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Abstract: Tool wear prediction is of great significance in industrial production. Current tool wear
prediction methods mainly rely on the indirect estimation of machine learning, which focuses more
on estimating the current tool wear state and lacks effective quantification of random uncertainty
factors. To overcome these shortcomings, this paper proposes a novel method for predicting cutting
tool wear. In the offline phase, the multiple degradation features were modeled using the Brownian
motion stochastic process and a SVR model was trained for mapping the features and the tool wear
values. In the online phase, the Bayesian inference was used to update the random parameters of
the feature degradation model, and the future trend of the features was estimated using simulation
samples. The estimation results were input into the SVR model to achieve in-advance prediction of
the cutting tool wear in the form of distribution densities. An experimental tool wear dataset was
used to verify the effectiveness of the proposed method. The results demonstrate that the method
shows superiority in prediction accuracy and stability.

Keywords: cutting tool wear prediction; brownian motion; bayesian inference; uncertainty quantifi-
cation; support vector regression

1. Introduction

Machine tools play a critical role in the development of modern manufacturing. Vari-
ous industries, including automotive manufacturing, aerospace, and military industries,
rely heavily on the precision-processed components produced by machine tools [1-3]. The
efficient and accurate processing capability of machine tools is indispensable. During the
machining process, the cutting tool, as a key component that directly contacts the work-
piece, is directly related to the precision of the product and the stability of the processing.
Nevertheless, cutting tools are bound to wear out due to intense vibration and thermal cou-
pling effects [4,5]. The damaged cutting tool may not only lead to a decrease in machining
accuracy, but also cause safety accidents, bringing a threat to the operators. Furthermore,
the severe wear status of cutting tools can cause a decrease in processing efficiency and
increased downtime for the machine, which seriously affect the entire production line [6,7].

Copyright: © 2024 by the authors.

If the wear status can be obtained during the machining process, enabling the timely main-
Licensee MDPI, Basel, Switzerland.

tenance and replacement of cutting tools, the efficiency and safety of the manufacturing can
be further improved. Therefore, estimation and prediction methods of cutting tool wear
have been developed.

The mainstream methods for cutting tool wear estimation and prediction can be
generally classified into two categories: direct methods and indirect methods [6]. Direct
methods can obtain the current tool wear status by directly observing the quality or shape
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variation of the cutting tools [8,9]. Optical imaging is one of the most common direct
methods for cutting tool wear monitoring. It uses the phenomenon that the worn surface
has a higher reflectivity than that of the unworn surface [10,11]. This characteristic is
utilized to obtain the wear values of the cutting tools. The advantage of direct methods
is that they can visually describe the health status of the cutting tools, thus obtaining
the accurate measurement of the tool wear [12]. However, due to the intense vibration
generated in the machining process, direct methods are only effective when the machine
tools are stopped, thus they cannot achieve a continuous online observation [6,12].

With the rapid development of signal acquisition and information technology, indirect
methods have gradually become the hot spot in cutting tool wear prediction. Indirect meth-
ods establish machine learning models to analyze the mapping relationship between the
cutting tool wear and the sensor signals, including vibration signals, cutting force, acoustic
emission signals, and so on [13]. Compared with direct methods, indirect monitoring is
more flexible in its application and does not interfere with the machining process of the
machine tool, making it possible to achieve online real-time cutting tool wear estimation
and prediction [14].

The artificial neural network (ANN) is a basic machine learning tool that is commonly
used in cutting tool wear prediction [6]. Wang et al. [15] proposed a novel tool wear pre-
diction, combining the physical model of the cutting tools and the ANN algorithms. The
physical model was also used to construct the loss function and explore the information
from unlabeled samples. Xu et al. [16] established a multi-scale convolutional gated re-
current unit network, in which the multi-scale CNN model was used to effectively extract
features from the raw sensor signals and the recurrent unit network model was trained
to learn the relationship between the features and the flank tool wear. Qin et al. [17] used
unsupervised K-means clustering to adaptively classify the wear stage and constructed
the self-coding network to reduce the complexity of the degradation features; therefore,
improving the efficiency of the calculation. Cheng et al. [18] proposed a firefly algorithm-
optimized back propagation (BP) neural network for tool wear prediction, which can
effectively select the hyperparameters of the network, thus enhancing the prediction per-
formance. Wang et al. [19] presented an improved neural network model for tool wear
estimation, with a Siamese structure and an auxiliary input to enhance the feature extraction
ability. Benefiting from the excellent nonlinear mapping processing capabilities of ANN,
the ANN-based models have achieved satisfying results in cutting tool wear prediction.
Some other machine learning algorithms have also been applied in tool wear prediction,
such as support vector machines (SVM) [20,21], fuzzy inference [22,23], and so on.

To further improve the processing capability of nonlinear mapping and thereby im-
prove the accuracy of tool wear prediction, some researchers have proposed prediction
models based on deep learning algorithms. Wang et al. [24] developed a novel deep hetero-
geneous gated recurrent unit (GRU) model, using expertise and information to enhance
the feature learning ability and building an intermediate layer to analyze the relationship
between input and output. Shah et al. [25] combined the Walsh-Hadamard transforming
and deep convolutional generative adversarial network (DCGAN) to effectively select
and extract the degradation features, so as to increase the prediction accuracy of the tool
wear. Liu et al. [26] developed an intelligent tool wear monitoring system, containing a
multi-input parallel convolutional network to select and preprocess the multi-scale degra-
dation features, and a long short-term memory (LSTM) model was established to achieve
the estimation of the tool wear. Abdeltawab et al. [27] divided the tool wear status into
five stages and established a CNN-LSTM model to achieve the online identification of
wear stage.

Overall, the existing machine learning-based tool wear prediction methods have been
widely applied in engineering practice and have achieved satisfactory prediction results.
With the accurate tool wear estimation at the current time, it is possible to determine the
maintenance and replacement strategy, thereby improving the safety and efficiency of
the machining process. However, the existing methods still have certain shortcomings
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that require further enhancement: First, the machine learning-based prediction methods
typically require the input of currently observed signals and output wear prediction results
at the current time, thus lacking the ability to predict future wear trends. If the wear status
of the cutting tools can be predicted in advance, it will bring tremendous assistance to the
maintenance and replacement of the cutting tools. Second, the existing methods lack the
quantification of uncertainty. The degradation signals generated in the machining process
generally contain large amount of uncertainties, such as random noises and individual vari-
ations, which lead to significant fluctuations in the tool wear prediction results. Although
the filtering algorithms can address the uncertain factors and enhance the stability of the
prediction, the final results are still presented in the form of deterministic values. If the
uncertainties can be comprehensively considered and quantified into the final prediction
results, the persuasiveness of the prediction can be enhanced.

Based on these two issues, this paper presents a novel cutting tool wear prediction
method, which fully considers the uncertainties, and can achieve an in-advance prediction
of wear. The main contribution of the paper can be summarized as follows: (1) The
Brownian motion stochastic process was used to establish the degradation models for
multiple degradation features; (2) The model parameters were updated using Bayesian
inference and the future trend of features was estimated in the form of random simulation
samples considering the uncertainties; (3) An SVR model was established to describe the
relationship between the degradation features and the cutting tool wear, and the future
estimations of the features were input to obtain the future wear trend; (4) A degradation
dataset of the cutting tools was introduced to test the effectiveness of the proposed method.

The rest of the paper is organized as follows: Section 2 presents the overall process of
the proposed tool wear prediction method; Section 3 illustrates the degradation modeling
of multiple features, as well as the parameter updates using Bayesian inference; Section 4
presents the prediction of future trends of features using random sampling and introduces
the SVR modelling for tool wear online estimation and the future prediction of tool wear,
fully considering the uncertainties; In Section 5, a degradation dataset of cutting tools is
used as a numerical example, to test the effectiveness of the presented work; Section 6
provides a summary of the paper and a discussion of the effectiveness.

2. Comprehensive Flow of the Method

This paper presents a novel tool wear prediction method, combining the Brownian
motion stochastic process, Bayesian inference, and an SVR model. The proposed method is
capable of quantifying the uncertainties in the machining process, generating the tool wear
prediction in the form of probability, distribution, and forecasting the future wear variation
trend. The overall process of the method is summarized below, and the specific procedure
is illustrated in Figure 1:

Offline phase:

Step 1: Modelling for degradation features

Utilize the Brownian motion stochastic process to develop degradation models that
capture the temporal evolution of multiple time-frequency features.

Step 2: SVR training

Utilize historical data to train an SVR model that maps the degradation features to the
corresponding trends in cutting tool wear. This model will serve as a predictive tool for
estimating future wear based on observed degradation features.

Online phase:

Step 3: Parameter updates

Utilize Bayesian inference techniques to update the parameters of the degradation
models based on newly observed online data of the multiple degradation features.

Step 4: Random simulation for future trend estimation

With the updated parameters, utilize random simulation samples to estimate the
future trends of the multiple degradation features.

Step 5: Tool wear prediction
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Input the estimated future values of the degradation features, obtained from the
random simulations, into the pre-trained SVR model. The output of the SVR model in
probability distribution is achieved, which quantifies the likelihood of different levels of
cutting tool wear in the near future.
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Figure 1. Procedure of the proposed method.

3. Degradation Feature Modelling Based on the Stochastic Process

During the machining process, sensors can be installed to capture various signals that
are closely related to cutting wear, including the cutting forces acoustic emission signal. By
extracting time—domain features from these signals, multiple degradation features, which
can intuitively reflect the degradation process of the cutting tools, can be obtained. To
quantify the uncertainties in the machining process, the degradation features were modeled
using the stochastic process. During the online prediction phase, based on the real-time
observed data, the model parameters were updated using Bayesian inference.
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3.1. Brownian Motion Stochastic Process

Brownian motion is a stochastic process model with continuous time parameters
and continuous states, which has critical application value in theoretical mathematics
and modern engineering. In the degradation process of equipment and components,
the degradation indicators generally show strong non-monotonicity, due to the random
noises and environment interference. The mathematical properties of Brownian motion
can effectively adapt to and fit the non-monotonic phenomena in the degradation process,
further improving the accuracy of modeling.

Suppose that D(t) is the value of the degradation features at the time ¢, the Brownian
motion stochastic process for degradation modeling can be expressed as follows:

D(t) = D(0) + 0¢(t, A) + oB(t) )

where 6 represents the Gaussian-distributed random parameter that is used to describe
the individual variation in same type of component or equipment; A is a fixed parameter
that represents the similarity between the same type of component or equipment; 6¢(t, A)
is the drift term of the degradation, which characterizes the degradation pattern of the
component; B(f) is the standard Brownian motion and ¢ is the diffusion coefficient. The
term oB(t) is used to characterize the uncertainties in the degradation process.

The standard Brownian motion is a continuous stochastic process with Markov prop-
erties, and its increments follow independent Gaussian distributions. The use of standard
Brownian motion (BM) allows for the full consideration of uncertainties, as well as the
non-monotonicity of degradation in the establishment of degradation models; thus, the
model can significantly reflect the actual degradation situation of the mechanical equip-
ment or components in practical scenarios. Furthermore, the drift term can capture various
degradation patterns using linear or nonlinear expression, significantly enhancing the ap-
plicability of the model. Figure 2 shows the simulation and modelling using the Brownian
motion stochastic process. It can be seen that the degradation models can effectively reflect
the actual degradation process; therefore, the health condition assessment and remaining
life prediction can be furthered facilitated.
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Figure 2. Degradation modelling using the Brownian motion stochastic process.

3.2. Bayesian Parameter Updates

During the machining process, the sensors installed on the machine tool continuously
capture various signals, such as cutting forces and vibration signals; therefore, the Bayesian
inference method can be used to fully utilize the online monitored data and update the
parameters of the degradation model, achieving more accurate prediction results for tool
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wear or remaining life. The basic principle of the Bayesian parameter updates is to derive
the posterior distribution of the model parameters based on the prior distribution and
online monitoring data from the sensors, using the Bayesian formula, as Equation (2) [28]:

p(DIO)p(6)
plID) = == 5y — *P(DIO)p () 2
where p(6 | D) is the posterior distribution of random parameter 6, representing a more
precise and specific estimation combining the prior distribution and online observed data;
p(0) is the prior distribution of 6, representing the empirical data of the parameter; p(D | 6)
is the likelihood function, which represents the probability of the observed data occurring
under certain parameter values.

Since the increments of Brownian motion follow the independent Gaussian distri-
butions, the individual increments of the degradation feature D, given the values of §
and A from #; to t;, also follow the independent Gaussian distributions, as expressed in
Equation (3):

1
AD|0) = e
POD0) = — e enp

_(ADg— 0(¢(ti, A) — 4><tk1,A>>>21 -
202(tg — ty_1)

Suppose that D1 = [D(t1), D(t2), ..., D(t)] represents the observed degradation
features from time #; to t, the likelihood function p(Dy | 8) can be expressed in the form of
the joint density function, as shown in Equation (4):

exp | —

k 2

D(t;)) — D(t;_1) — 0(¢p(t;, A) — d(t;, A

le|9 H ( ( z) ( i 1)2 (‘P(z ) ¢( 1 ))) (4)
i—1 V2710 (f —ti 1) 202(t; — ti1)

This property of the conjugate probability distributions ensures that the prior and

posterior distributions belong to the same family of probability distributions in Bayesian

inference. Based on this, the prior of parameter 0 is set as a Gaussian distribution, i.e.,

6 ~N ( 1,0, Ug,o). Therefore, the following equations can be obtained:

1 (0 — pop)
p(e‘Dlzk) = —F/——€xp [—’ (5)
\/ﬁ 205
9*#9,0)2
Dixl0)p(6) = —-Lex {J }
p(D1/0)p(6) k N T o ©6)
1 i) i—1)— ir’V) ir
11;[1 V2702 (ti—ti 1) P {_ zlo'z(ti_ti—l) ]

where 11y and (Tg’k are the posterior expectation and variance of 6. Based on the Bayesian
formula, i.e., the posterior distribution is in direct proportion to the product of the prior
distribution function and the likelihood function, indicating a positive correlation between
them. Thus, the constant terms in Equations (5) and (6) can be eliminated. By setting
the coefficients of the terms containing 6, the relationship between the prior parameters
(o0, 0’3]0) and the posterior parameters (g, 0’5,]() can be obtained, as follows [29]:

k N_D(t; )bt
V9,0‘72+‘792,0i;1 (D(t) D(fffét)i)i(fi(jzlr)?\) P(ti-1.A))

Hoj = — (7)

k 2
2 (p(ti,A)—(ti_1,A))
o2+ %roig (ti_ti—1>1
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7y = e 2 ®)
’ 2 (P(tiA)—@(ti—1,A))
o+ 9,0 L (ti_ti—l)l

i=1

As indicated by Equations (7) and (8), at the current time #;, based on the available

observed values of the degradation features Dy, the online update of the posterior distri-

bution can be achieved using Bayesian inference, which further improves the accuracy and
applicability of the degradation model.

4. Tool Wear Prediction with Uncertainty Quantification

In this section, based on the updated model parameters from the previous section,
a tool wear prediction method quantifying the uncertainties is proposed, combining the
random sampling and the SVR model. The proposed method aims to achieve an in-advance
estimation of the cutting tool wear in the form of a probability distribution, thus enhancing
the stability of the prediction.

4.1. Degradation Feature Prediction Using Random Sampling

At time ty, as the posterior distribution of the model parameters has been achieved,
the future degradation features can be predicted based on the distribution parameters and
the properties of the Gaussian distributed increments in Brownian motion. Given the value
of parameter 6, the increment of the degradation feature at time t; can be expressed as:

D(tg1) — D(tx) = 0(@(tri1,A) — ¢(tes1,A)) + 02 (B(tes1) — B(tri)) )

Since the posterior expectation of the random parameter 6 has been obtained, the
increment can be regarded as a random value following a Gaussian distribution as follows:

D(tg+1) — D(tk) ~ N(Ve,k(qb(fkﬂ/)\) — (ti M), O3 @ty A) — Pt A)) + 02 (g1 — fk)) (10)

Therefore, the probability distribution of the degradation feature at ;.1 can be ex-
pressed in Gaussian distribution, as Equation (11):

p(D(tks1)) = \/ .

270 (03 (@1, ) =9t ) P+ 1 — 1))

(D(tx 1) ~D(t) ~po (@(trs1, M) —9(t,A))
2(0B 1 (@(terr A = p(tA)) P+ 0 (b ) )

(11)
exp [— ]
Similarly, the distribution of the degradation feature at time f,; can also be achieved,
which is expressed in Equation (12):
1 .
27 (03 (Pt 41,1) ~p(A) 402 (b1 —te) )

(D(ts1) = D(te) — o (@t M) —p(1,A)))
2, (@ltis1 ) =912t —1))

p(D(ts)) = \/

(12)
exp [_ ]

Based on Equation (12), the future degradation features can be estimated by generating
a certain number of random samples, instead of obtaining fixed values, thereby effectively
quantifying the uncertainties in the machining process and enhancing the credibility of
the prediction.

4.2. SVR Model for Tool Wear Prediction

SVR is an effective machine learning tool, widely used in small sample cases and
multi-dimensional nonlinear mapping problems. Based on the SVR model, this section
establishes a mapping model to describe the relationship between the multi-dimensional
degradation features and the tool wear.
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Assume that the historical cutting tool degradation data Z = {x € RM*N y ¢ RMx1}
are available, where x = [x1,xp, - - - ,x)1] represents the N-dimensional degradation features
with M time notes, and y = [y1, 12, - - - , ¥m] represents the corresponding tool wear values.
To establish the mapping relationship between the degradation features and the tool wear,
the following regression was constructed:

fx)=w-®(x)+0b (13)

where w and b represent the weight vector and intercept, respectively. ®(x) represents the
transformation from the n-dimensional real vector space to the higher-dimensional Hilbert
space. The ultimate goal of the SVR modelling is to achieve the appropriate values of w and
b. The basic principle of the SVR model is to establish a hyperplane to make the deviation
between the regression values and the data samples less than a predetermined error, while
ensuring that as many samples as possible are within the limited bounds of the hyper plane.
The slack variables are also introduced to describe the acceptable degree of deviation for
the samples; therefore, the regression problem is transformed into a optimization problem,
as Equation (14) [30,31]:

min ((w, ¢, &) = jw w—i—CZ(f;‘l-i-C*)
(x

yi — [wo(x) + b] <€+§z (14)
st.q [wo(x) +b] —yi <e+¢f
CZ‘/C?< >0

where e represents the loss factor, indicating the maximum tolerable error; ¢ is the slack
factor, describing the tolerance for outliers in the sample; C is the penalty coefficient,
representing the penalty for incorrect samples. To simplify the optimization problem,
Lagrange multipliers « are introduced, incorporating complex constraints into the optimiza-
tion objective function; thus, the optimization problem is transformed into the following
form [30,31]:

| M
max (o, 0*) = 7221(0{? —a;) (uc]*f - oc]-)@(xi)cb(xj)
ij=

M M
- L oo+ a)) + L yilef - ) (15)

=0

o Iz

(2 —a)
S a; <C
By inputting the randomly sampled degraded features obtained in Section 4.1 into the

established SVR model, the prediction for future tool wear with quantified uncertainties
can be obtained, in the form of probability distributions.

5. Experimental Study

To verify the effectiveness of the proposed cutting tool wear prediction method, an
application based on the PHM 2010 cutting tool degradation dataset [32] was constructed.
Some of the current tool wear estimation methods were also introduced to test the superior-
ity of the proposed method.

5.1. Information of the Tool Wear Dataset

The experiment was conducted using a high-speed RFM760 CNC milling. The dataset
contained six subsets, with each recording the degradation signals, including cutting forces,
vibration signals, and the acoustic emission of the milling cutters, from multiple sensors.
During the experiment, six tungsten carbide ball-end milling cutters were used to perform
the cutting operations on the HRC52 stainless steel workpiece. The same cutting parameters
were adopted throughout the entire machining process, as shown in Table 1.
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Table 1. Experimental parameter settings.

. Radial Cutting Axial Cutting Depth
Spindle Speed Feed Rate Depth (y-Axis) (z-Axis)
10,400 rpm 1555 mm/min 0.125 mm 0.2 mm

The Kistler piezo accelerometers were installed on the workpiece to collect the vibra-
tion signals of the cutting tools during the machining process, in x, y, and z directions. A
Kistler quartz three-component platform dynamometer was installed to sensor the cutting
forces signals during the machining process. The collected data of the following sensors
were conditioned through corresponding signal accessories and the voltage data were
collected using a NI DAQ PCI 1200 board. The cutter’s flank wear was measured after
each cut using a LEICA MZ12 microscopy system, and there were a total of approximately
300 individual data acquisition files (one for each cut) [32]. Thus, the time units of this
experimental case were defined as “cutting times”.

Figure 3 depicts the x-direction cutting force signal, the y-direction cutting force signal,
the z-direction cutting force signal, the x-direction vibration signal, the y-direction vibration
signal, the z-direction vibration signal, and the acoustic emission signal of tool C4 after
undergoing a 1000:1 downsampling process.

150 sof
100 - ©
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E o £
< <
50 ¢
-100 : : : : : -50 ‘ ‘ ‘ : ‘
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Figure 3. Original signals for C4.

5.2. Degradation Modelling of Multiple Features

In this paper, the subset C4 was used as the historical dataset to train the SVR model
and estimate the initial parameters of the stochastic process. The subset C1 was used as the
test set to verify the effectiveness of the proposed method. To fully reflect the degradation
of the milling cutters, multiple degradation features were selected, as shown in Table 2.
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The selected features showed a distinct trend of change, thus enabling us to describe the
degradation process of the cutters, as shown in Figure 4. These features were used as the
input of the SVR model, and the Brownian motion stochastic process was applied for the
degradation modelling.

Table 2. Selected degradation features.

Number Feature Calculation Formula
I N "
1 RMS of vibration (z-direction) p) — % 5 xiz
i=1
. . . . . n
2 Variance of vibration (z-direction) D2 — % Y (x — mean(x))2
i=1
2
. . . . . n
3 Root square amplitude of vibration (z-direction) DB) — % SRVAEA
i=1
4 Peak of vibration (z-direction) D@ = max(|x|)
5 Margin of vibration (z-direction) p6) — _ max(jx]) ,
n
(1L v
Note: n represents the total amount of data collected within a certain sampling segment.
025 0.07 : ‘ ‘ ‘ :
0.06 1
02 0.05 1
o) 5}
! E
3 8 0.04 J
% 0.15 e
E _ﬂ_:-,,) 0.03 1
= = 0.02 1
0.1 :
0.01 J
0.05 : : : : : 0 ‘ ‘ ‘
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Cutting times Cutting times
(a) Degradation feature 1 (b) Degradation feature 2

Value of feature

0.22 : : : : : : 0.2 : ‘ ‘ ‘ ‘
50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Cutting times Cutting times
(c) Degradation feature 3 (d) Degradation feature 4

Figure 4. Cont.
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Figure 4. Degradation feature of the cutters C4.

In the degradation modelling, the exponential function was chosen as the drift term
of the stochastic process, i.e., ¢(t, A) = exp(At). This is because the exponential function
can effectively capture the nonlinearity and accelerated degradation characteristics of the
degradation process. The initial parameters of the degradation models for multiple features
were determined based on the historical data of C4, as shown in Table 3.

Table 3. Initial parameters of the degradation models.

Feature Parameters Value
10 6.395 x 1072
RMS of vibration (z-direction) b 3.802 x 1073
o? 1.048 x 107°
10 3.098 x 1073
Variance of vibration (z-direction) b 8.811 x 1073
o2 1.552 x 107°
1o, 2.141 x 107!
Root square amplitude of vibration (z-direction) b 1.679 x 1073
o? 1.078 x 107>
10 3.175 x 1071
Peak of vibration (z-direction) b 4285 x 1073
o? 5.450 x 1073
10 1.567 x 100
Margin of vibration (z-direction) b 2.326 x 1073
o? 5499 x 1072

The C1 subset was used as the real-time observed degradation dataset during the
online prediction phase. The degradation models for multiple degradation features were
established based on Equation (1). At time t;, the model parameter 1, of each degrada-
tion feature was updated using the Bayesian formula, i.e., Equations (7) and (8), based
on the online monitored data. After obtaining the latest parameters at time t;, random
sampling was conducted for future time points according to Equation (12) to acquire the
predicted feature values with uncertainty quantification, in the form of probability density.
Figures 5-9 show the prediction results of the multiple degradation features with random
samples at several time points.
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Figure 5. Prediction of degradation feature 1: (a) Random samples; (b) Distribution at time 160;
(c) Distribution at time 240; (d) Distribution at time 300.
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Figure 6. Prediction of degradation feature 2: (a) Random samples; (b) Distribution at time 160;
(c) Distribution at time 240; (d) Distribution at time 300.
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Figure 7. Prediction of degradation feature 3: (a) Random samples; (b) Distribution at time 160;
(c) Distribution at time 240; (d) Distribution at time 300.
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Figure 9. Prediction of degradation feature 5: (a) Random samples; (b) Distribution at time 160;
(c) Distribution at time 240; (d) Distribution at time 300.



Sensors 2024, 24, 3394

13 of 18

Cutting times

5.3. Wear Prediction Using the SVR Model

To establish the mapping relationship between the multiple degradation features and
the tool wear, a Support Vector Regression (SVR) model was implemented, with the five
features depicted in Figure 4 serving as the input variables and the corresponding tool wear
as the output. The SVR model was trained using the data from C4, and the hyper parameters
were optimized using Particle Swarm Optimization (PSO). It should be noted that the
input degradation features did not have to undergo denoising, normalization, and other
preprocessing measures; therefore, the information of the noises and other uncertainties
remained. By inputting the predicted degradation feature values obtained in Section 5.2
into the trained SVR model, a series of tool wear prediction samples were generated,
presenting the predicted results of the tool wear in the form of probability density.

To visually illustrate the prediction results, Figures 10-14 show the estimated tool wear
prediction after the time point 150 (i.e., after 150 cutting times). These figures demonstrate
the forecasted estimations for one to five time points ahead, respectively, obtained using
the proposed method. These predictions not only capture the trend of the tool wear but
also represent the uncertainty in the predictions through probability density, providing
comprehensive and insightful information for assessing the state of the tool wear. Such pre-
dictions are crucial for guiding tool use and maintenance, enhancing production efficiency,
and reducing operational costs.
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Figure 10. In-advance tool wear prediction for one time point ahead: (a) Probability density expression

of tool wear at each time point; (b) Predicted expectation and confidence intervals.

Prediction in PDF
= = Actual wear values
==== Expectation

Tool wear (nm)

(a)

Figure 11. In-advance tool wear prediction for two time points ahead: (a) Probability density
expression of tool wear at each time point; (b) Predicted expectation and confidence intervals.
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Figure 12. In-advance tool wear prediction for two time points ahead: (a) Probability density
expression of tool wear at each time point; (b) Predicted expectation and confidence intervals.
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Figure 13. In-advance tool wear prediction for three time points ahead: (a) Probability density
expression of tool wear at each time point; (b) Predicted expectation and confidence intervals.
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Figure 14. In advance tool wear prediction for four time points ahead: (a) Probability density
expression of tool wear at each time point; (b) Predicted expectation and confidence intervals.

(@)

The figures above clearly demonstrate that the proposed method was capable of
achieving advance wear prediction with a high level of accuracy. At the current time
point, the method precisely forecasted the potential wear condition of the cutting tool



Sensors 2024, 24, 3394

15 of 18

Tool wear (nm)

200

180

160

140

120

100

80

60

40

after five cutting times, closely aligning with the actual changes in the tool wear values.
Moreover, the method was able to produce a prediction result in the form of a probability
distribution with relevant confidence intervals. The proposed method effectively accounted
for the uncertainties in the machining process, making the predictions more compelling and
reliable. The probability distribution not only reflected the most likely wear state but also
captured the range of possible outcomes, thus providing a more comprehensive view of the
tool’s condition. The availability of confidence intervals further enables decision-makers
to develop more suitable and rational strategies for tool replacement and maintenance.
With a clear understanding of the potential wear range, decision-makers can plan ahead,
minimizing the risk of unexpected tool failures and maximizing the utilization of each tool.
This not only improves the safety of the machining process but also enhances its efficiency
by reducing the unnecessary downtime for tool changes.

5.4. Comparison

In order to demonstrate the superiority of the proposed method, an SVR model
was trained as a comparison, with the multiple time-domain degradation features. The
degradation features were pre-processed using denoising and normalization, and the
hyperparameters of the SVR model were optimized using a PSO algorithm. The results
of each method are shown in Figure 15. As can be seen from the figure, the expectation
of the tool wear prediction obtained using the proposed method was closer to the actual
observed wear values, with smaller fluctuations and errors compared with the comparison
method, thus resulting in better prediction stability. In addition, the comparison method
can only provide a fixed predicted value at each time point, while the proposed method is
capable of obtaining a confidence interval for the wear amount, making it more flexible and
convenient. Table 4 shows the calculation of multiple prediction errors, further highlighting
the advantages of the proposed method in prediction precision and stability compared
with the other tool wear estimation method.

Actual values

P —

—

The comparison method

Expectation of proposed method

95% confidence interval

50 100 150 200 250 300

Cutting times

Figure 15. Comparison of prediction accuracy and stability between different methods.
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Table 4. Prediction errors.

Proposed Method Comparison SVR
Variance 40.9147 97.5408
RMSE 72.3540 135.6722
MRE 0.0686 0.0968
Correlation coefficient 0.9712 0.9231

In order to verify the efficiency of the algorithm, the algorithm duration in both
the offline training phase and the online prediction phase was calculated for the method
proposed in this paper and the comparison method. As shown in Table 5, the results
indicate that there was a relatively small difference in the time consumption for the model
training between the method proposed in this paper and the comparison method, meaning
that it did not sacrifice excessive computational efficiency to improve prediction accuracy.
In the online prediction, due to the adoption of the random sampling method in this
paper, the time consumption was higher than that of traditional methods. Nonetheless,
the average prediction time required at each time node was only around 0.1 s, thus fully
enabling efficient real-time prediction.

Table 5. Computational load comparison.

. . Total . i .
Method Training Time (s) Online Prediction Time (s) Average Online Prediction Time (s)
Proposed model 61.3696 35.1706 0.1117
Comparison SVR 97.2654 0.0509 0.0001

6. Conclusions

In this paper, a novel cutting tool wear prediction method combining the Bayesian
inference and SVR models is proposed. The main innovation of the proposed method was to
achieve an in-advance wear prediction, fully considering the uncertainties in the machining
process. The main work of the paper is outlined as follows: (1) Using the Brownian motion
stochastic process, the degradation models of features were established. The models
contained the random parameters to estimate the uncertainties in the degradation; (2) The
model parameters were updated during the online prediction phase, based on Bayesian
inference. With the updated parameters, the future trends of the features were estimated
by generating random samples; (3) The relationship between the features and the tool wear
was analyzed by training the SVR model, and the random samples of the degradation
features were input into the SVR model to achieve the prediction of the cutting tool wear;
(4) To validate the effectiveness of this proposed method, a degradation dataset of cutting
tools was utilized.

Compared with other methods, the method presented in this paper shows two distinct
advantages. Firstly, it enables the advance estimation of tool wear, which means that it
can predict the future wear conditions based on the current measured data. Secondly,
the method proposed can fully consider the uncertainties in the machining process and
output the prediction results in the form of probability distribution, which is beneficial
for formulating maintenance and replacement plans for cutting tools. The experimental
study in this paper also demonstrated the superiority of the method in prediction accuracy
and stability.
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