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Abstract: A Cable-Driven Continuum Robot (CDCR) that consists of a set of identical Cable-Driven
Continuum Joint Modules (CDCJMs) is proposed in this paper. The CDCJMs merely produce 2-DOF
bending motions by controlling driving cable lengths. In each CDCJM, a pattern-based flexible
backbone is employed as a passive compliant joint to generate 2-DOF bending deflections, which
can be characterized by two joint variables, i.e., the bending direction angle and the bending angle.
However, as the bending deflection is determined by not only the lengths of the driving cables but also
the gravity and payload, it will be inaccurate to compute the two joint variables with its kinematic
model. In this work, two stretchable capacitive sensors are employed to measure the bending
shape of the flexible backbone so as to accurately determine the two joint variables. Compared
with FBG-based and vision-based shape-sensing methods, the proposed method with stretchable
capacitive sensors has the advantages of high sensitivity to the bending deflection of the backbone,
ease of implementation, and cost effectiveness. The initial location of a stretchable sensor is generally
defined by its two endpoint positions on the surface of the backbone without bending. A generic
shape-sensing model, i.e., the relationship between the sensor reading and the two joint variables, is
formulated based on the 2-DOF bending deflection of the backbone. To further improve the accuracy
of the shape-sensing model, a calibration method is proposed to compensate for the location errors of
stretchable sensors. Based on the calibrated shape-sensing model, a sliding-mode-based closed-loop
control method is implemented for the CDCR. In order to verify the effectiveness of the proposed
closed-loop control method, the trajectory tracking accuracy experiments of the CDCR are conducted
based on a circle trajectory, in which the radius of the circle is 55 mm. The average tracking errors of
the CDCR measured by the Qualisys motion capture system under the open-loop and the closed-loop
control are 49.23 and 8.40 mm, respectively, which is reduced by 82.94%.

Keywords: cable-driven continuum robot; stretchable capacitive sensors; shape-sensing model;
closed-loop control

1. Introduction

A Cable-Driven Continuum Robot (CDCR) is a multi-degree-of-freedom mechanism
actuated by light cables, which consists of a number of identical Cable-Driven Continuum
Joint Modules (CDCJMs) [1–3]. Each CDCJM is composed of a base platform, a pattern-
based flexible backbone, four driving cables, and a moving platform. Supported by the
flexible backbone, the 2-DOF bending motions of the CDCJM are realized by controlling
the driving cable lengths. The CDCR has the advantages of high flexibility and good
adaptability. Therefore, it has been widely applied for dexterous manipulation in confined
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and complex spaces, such as minimally invasive surgery [4–7], collapsed buildings [8],
space station mock-up environments [9,10], and the on-wing inspection of gas turbine
engines [11,12].

A CDCR generally adopts a flexible backbone as its passive compliant joint to realize
the 2-DOF bending deflections. Due to the disadvantage of low stiffness, the bending
deflection of the flexible backbone is determined by not only the driving cable lengths
but also the gravity and payload, which results in an inaccurate kinematic model of the
CDCR. Therefore, the shape sensing of the flexible backbone is significant for a CDCR,
since employs external measurement devices to measure the bending shape of the flexible
backbone.

The commonly used shape-sensing methods of the continuum robots include the elec-
tromagnetic (EM)-tracking-based shape-sensing method [13–15], the vision-based shape-
sensing method [16–18], and the shape-sensing method based on Fiber Bragg Grating
(FBG) sensor [19–21]. The EM-tracking-based method employs an EM tracking system to
simultaneously realize tip tracking and the shape measurement of the continuum robots.
The EM tracking system consists of the EM field generator and multiple distributed EM
sensors, in which the EM sensors are located along the continuum robots. Based on the
position and orientation of each EM sensor, shape reconstruction algorithms are proposed
in conjunction with the kinematic models of continuum robots. In [22], an extended Kalman
filter is employed for the shape estimation of a surgical snake robot based on the EM sensor
data. In [23], the shape reconstruction algorithm based on the quadratic Bezier curves is
conducted for a CDCR, in which the pose information measured through the EM sensors
and the length information of the robot are utilized to fit the shape of the robot. The
shape-sensing method based on EM sensors is easy to integrate due to the small size of
each EM sensor. However, it will result in the distortion of the EM field when there exist
magnetic and conductive objects, which will decrease the measurement accuracy of the
EM tracking system. Furthermore, the EM tracking method has limited workspace, and its
tracking accuracy varies with the distance from the center of the EM field.

The vision-based shape-sensing method employs stereo cameras, infrared cameras, or
high-speed cameras to measure the shape of the CDCR. In [24], the shape-sensing method
based on stereo vision is proposed, which employs the Self-Organizing Mapping (SOM)
algorithm for the shape reconstruction of a continuum robot based on the point cloud
derived by the cameras. In [25], a marker-based shape-sensing method is proposed, in
which multiple markers are located along the continuum robot. The positions of markers
are measured through cameras, which are utilized to calculate the actual shape of the
continuum robot. Although the vision-based shape-sensing method has high measurement
accuracy, the measurement results are significantly affected by the external environment,
which limits its application in confined spaces. Furthermore, the vision-based shape-
sensing method has a serious time delay, which is not conducive to real-time control of
a CDCR.

The FBG-sensor-based shape-sensing method employs the changes in fiber wave-
lengths to estimate the shape of continuum robots. In [21], the FBG fiber is inserted into
the continuum robot with 1-DOF bending motion, in which the strain of the FBF fiber is
employed to calculate the curvature of the continuum robot. In [26], the helical FBG sensors
are located on the continuum robot, which are utilized for the curvature, torsion, and force
measurement. The FBG-sensor-based shape-sensing method has the advantages of high
resolution, high sensitivity, and high signal-to-noise ratio. However, the FBG sensors have
to employ the interrogation system to demodulate the wavelengths of fibers, which is not
conducive to integration.

The shape-sensing methods mentioned above cannot simultaneously have the advan-
tages of high measuring accuracy, strong anti-interference capability, and the ability to
measure the large bending deflection of the flexible backbone in confined spaces. Therefore,
the shape-sensing method based on stretchable capacitive sensors is employed in this work.
The stretchable capacitive sensors are a class of elastic strain sensors, which are made
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of flexible fabric and conductive nanomaterial to realize strain detection. They have the
advantages of a high stretch rate, high sensitivity, and high stability. The capacitive value of
the sensor will increase with its stretched length. The conventional shape-sensing methods
based on stretchable sensors employ the parallel sensor location scheme, i.e., the location
directions of sensors are parallel to the axis direction of the flexible backbone [27]. Such a
sensor location scheme usually adopts four stretchable sensors for the shape measurement
of the backbone with the 2-DOF bending deflections, which has good robustness. When the
backbone produces the bending deflections, the shapes of sensors are assumed as a circle
attached to the surface of the backbone, which can simplify the shape-sensing modeling
analysis. However, the accuracy of the shape-sensing model with such a sensor location
scheme will significantly decrease when there are location position errors of stretchable
sensors. Furthermore, the parallel location scheme will increase the number of sensors.

In this paper, shape-sensing and closed-loop control based on stretchable capacitive
sensors is proposed for the CDCR with a pattern-based flexible backbone. For the CDCJM
with 2-DOF bending motions, two stretchable capacitive sensors are employed to measure
the bending deflection of the flexible backbone so as to calculate the joint variables of the
CDCJM. Two endpoints of each sensor are located on the surface of the backbone, and
the location of each sensor can be described by four parameters. A generic shape-sensing
modeling method is developed based on the 2-DOF bending deflections of the backbone,
i.e., the relationship between the stretched lengths of two sensors and two joint variables.
Due to the location errors of sensors, the calibration is conducted to further increase
the accuracy of the shape-sensing model and realize the accurate shape measurement
of the CDCR. The proposed shape-sensing method is insensitive to the location position
errors of sensors, which can develop an accurate shape-sensing model with fewer sensors
compared with the shape-sensing method applying the parallel sensor location scheme.
Therefore, it has the advantages of high accuracy, high resolution ratio, and low cost.
Based on the calibrated shape-sensing model, the sliding-mode-based closed-loop control
is implemented for the CDCR.

The rest of this paper is organized as follows. Section 2 presents the configuration
design of the CDCR with a pattern-based flexible backbone. Section 3 addresses the
kinematic analysis of the CDCJM and the CDCR, including the displacement analysis,
the velocity analysis, and the inverse kinematic analysis. Section 4 presents the shape-
sensing modeling method of the CDCJM based on two stretchable capacitive sensors and
the calibration method to compensate for the location errors of sensors. Furthermore,
the closed-loop control is conducted for the CDCR based on the calibrated shape-sensing
model. In Section 5, experiments on the CDCJM and the CDCR are conducted to validate
the effectiveness of the proposed shape-sensing model and the closed-loop control method.
The conclusion of this paper is given in Section 6.

2. Configuration Design of the Cable-Driven Continuum Robot

As shown in Figure 1, a CDCR usually employs a modular design method, which is
composed of a set of identical serially connected CDCJMs. Each CDCJM merely allows
2-DOF bending motions, which consist of a base platform, a moving platform, a flexible
backbone, and driving cables referring to Figure 2. The moving platform of the ith CDCJM
is the base platform of the (i + 1)th CDCJM. The driving cables are evenly mounted on the
base and moving platforms, respectively. The flexible backbone is fixed at the centers of the
base and moving platforms.

In this paper, a pattern-based flexible backbone is employed for the CDCJM, which
possesses low bending stiffness but high tensile stiffness and high torsion stiffness to achieve
the designated 2-DOF bending motions of the CDCJM. The rectangular patterns employed
are inspired by elastic couplings. As shown in Figure 3, each patterned segment has two
rectangular patterns. The structure parameters of the pattern-based flexible backbone
include the inner diameter d1, the thickness t, the width of the pattern a, the distance
between two adjacent patterns l, and the central angle subtended by the pattern β. Since
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the existing stiffness modeling methods of the patterned-based flexible backbone cannot
develop accurate analytical stiffness models when the flexible backbone produces large
bending deflections, an FEA-based data-driven parameter stiffness modeling method is
proposed. Such a stiffness modeling method uses a set of structure parameters within their
dimension bounds and the simulation stiffness values computed by the FEA software to
train the stiffness model. The Gaussian Process Regression (GPR) is employed due to its
capability of solving nonlinear regression problems with fewer training data. Based on the
trained stiffness models, the structure parameter optimization of the flexible backbone is
conducted using the particle swarm optimization method to minimize the ratio of bending
stiffness to tensile stiffness and the ratio of bending stiffness to torsion stiffness. The
optimized structure parameters are given as follows: d1 = 9 mm, t = 4 mm, l1 = 1.1 mm,
a = 0.8 mm, and β = 171.5◦.

Joint module 1

Joint module 2

Joint module 3

Joint module 4

(a) (b)

Figure 1. Schematic diagrams of a Cable-Driven Continuum Robot: (a) the initial pose without
bending motions; (b) an arbitrary pose.

Moving platform

Base platform

Flexible backbone

Driving cables

(a) (b)

Figure 2. Schematic diagrams of a Cable-Driven Continuum Joint Module with three driving cables:
(a) the initial pose without bending motions; (b) an arbitrary pose.
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Figure 3. Schematic diagram and structure parameters of the pattern-based flexible backbone.
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3. Kinematic Analysis of the Cable-Driven Continuum Robot

The kinematic analysis issues of the CDCR include the forward kinematics analysis,
the differential kinematics analysis, and the inverse kinematics analysis. Since the CDCR
can be considered as multiple CDCJMs connected in series, the kinematic analysis of the
CDCR can be derived from the kinematic analysis of the CDCJM.

3.1. Kinematic Analysis of the Cable-Driven Continuum Joint Module

Two joint variables are introduced to simplify the kinematic analysis of the CDCJM, as
shown in Figure 4. Based on the unique stiffness properties of low bending stiffness but
high tensile and torsion stiffness, the bending shape of the optimized pattern-based flexible
backbone can be considered as an arc in space with constant curvature. Therefore, the
2-DOF bending motions of the CDCJM can be expressed by two joint variables, including
the bending direction angle α ∈ [0, 2π] and the bending angle θ ∈ [0, π/4].

Actuator space

Driving cable lengths 𝑙𝑖
Driving cable velocity ሶ𝑙𝑖

Configuration space

Joint variables 𝛼, 𝜃

Joint velocity ሶ𝛼, ሶ𝜃

Task space

Pose of the moving platform T(R,P)

Velocity of the moving platform ሶ𝑥

Figure 4. Three spaces and mapping of the Cable-Driven Continuum Joint Module.

Two coordinate systems, {B} and {E}, are defined for the kinematic analysis of the
CDCJM. The origins and axis directions of {B} and {E} are depicted in Figure 5. The
attachment points of the ith cable at the base and moving platforms are denoted by Bi and
Ei, respectively. The plane Ob AOe is the bending plane of the CDCJM. ObB and OeE are the
intersecting lines of the bending plane with the base and moving platforms, respectively.

3.1.1. Displacement Analysis

The displacement analysis of the CDCJM is to derive the kinematic relationship
between cable lengths and the pose of the moving platform. The relationship between
driving cable lengths and the joint variables is computed by the closed-loop vector method.
As shown in Figure 5, the ith cable length is computed by the norm of the vector

−−→
BiEi:

−−→
BiEi =

−−→
BiOb +

−−→
ObOe +

−−→
OeEi (1)

where
−−→
BiOb,

−−→
ObOe, and

−−→
OeEi are relative to the structure parameters and joint variables of

the CDCJM. Their specific expressions can refer to [28].

(a) (b)

𝐵4
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𝐸2
𝑂𝑒
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θ
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Figure 5. Kinematic diagrams of the Cable-Driven Continuum Joint Module: (a) the initial pose;
(b) an arbitrary pose.
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The analytical expression of the ith cable length is given by

∥−−→BiEi∥2 = (rb − rm)2 + 4 sin2 θ

2

(
L
θ
− rb cos βi

)(
L
θ
− rm cos βi

)
(2)

where L is the length of the flexible backbone. βi = α + (i − 1)π/2 is the rotation angle
from

−−→
ObBi to

−−→
ObB. rb and rm denote the attachment points of cables fixed on the base and

moving platforms, respectively.
According to (2), the expressions of two joint variables are computed by

α = arctan
l2
2 − l2

4
l2
3 − l2

1
(3)

(1 − cos θ)

θ
=

√(
l2
3 − l2

1
)2

+
(
l2
2 − l2

4
)2

4L(rb + rm)
(4)

Referring to [28], θ is given as

θ = 3.1136 −
√

9.6557 − 11.3636a (5)

where a =
√(

l2
3 − l2

1
)2

+
(
l2
2 − l2

4
)2/(4L(rb + rm)).

Based on the screw theory, the 2-DOF bending motions of the CDCJM can be described
by the rotational movement around an instantaneous screw axis ξ. The rotational angle
is θ. The pose of the moving platform is derived by the two-variable local Product-Of-
Exponential (POE) formula

TB,E(α, θ) = eξ̂θTB,E(0) (6)

where ξ̂ =
[

ω̂ v
0 0
]
∈ se(3) is the twist of the CDCJM. ω and v represent the directional vector

and the position vector of ξ with respect to frame B, respectively.
In (6), TB,E(0) is the initial pose of CDCJM:

TB,E(0) =


1 0 0 0
0 1 0 0
0 0 1 L
0 0 0 1

 (7)

Referring to [28], v and ω are given by

v = L
[
−1

2
cos α −1

2
sin α

1
θ
− 1

2
cot

1
θ

]T
(8)

ω =
[
− sin α cos α 0

]T (9)

According to (8) and (9), the screw axis is uniquely determined by the joint variables.

3.1.2. Velocity Analysis

As shown in Figure 4, the joint velocity is utilized for the velocity analysis of the
CDCJM, in which the major issue is to compute the Jacobian matrix. The Jacobian matrix
between the cable velocity and the joint velocity can be directly calculated according
to (2), (3) and (5):

JlΦ =


∂l1
∂α

∂l2
∂α

∂l3
∂α

∂l4
∂α

∂l1
∂θ

∂l2
∂θ

∂l3
∂θ

∂l4
∂θ


T

(10)
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Based on the Jacobian matrix JlΦ, the cable velocity can be derived as

dl = JlΦ dΦ (11)

where dl =
[

dl1 dl2 dl3 dl4
]T is the cable velocity and dΦ =

[
dα dθ

]T is the
joint velocity.

Based on [28], the instantaneous spatial velocity of the moving platform can be given
by

V̂ B
B,E = ṪB,E(α, θ)T−1

B,E(α, θ) (12)

where V̂ B
B,E ∈ se(3) is a twist described in frame B, whose coordinates are formulated by

V B
B,E = (vB

m, ωB
m) ∈ ℜ6×1. ωB

m and vB
m represent the instantaneous angular velocity and

the linear velocity of the CDCJM, respectively. Their specific expressions are given in [28].
ṪB,E(α, θ) is the derivative of TB,E(α, θ) with respect to the joint variables.

According to (12), the linear velocity of point Oe is derived by

vB
Oe

= ωB
m × p + vB

m (13)

where p =
−−→
ObOe.

Then, JxΦ is formulated as

JxΦ =



L sin α(cos θ − 1)
θ

L cos α(θ sin θ + cos θ − 1)
θ2

L cos α(1 − cos θ)

θ

L sin α(θ sin θ + cos θ − 1)
θ2

0
L(− sin θ + θ cos θ)

θ2

− cos α sin θ − sin α
− sin α sin θ cos α

1 − cos θ 0


(14)

Therefore, the velocity of point Oe can be calculated as

dx = JxΦ dΦ (15)

where dx =
[
vB

Oe
, ωB

m

]T
.

3.2. Kinematic Analysis of the Cable-Driven Continuum Robot
3.2.1. Forward Kinematic Analysis

Due to the modular design approach, the forward kinematic model of the CDCR is
derived from the product of the forward kinematic models of the CDCJMs:

T0,n(α, θ) = T0,1(α1, θ1) · · · T i−1,i(αi, θi) · · · Tn−1,n(αn, θn) (16)

According to (16), the pose of CDCR with respect to the base frame can be derived
when given the number of the CDCJMs and their joint variables.

3.2.2. Differential Kinematic Analysis

Based on (16), the instantaneous spatial velocity of the CDCR is given by

V̂ s
= Ṫ0,nT−1

0,n = Ṫ0,1T−1
0,1 + T0,1

(
Ṫ1,2T−1

1,2

)
T−1

0,1 + · · ·+ T0,n−1

(
Ṫn−1,nT−1

n−1,n

)
T−1

0,n−1 (17)

Substituting (12) into (17) and introducing the operator ∨, (17) can be rewritten as

V s = V1
0,1 + AdT0,1 V2

1,2 + · · ·+ AdT0,n−1 V n
n−1,n (18)
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where the operator ∨ denotes the mapping from se(3) to ℜ6×1. V s = (vs, ωs) ∈ ℜ6×1 is the
twist coordinate of V̂s, in which ωs and vs represent the spatial angular velocity and the
spatial linear velocity of the CDCR with respect to its base frame, respectively.

AdT0,i ∈ ℜ6×6 is the adjoint transformation of T0,i:

AdT0,i =

[
R0,i p0,iR0,i

03×3 R0,i

]
(19)

Therefore, (18) can be represented by

V s =
[

J1 AdT0,1 J2 · · · AdT0,n−1 Jn
]
ϕ̇ = Jsϕ̇ (20)

where Jn is the spatial Jacobian matrix of the ith CDCJM. ϕ̇ =
[
ϕ̇

T
1 , · · · , ϕ̇

T
n

]T
is the joint

velocity of the CDCR.

3.2.3. Inverse Kinematic Analysis

The inverse kinematic analysis of the CDCR is to calculate the driving cable lengths
when given the tip pose of the CDCR, which is significant for the trajectory planning of the
CDCR. Referring to Figure 4, the inverse kinematic analysis of the CDCR is divided into
two steps. The driving cable lengths can be calculated through (2) when given the joint
variables of the CDCR. The analytical expression of the joint variables relative to the tip
pose of the CDCR is difficult to derive since the CDCR is a hyper-redundant robot.

In this paper, the Newton-Rapson iteration method is employed. Given the desired

pose Td
0,n of the CDCR and the initial guess of joint variables ϕ0 =

[
α0, θ0

]T
, the pose

T0
0,n of the CDCR based on the initial guess of joint variables is derived through (16). The

derivation between T0
0,n and Td

0,n is given by

dx =

(
log Td

0,n

(
T0

0,n

)−1
)∨

(21)

Based on the differential kinematics analysis, the differential changes in joint variables
are computed by

dϕ = (Js)+dx (22)

Then, the joint variables are updated as

ϕi+1 = ϕi + dϕi+1 (23)

where the right superscripts represent the iterations.
According to (21)–(23), the joint variables are constantly updated until the error be-

tween the desired pose and the tip pose computed by the updated joint variables is within
the allowable range.

4. Shape Sensing of the Cable-Driven Continuum Robot
4.1. Stretchable Capacitive Sensor

To achieve accurate motion control for the CDCR, a closed-loop motion control scheme
is employed for each CDCJM, in which sensor feedback for the bending deflection of the
flexible backbone, i.e., the bending angle and the bending directional angle, is essential.
Since the flexible backbone of the CDCJM can achieve a large bending angle of 45◦ with
unlimited bending direction angles, the sensor has to possess the properties of a high stretch
rate and high sensitivity in order to accurately detect the two joint angles. Among various
strain sensors, the stretchable capacitive sensors made of flexible fabric and conductive
nanomaterial are a class of elastic strain sensors with high sensitivity and high linearity
for strain detection. As such, the stretchable capacitive sensor of Model RH-ESSA-01
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from ElasTech is employed in this work, which has a maximum stretch rate of 50% and a
minimum resolution of 0.05%.

The deflection of the stretchable capacitive sensor is the stretched deflection along its
longitude direction. With the stretched deflection, the capacitance of the sensor will change.
The employed stretchable sensors shown in Figure 6 have a length of 50 mm and a width
of 20 mm, in which the effective sensing length is 40 mm. The relationship between the
stretched length of the sensor and its corresponding capacitance is given in Figure 7. The
result verifies the employed stretchable sensor has high linearity. The analytical expression
through the curve fitting is given by

C = 2.082∆ls + 61.75 (24)

Figure 6. Prototypes of the stretchable capacitive sensors.
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)

Test data
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Figure 7. Relationship between the stretched length of a stretchable capacitive sensor and its corre-
sponding capacitance.

4.2. Shape-Sensing Model of the Cable-Driven Continuum Joint Module

The shape-sensing model of the CDCJM is to derive the analytical expressions between
the stretched lengths of stretchable sensors and the joint variables α and θ of the CDCJM.
In this paper, a generic shape-sensing modeling method is proposed for the CDCJM, in
which two joint variables can be measured through the stretched lengths of two stretchable
capacitive sensors. Two stretchable capacitive sensors are located in arbitrary positions
on the surface of the flexible backbone, and the location of each sensor is defined by
its two endpoints. The width of the sensors is ignored in this paper, and each sensor
can be simplified as a straight line. Since the surface of the flexible backbone without
bending is a cylinder, the sensor can be considered as a helix along the cylinder, as shown
in Figure 8. When the CDCJM produces the bending motions, the shape of the flexible
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backbone becomes a part of the torus, as shown in Figure 9. The location of each sensor
varies from the bending deflections of the flexible backbone. The stretched length of a
sensor is used to calculate the variation in the distance between two endpoints of the sensor
on the surface of the backbone.

As shown in Figure 8, the two endpoints of the sensor are denoted by S1 and S2,
respectively. An arbitrary point on the sensor is denoted by point S. Frame {B} referring
to Figure 5 is employed as the base frame of the flexible backbone. The intersection point
between the xb axis of frame {B} and the backbone surface is denoted by point A. The
flexible backbone is unfolded into a plane ABB′A′ along the straight line AB. A rectangular
coordinate system is established at point A. The helix in the plane ABB′A′ is a straight
line S1S2, in which the angle between the x-axis and the line S1S2 is denoted by λ and
the intercept of the line S1S2 on the y-axis is denoted by b. The helix is projected onto the

bottom of the flexible backbone and the projected arc is denoted by
⌢

S′
1S′

2. The projection

point of point S is denoted by S′. t ∈ [t0, t0 + ∆t] is the angle between the vector
−−→
ObS′ and

the xb-axis, in which t0 is the angle between the vector
−−→
ObS′

1 and the xb-axis. Therefore,
the location of the sensor is defined by four parameters, i.e., b, λ, t0, and ∆t. b and t0 are
employed to determine the endpoint position of the sensor. λ is employed to describe
the attachment angle of the sensor. ∆t is employed to represent the length of the sensor.
a = [b, λ, t0, ∆t] is produced to denote the location of the sensor.
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Figure 8. Schematic diagrams of the flexible backbone without bending and the corresponding
projection views: (a) model of the flexible backbone attached with a stretchable capacitive sensor;
(b) two-dimensional unfolded surface of the flexible backbone; (c) bottom plane of the flexible
backbone and the corresponding projection of the sensor.

As shown in Figure 9, the intersection between the plane parallel to the bottom of the
flexible backbone at point S and the neutral axis of the flexible backbone is denoted by
point F. A local coordinate system {F} is established at point F, in which the axes of frame
{F} are consistent with those of frame {B} when the flexible backbone is in the initial state.
The coordinates of the point S with respect to frame {F} and frame {B} are given by

PF
S(0) = [r cos(t), r sin(t), 0]T (25)

PB
S (0) =

 xB
S (0)

yB
S (0)

zB
S (0)

 =

 r cos t
r sin t

r · t tan λ + b

 (26)

where r = (d1 + 2t)/2 is the radius of the flexible backbone.
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Figure 9. Schematic diagrams of the flexible backbone with a stretchable capacitive sensor in its
bending state: (a) model of the flexible backbone without bending; (b) model of the flexible backbone
with the bending deflection.

When the flexible backbone produces the bending deflection, a coordinate system {N}
is introduced as a local frame, in which the origin is located at point F. The N1 axis points
to the center of curvature M and the N3 axis is tangent to the neutral axis of the flexible
backbone. The coordinates of point S expressed in frame {N} becomes

PN
S (α) = [r cos(t − α), r sin(t − α), 0]T (27)

The unit directional vectors of the N1, N2, and N3 axes described in frame {B} are
derived by

N1 =

 cos α cos(γ(t))
sin α cos(γ(t))
− sin(γ(t))

 (28)

N2 =

 − sin α
cos α

0

 (29)

N3 = N1 × N2 (30)

Therefore, the orientation matrix of frame {N} is given by

N = [N1, N2, N3] (31)

Based on the constant curvature assumption, the coordinate of point F described in
frame {B} is calculated by

PB
F(α, θ) =

 xB
F

yB
F

zB
F

 =

 R(1 − cos(γ(t))) cos α
R(1 − cos(γ(t))) sin α

R sin(γ(t))

 (32)

where R = L/θ is the radius of the backbone bending curvature. γ(t) = z0θ/L =
(r · t tan λ + b)θ/L is the angle between the line FM and the line Ob M.
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According to (27), (32), and (31), the coordinates of the point S with respect to frame
{B} are derived by

PB
S (α, θ) = N · PN

S (α) + PB
F(α, θ)

=


r cos(−t + α) cos(α) cos(γ(t)) + r sin(−t + α) sin(α)+

R(1 − cos(γ(t))) cos(α)
r cos(−t + α) sin(α) cos(γ(t))− r sin(−t + α) cos(α)+

R(1 − cos(γ(t))) sin(α)
−r cos(−t + α) sin(γ(t)) + R sin(γ(t))

 (33)

Based on the geometrical relationship shown in Figure 8, the initial length of the sensor
is derived by

ls(0) =
∆t · r
cos λ

(34)

where ls(0) represents the length of the sensor in the initial state.
Differentiating the both sides of (33), it becomes(

dPB
S

dt

)2

=

(
∂x
∂t

)2
+

(
∂y
∂t

)2
+

(
∂z
∂t

)2

=
(tan λ)2θ2r2

(
L
θ − r cos(t − α)

)2

L2 + r2

= (tan λ)2r2
(

1 − r
L

θ cos(t − α)
)2

+ r2

= r2 ·
(
(tan λ)2(1 − kθ cos(t − α))2 + 1

)
(35)

where k = r/L.
Therefore, the stretched length of the sensor relative to α and θ is calculated by

∆ls =
∫ t0+∆t

t0

dPB
S dt − ls(0)

= r
∫ t0+∆t

t0

(√
(tan λ)2(1 − kθ cos(t − α))2 + 1 − 1

cos λ

)
dt

(36)

According to (36), the numerical iteration method is employed to solve the joint vari-
ables when given the stretched lengths of sensors. Therefore, it needs to solve the Jacobian
matrix between the stretched lengths of sensors and the joint variables. Differentiating both
sides of (36), it becomes

∂∆ls
∂α

= r(g(θ, α, λ, t0, k)− g(θ, α, λ, t0 + ∆t, k)) (37)

∂∆ls
∂θ

= r

∫ t0+∆t

t0

−

(
g(θ, α, λ, t, k)2 − 1

)
k cos(t − α)

g(θ, α, λ, t, k)
dt

 (38)

where g(θ, α, λ, t, k) =
√
(tan λ)2(1 − kθ cos(t − α))2 + 1.
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Assume that the number of stretchable capacitive sensors is m. The Jacobian matrix
between the stretched lengths of sensors and the joint variables is defined as

Ja =



∂∆ls1

∂α

∂∆ls1

∂θ
∂∆ls2

∂α

∂∆ls2

∂θ
...

...
∂∆lsm

∂α

∂∆lsm

∂θ


(39)

where ∆lsi(i = 1, 2, ..., m) represents the tensile length of the ith sensor.
When the flexible backbone produces the bending deflection, the stretched lengths

of sensors la
s =

[
la
s1, · · · , la

sm
]T are derived according to their capacitances. Given the

initial guess of joint variables, the initial stretched lengths of sensors l0
s =

[
l0
s1, · · · , l0

sm
]T

are calculated based on (36). Then, the derivation between l0
s and la

s is calculated. The
differential changes in joint variables are given by

dϕ = (Ja)
+dls (40)

The joint variables are updated referring to (23) until d∆ls is within the allowable
range. In order to further verify the feasibility of the proposed shape-sensing model based
on the numerical iteration method, a computation example is provided. In this example,
two stretchable capacitive sensors are employed, such that Ja ∈ ℜ2×2. The structure
parameters of the flexible backbone and the locations of two sensors are given in Table 1.

Table 1. Structure parameters of the flexible backbone and the locations of the sensors for the
computation example.

Property Value

Flexible backbone length L 120 mm
Flexible backbone radius r 10 mm

Attachment position of the first sensor a1 [20 mm, 5π/12 rad, π/2 rad, π/3 rad]
Attachment position of the second sensor a2 [50 mm, 2π/5 rad, π/12 rad, π/3 rad]

The stretched lengths of the two sensors are given by ∆ls1 = −3.15 mm and ∆ls2 =
−3.39 mm. The initial guesses of the joint variables are α = 0.76 rad and θ = 1.07 rad. The
average stretched length error of two sensors is calculated and its convergence result is
shown in Figure 10. The updated joint variables are α = 1.26 rad and θ = 1.57 rad.
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Figure 10. Convergence result of the stretched length error.
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4.3. Calibration of Locations for Stretchable Capacitive Sensors

Due to the location errors of sensors, there exist derivations between the nominal
stretched lengths and the actual stretched lengths, which will decrease the accuracy of
the developed shape-sensing model. Therefore, it is necessary to calibrate the locations of
sensors. Referring to (36), the stretched lengths of the sensors are determined by λ, t0, and
∆t. d = [λ, t0, ∆t] is produced to denote the stretched parameters of the sensor that need to
be calibrated. Based on (36), the derivatives of the stretched length for a sensor relative to
λ, t0, and ∆t are calculated by

∂∆ls
∂λ

= r

∫ t0+∆t

t0

 tan λ(1 − kθ cos(−t + α))2
(
(tan λ)2 + 1

)
g(θ, α, λ, t, k)

− sin λ

(cos λ)2

dt

 (41)

∂∆ls
∂t0

= r(g(θ, α, λ, t0 + ∆t, k)− g(θ, α, λ, t0, k)) (42)

∂∆ls
∂∆t

= r(g(θ, α, λ, t0 + ∆t, k)− 1
cos λ

) (43)

The Jacobian matrix of the sensor stretched lengths relative to λ, t0, and ∆t is given by

Jb =



∂∆ls1

∂λ

∂∆ls1

∂t0

∂∆ls1

∂∆t
∂∆ls2

∂λ

∂∆ls2

∂t0

∂∆ls2

∂∆t
...

...
...

∂∆lsm

∂λ

∂∆lsm

∂t0

∂∆lsm

∂∆t


(44)

Similarly, the numerical iteration method is utilized to derive the actual locations of
sensors based on (44).

4.4. Closed-Loop Control of the Cable-Driven Continuum Robot

Based on the calibrated shape-sensing model, closed-loop control is conducted for
the CDCR, as shown in Figure 11. In this paper, sliding mode control is employed as the
control method for the CDCR, which is a robust control method that can effectively solve
the control problem under parameter uncertainty.

d d, 
~ ~

, 
Inverse kinematics

dl
~

l Sliding model 

control

Cable-driven 

continuum robot

Stretchable 

capacitive sensors

cable lengths
Encoder values

Stretched lengths of sensors
Capacitances of sensors

Actual joint variables
,  '

sL

- -

Figure 11. Block diagram of the closed-loop control method for the Cable-Driven Continuum Robot.

For the CDCR, the dynamic equation expressed in the motor frame is given by

M(q)q̈ + C(q, q̇)q̇ + G(q) = f (q, q̇) + u (45)

where M(q)q̈, C(q, q̇)q̇, and G(q) are the generalized mass term, coriolis and centrifugal
force terms, and the gravitational force term of the CDCR, respectively. f (q, q̇) is the
frictional force term of the CDCR. u is the actuation force term of the motors. q is the
rotation angle vector of the motors.
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Given the desired pose xd of the CDCR, the desired rotation angle vector qd can be
computed based on the inverse kinematic analysis. The rotation angle errors of the motors
are denoted by q̃ = qd − q. Therefore, (45) can be rewritten as

M(q) ¨̃q + C(q, q̇) ˙̃q = G(q)− f (q, q̇)− u + M(q)q̈d + C(q, q̇)q̇d

= η− u
(46)

The sliding mode surface is given as

s = cq̃ + ˙̃q (47)

ṡ = c ˙̃q + ¨̃q (48)

where c ∈ ℜm×m is a diagonal matrix. m is the number of motors.
Substituting (48) into (46), it becomes

M(q)ṡ = M(q)c ˙̃q − C(q, q̇) ˙̃q − u + η (49)

Let µ = η− M(q)c ˙̃q + C(q, q̇)cq̃ + s, (49) becomes

M(q)ṡ = −s − u + µ − C(q, q̇)s (50)

The Lyapunov function is constructed as

V =
1
2

sTM(q)s (51)

According to (51), its differential equation is calculated as

V̇ = sTM(q)ṡ +
1
2

sTṀs (52)

Let u = ksup(s) + kps, V̇ is positive when k ≥ sup∥µ∥.

5. Experimental Results
5.1. Experimental Verification of the Cable-Driven Continuum Joint Module

The experiment of the CDCJM includes the stability measurement of the stretchable
sensors and the accuracy test of the developed shape-sensing model under the proposed
calibration method. The experimental prototype of the CDCJM is shown in Figure 12,
which consists of motors, the prototype of the CDCJM, the motion capture system, and two
stretchable sensors. The Qualisys motion capture system includes six cameras and markers,
which have a measurement accuracy of 0.32 mm. The type of camera is an Opus 500. The
markers are evenly fixed on the base platform and the moving platform of the CDCJM, in
which the coordinates of the markers are measured to calculate the pose of the CDCJM.
The transformation matrix TB

E is calculated by

TB
E = Tcam

E (Tcam
B )−1 (53)

where Tcam
E and Tcam

B represent the transformation matrices of frame {E} frame {B} with
respect to the camera coordinate system, respectively.
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Figure 12. Experimental setup of the Cable-Driven Continuum Joint Module: (a) pose measurement
system with motion capture cameras; (b) prototype of the Cable-Driven Continuum Joint Module
with two stretchable capacitive sensors.

In order to measure the stability of the stretchable capacitive sensors, the moving
platform of the CDCJM follows a circle trajectory, in which the bending angle θ is a
constant of 0.3 rad and the bending direction angle α varies from 0 rad to 2π rad. The
nominal locations of two stretchable capacitive sensors are dnom1 = [4π/9, π/2, π/2] rad
and dnom2 = [−π/3, 3π/4, π] rad, respectively. The initial length of each sensor is 50 mm,
and its prestretch length is 6 mm. The capacitance changes in two stretchable sensors are
shown in Figure 13. With the bending motions of the CDCJM, the capacitances of the two
stretchable sensors vary with their stretched lengths. When the CDCJM returns to its initial
pose, the capacitance changes in the two stretchable sensors are zero.

0 300 600 900 1200 1500 1800
Samples

-200

-150

-100

-50

0

50

100

150

200

250

C
ha

ng
es

 o
f 

ca
pa

ci
ta

nc
e 

(#
10

-2
pF

)

sensor1
sensor2

Figure 13. Capacitance of two stretchable sensors during the sensor stability test experiment.

Furthermore, the calibration of the locations for two stretchable sensors is conducted to
increase the accuracy of the developed shape-sensing model. When given the nominal joint
variables, the nominal stretched lengths of two sensors and their corresponding capacitance
changes can be calculated according to (36) and (24), respectively. Three experimental
poses are shown in Figure 14. The actual capacitance changes are measured through the
data collection module. The capacitance errors of two sensors between the nominal values
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and the measured values are shown in Figures 15 and 16, which results from the location
errors of the sensors. The average capacitance errors of the two sensors before calibration
are 0.4433 pF and 0.3916 pF, respectively. Based on the numerical iteration method, the
calibrated locations of two stretchable sensors are dc1 = [1.3897, 1.1887, 1.5708] rad and
dc2 = [−1.1545, 2.9663, 3.1416] rad, respectively. According to the calibrated parameters,
the capacitance errors of the two sensors after calibration are reduced to 0.1123 pF and
0.0679 pF, respectively. Based on the calibrated shape-sensing model, the verification
trajectory is introduced, in which the bending angle θ is a constant of 0.15 rad and the
bending direction angle α varies from 0 rad to 2π rad. The capacitance errors of the two
sensors between the calibrated values and the actual values after calibration are 0.0988 pF
and 0.0367 pF, respectively. The errors of α and θ between the measured values and the
actual values are about 0.03 rad and 0.01 rad, respectively.

Figure 14. Experimental poses of the Cable-Driven Continuum Joint Module.

(c) (d)

(a) (b)

Figure 15. Calibration results of the first stretchable sensor: (a) capacitance errors before calibration;
(b) convergence result of the capacitance errors; (c) capacitance errors after calibration; (d) capacitance
errors of the verification trajectory after calibration.
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(c) (d)

(a) (b)

Figure 16. Calibration results of the second stretchable sensor: (a) capacitance errors before calibration;
(b) convergence result of the capacitance errors; (c) capacitance errors after calibration; (d) capacitance
errors of the verification trajectory after calibration.

5.2. Experimental Verification of the Cable-Driven Continuum Robot

In order to verify the effectiveness of the kinematics control method based on the
calibrated shape-sensing model, the experiment of the CDCR is conducted. The prototype
of the CDCR with multiple stretchable sensors is shown in Figure 17, which is composed of
four CDCJMs. The flexible backbone of each CDCJM employs two stretchable sensors to
measure its joint variables. The trajectory tracking accuracy of the CDCR is measured based
on a circle trajectory, in which the radius of the circle is 55 mm. As shown in Figure 18, the
tracking errors of the CDCR under the open-loop control and the closed-loop control are
49.23 and 8.40 mm, respectively. Compared with the tracking error under the open-loop
control, the tracking error under the closed-loop control is reduced by 82.94%.

Figure 17. Experimental pose of the Cable-Driven Continuum Robot.
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Figure 18. Trajectory tracking accuracy of the Cable-Driven Continuum Robot under open-loop
control and closed-loop control.

6. Conclusions

This paper proposes a generic shape-sensing modeling method for a Cable-Driven
Continuum Robot (CDCR) with a flexible backbone. For the Cable-Driven Continuum
Joint Module (CDCJM) with 2-DOF bending motions, its joint variables can be measured
through stretched lengths of two stretchable sensors. Combined with the calibration of the
locations for the sensors, the accurate measurement of the joint variables can be realized.
The proposed shape-sensing modeling method has the advantages of good stability, high
resolution ratio, high accuracy, and good antidisturbance ability. Based on the calibrated
shape-sensing model, the sliding-mode-based closed-control method is implemented for
the CDCR. The accuracy of the calibrated shape-sensing model is measured during the
experiments, in which the capacitance errors of the sensors between the calibrated values
and the actual values are 0.0988 pF and 0.0367 pF, respectively. The corresponding errors
of the two joint variables α and θ are about 0.03 rad and 0.01 rad, respectively. According
to the experimental result, the tracking error of the CDCR is reduced from 49.23 mm to
8.40 mm under the closed-loop control, which verifies the effectiveness of the proposed
kinematic control method based on the calibrated shape-sensing model.
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Abbreviations
The following abbreviations are used in this manuscript:

CDCR Cable-Driven Continuum Robot
CDCJM Cable-Driven Continuum Joint Module
EM ElectroMagnetic
FBG Fiber Bragg Grating
SOM Self Organizing Mapping
DOF Degree Of Freedom
FEA Finite Element Analysis
GPR Gaussian Process Regression
POE Product Of Exponential
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