
http://dx.doi.org/10.1016/j.ejor.2014.09.003
http://dx.doi.org/10.1080/00401706.2012.715838
http://dx.doi.org/10.1002/asmb.2061
http://dx.doi.org/10.1109/TR.2020.2995333
http://dx.doi.org/10.1214/ss/1177009939
http://dx.doi.org/10.1111/insr.12107


Sensors 2024, 24, 3382 15 of 15

60. Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [CrossRef]
61. López-Fidalgo, J.; Tommasi, C.; Trandafir, P. An optimal experimental design criterion for discriminating between non-normal

models. J. R. Stat. Soc. Ser. Stat. Methodol. 2007, 69, 231–242. [CrossRef]
62. Tommasi, C.; López-Fidalgo, J. Bayesian optimum designs for discriminating between models with any distribution. Comput.

Stat. Data Anal. 2010, 54, 143–150. [CrossRef]
63. Shi, Y.; Meeker, W.Q. Bayesian methods for accelerated destructive degradation test planning. IEEE Trans. Reliab. 2011, 61, 245–253.

[CrossRef]
64. Li, X.; Rezvanizaniani, M.; Ge, Z.; Abuali, M.; Lee, J. Bayesian optimal design of step stress accelerated degradation testing. J.

Syst. Eng. Electron. 2015, 26, 502–513. [CrossRef]
65. Li, X.; Hu, Y.; Zio, E.; Kang, R. A Bayesian optimal design for accelerated degradation testing based on the inverse Gaussian

process. IEEE Access 2017, 5, 5690–5701. [CrossRef]
66. Weaver, B.P.; Meeker, W.Q. Bayesian methods for planning accelerated repeated measures degradation tests. Technometrics 2021,

63, 90–99. [CrossRef]
67. Agrell, C.; Dahl, K.R. Sequential Bayesian optimal experimental design for structural reliability analysis. Stat. Comput. 2021,

31, 27. [CrossRef]
68. Zhang, P.; Zhu, X.; Xie, M. A model-based reinforcement learning approach for maintenance optimization of degrading systems

in a large state space. Comput. Ind. Eng. 2021, 161, 107622. [CrossRef]
69. Omshi, E.M.; Grall, A.; Shemehsavar, S. A dynamic auto-adaptive predictive maintenance policy for degradation with unknown

parameters. Eur. J. Oper. Res. 2020, 282, 81–92. [CrossRef]
70. Shahraki, A.F.; Yadav, O.P.; Liao, H. A review on degradation modelling and its engineering applications. Int. J. Perform. Eng.

2017, 13, 299. [CrossRef]
71. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
72. Kurniawati, H. Partially observable markov decision processes and robotics. Annu. Rev. Control. Robot. Auton. Syst. 2022,

5, 253–277. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1111/j.1467-9868.2007.00586.x
http://dx.doi.org/10.1016/j.csda.2009.07.022
http://dx.doi.org/10.1109/TR.2011.2170115
http://dx.doi.org/10.1109/JSEE.2015.00058
http://dx.doi.org/10.1109/ACCESS.2017.2683533
http://dx.doi.org/10.1080/00401706.2019.1695676
http://dx.doi.org/10.1007/s11222-021-10000-2
http://dx.doi.org/10.1016/j.cie.2021.107622
http://dx.doi.org/10.1016/j.ejor.2019.08.050
http://dx.doi.org/10.23940/ijpe.17.03.p6.299314
http://dx.doi.org/10.1146/annurev-control-042920-092451

	Introduction
	Approaches to Degradation Modelling
	Specific Degradation Models
	General Path Models
	Stochastic Processes
	Exponential Models
	Polynomial Model
	Transformer Model
	Conv-LSTM with Attention Mechanism

	Optimal Accelerated Testing and Maintenance Planning
	Optimal Designs for Accelerated Testing
	Maintenance Planning via Reinforcement Learning

	Conclusions
	References

