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Abstract: Centrifugal pumps are essential in many industrial processes. An accurate operation
diagnosis of centrifugal pumps is crucial to ensure their reliable operation and extend their useful life.
In real industry applications, many centrifugal pumps lack flowmeters and accurate pressure sensors,
and therefore, it is not possible to determine whether the pump is operating near its best efficiency
point (BEP). This paper investigates the detection of off-design operation and cavitation for centrifugal
pumps with accelerometers and current sensors. To this end, a centrifugal pump was tested under
off-design conditions and various levels of cavitation. A three-axis accelerometer and three Hall-
effect current sensors were used to collect vibration and stator current signals simultaneously under
each state. Both kinds of signals were evaluated for their effectiveness in operation diagnosis.
Signal processing methods, including wavelet threshold function, variational mode decomposition
(VMD), Park vector modulus transformation, and a marginal spectrum were introduced for feature
extraction. Seven families of machine learning-based classification algorithms were evaluated for
their performance when used for off-design and cavitation identification. The obtained results, using
both types of signals, prove the effectiveness of both approaches and the advantages of combining
them in achieving the most reliable operation diagnosis results for centrifugal pumps.

Keywords: centrifugal pump; off-design operation; cavitation; three-axis accelerometer; Hall-effect
current sensors; vibration; motor stator current; machine learning

1. Introduction

Centrifugal pumps are vital segments in fluid transmission and energy storage. A
centrifugal pump is designed to achieve the best efficiency point (BEP) using a specific
combination of capacity, head, and speed [1]. Detecting and evaluating abnormal operation
conditions before they lead to catastrophic consequences can significantly reduce the risks
associated with the productive chain. Therefore, the operation diagnosis of centrifugal
pumps has become one of the most important tasks to ensure their stable operation.

In recent research, centrifugal pumps have been diagnosed mainly by vibration-based
techniques. Signal processing and machine learning-based algorithms have provided
qualified results. Mousmoulis, G. et al. [2] employed the spectral kurtosis tool (SKT) to
extract the vibration features induced by impulsive shock waves. They correlated the
periodic impulsive features extracted by SKT with the blade passing frequency, which is
useful for detecting faults in centrifugal pumps. In [3], Sun, H. et al. presented a strategy
for detecting seal damage and cavitation in centrifugal pumps. A calculation of cyclic
autocorrelation functions (CAFs) for the vibration signals was conducted to extract the
characteristic frequency components corresponding to centrifugal pump faults. In [4],
Zhang, M. et al. employed variational mode decomposition (VMD) to extract the principal
mode of the vibration signals in a multistage centrifugal pump to detect bearing faults.
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In [5], the Markov parameters calculated from the vibration signals were used as features
in classification algorithms based on convex optimization to detect incipient cavitation in a
centrifugal pump. The algorithm was validated to achieve high accuracy within a relatively
limited budget. In [6], an integrated vibration-based centrifugal pump fault-diagnosis
framework based on the combination of wavelet transform and principal component
analysis (PCA) was developed, which performs well in the detection of impeller faults,
bearing faults, and blockages for centrifugal pumps. In [7], Kumar, A. et al. combined
noise subtraction and the marginal enhanced square envelope spectrum for detecting
bearing defects in both centrifugal pumps and axial pumps. In [8], Wu, K. et al. used the
Enkurgram to extract characteristic frequencies for fluid machinery. It has been proved that
the proposed method has better demodulation capability in dealing with vibration signals
with a low signal-to-noise ratio from centrifugal pumps.

In recent decades, there has been an increasing need for easy-to-install systems to
monitor centrifugal pumps, which limits the application of vibration sensors in practical
engineering cases. Meanwhile, vibration sensors are susceptible to environmental distur-
bances, which could reduce the measurement accuracy and lead to misdiagnosis [9]. In the
1970s, the concept of motor current signature analysis (MCSA) was first proposed to moni-
tor inaccessible motors placed in nuclear power plants [10]. In this technique, the stator
current characteristics directly linked to the instantaneous change of rotating flux caused by
mechanical or electrical faults can be used for fault detection. Applications of MCSA have
been reported to be cheaper without the need to access the motor. Current transformers
can be implemented inexpensively and non-intrusively in almost all applications [11].
Multiple devices can be monitored simultaneously in a remote power distribution room
based on MCSA. There has been extensive research on MCSA, mostly focusing on the fault
detection of motors [12–14]. As for the applications of MCSA in centrifugal pumps, in [15],
Harihara, P.P. et al. automated a method for the detection of the onset of pump cavitation
based on the line voltage and phase current. They built a predicted model of the stator
current of the pump and used the residuals between the measured and predicted current
for detection so that the interference of the electric power supply could be avoided. In [16],
Hernandez-Solis, A. et al. used current and power signature analyses as diagnostic tools
for submersible centrifugal pumps. It is mentioned that the effects of cavitation are well
appreciated using both techniques by tracking the characteristic harmonics corresponding
to pump performance. In [17], Alabied, S. et al. used intrinsic time scale decomposition
(ITD) for feature extraction and later evaluated the health condition of a centrifugal pump
with a support vector machine (SVM) based on a directed acyclic graph (DAG) using the
stator current signals. In [18], Popaleny, P. et al. outlined an expert diagnostic system
for cryogenic pumps based on motor voltage and current signals, which was able to dis-
tinguish automatically among different faults with high immunity to noise and power
fluctuation. In [19], Hilbert–Huang Transform (HHT) was used to demodulate and denoise
the current signals. Time-frequency characteristics extracted from the current signals using
HHT were selected to indicate the cavitation severity in a centrifugal pump. In [20], Husna,
A. et al. built a discriminative feature pool to detect faults in a centrifugal pump, whose
inputs were the cross-correlation of the current signals and motor bearing speed vibration
signals. Their work explores the use of different signals together. In [21], Sun, H. et al.
utilized complete ensemble empirical mode decomposition with adaptive noise to extract
indicators, revealing the energy variation of stator current induced by cavitation, which
improves the feasibility of MCSA for cavitation detection in centrifugal pumps. In [22],
Sunal, C. et al. used a combination of DQ transformation and transfer learning to detect
faults in centrifugal pumps: they fed a DQ image of current signals into a residual net-
work and reached a relatively high classification accuracy. In [23], Zou, J. et al. applied
singular-value decomposition and Hilbert–Huang transform to analyze the stator current
characteristics of a centrifugal pump, and the maximum amplitude of the Hilbert marginal
spectrum was used as an indicator to detect mechanical seal failures.
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Fault diagnosis for centrifugal pumps based on vibration and current signals has
been well investigated but not to the same extent as off-design operation detection [24].
Centrifugal pumps operating in off-design conditions would cause additional hydraulic
torque disturbance forces, and the internal flow status of centrifugal pumps would become
unstable, with excessive turbulent disturbance generated. Recirculation below the BEP and
flow separation at high flows above the BEP would greatly increase the risk of damage
when pumps work continuously [1]. Most of the existing literature focuses on unique cases
of detecting mechanical or electrical faults. Fault features are usually extracted by verifying
the magnitudes of characteristic frequency components using fast Fourier transform (FFT)
or joint time-frequency analysis methods [25]. These features may not be obvious under
off-design operation conditions. Therefore, for a real industrial application, it is necessary to
develop robust intelligent diagnostic methods to accurately detect either faults or off-design
operations for centrifugal pumps.

With the above perspective, this paper uses a three-axis accelerometer and three Hall-
effect current sensors to collect signals and demonstrates the combination of vibration
and motor stator current analyses to achieve a maximum reliable detection of off-design
operation and cavitation in centrifugal pumps. The presented research has the following
innovations:

(1) It combines signal processing methods with intelligent classifiers from different fami-
lies to train a robust operation diagnostic system. The resulting method is validated
in a centrifugal pump and proven to be effective.

(2) The operation diagnosis strategy is capable of detecting off-design operation and
evaluating the severity of cavitation in centrifugal pumps.

2. Theoretical Analysis

The torque oscillations in centrifugal pumps due to turbulent disturbance strongly
depend on the flow condition. The design operation condition provides the most stable
flow status for centrifugal pumps, and the blade interaction with vortices in radial and axial
clearances is the primary source of pump structure vibration and torque oscillations [26].
Part-load conditions (usually when q* = Q/Qdes < 0.4~0.75) generate additional turbulent
disturbance related to the reciprocal action of recirculation and flow separation. The
hydraulic excitation strengthens the pressure pulsation and alternating stresses in various
pump components. Under higher flow-rate conditions (q* > 1.1), recirculation is not
observed [1]. However, laminar and turbulent boundary layer vortex shedding leads to an
increase in flow turbulence. In cavitation conditions, the subsequent implosion of vapor
bubbles and cavity fluctuations excite low-frequency pulsation and fluid-borne noise. These
hydraulic sources cause vibration and additional torque oscillations in centrifugal pumps.
In [27], it is also shown that the hydraulic torque oscillations vary with the flow condition.

Most centrifugal pumps are driven by induction motors. The voltage equation of
a three-phase induction motor in the d-q coordinate system is given as [28]. In the d-q
coordinate system, the d-axis is perpendicular to the q-axis. The rotational speed of the
coordinate system is equal to the synchronous speed of the motor. This transformation
from ABC to a d-q coordinate system simplifies the analysis and control of motor behavior.

usd
usq
urd
urq

 =


Rs
0
0
0

0
Rs
0
0

0
0

Rr
0

0
0

0
Rr




isd
isq
ird
irq

+
d
dt


ψsd

ψsq
ψrd
ψrq

+


−ω1ψsq
ω1ψsd

−(ω1 − ω)ψrq
(ω1 − ω)ψrd

 (1)

where Rs is the stator resistance and Rr is the rotor resistance. In the d-q coordinate system,
usd and usq are the stator voltages; urd and urq are the rotor voltages; and urd = urq = 0 for
cage rotors. isd and isq are the stator currents. ird and irq are the rotor currents. ψsd and ψsq
are the stator fluxes. ψrd and ψrq are the rotor fluxes. ω1 is the synchronous speed. ω is the
rotational speed.
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The flux linkage equation is given as
ψsd = Lsisd + Lmird
ψsq = Lsisq + Lmirq
ψrd = Lrird + Lmisd
ψrq = Lrirq + Lmisq

(2)

where Ls is the stator inductance, Lr is the rotor inductance, and Lm is the mutual inductance.
The electromagnetic torque of a three-phase induction motor is given by

Te = pn
Lm

Lr

(
isqψrd − isdψrq

)
(3)

where pn is the pole-pair number.
In field orientation coordinate system, if the direction of the d-axis is along the direction

of rotor flux ψr, then {
ψrd = ψr
ψrq = 0

(4)

The electromagnetic torque can be simplified as

Te = pn
Lm

Lr
isqψr (5)

The motion equation of a three-phase induction motors is given as

Te = TL + J
1
pn

dω

dt
(6)

where TL is the load torque and J is the rotary inertia.
Based on Equations (5) and (6), it can be derived that the torque oscillations applied

in TL would be transmitted to Te and reflected in isq. This is the basic principle used to
diagnose the operation condition of centrifugal pumps based on the stator current signals.
The theoretical basis can be described as the hydro-mechanical-electric coupling effect in
centrifugal pumps, as illustrated in Figure 1. In [3], the coupling effect was validated using
Matlab/Fluent joint simulation, which indicates that the operation conditions of centrifugal
pumps are possibly reflected in stator current signals.
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The procedure to diagnose the operation condition for centrifugal pumps is shown in
Figure 2. Vibration and stator current signals are recorded simultaneously in a centrifugal
pump under healthy, off-design conditions and different levels of cavitation. Signal pre-
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processing algorithms are performed to extract suitable features. The fusion of vibration
and stator current information and data compression are considered necessary parts of
the diagnosis method. After completing the above steps, different classifier models are
implemented and evaluated based on their performances.
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3. Signal Preprocessing and Feature Extraction
3.1. Signal Preprocessing and Feature Extraction of the Vibration Signals

The raw vibration signals have strong non-stationary randomness, which is not gener-
ally informative [29]. The wavelet threshold function is a widely used signal processing
method for noise reduction and signal reconstruction. When using wavelet methods to
decompose noisy signals, as the decomposition scale increases, the noise component tends
to concentrate on relatively small wavelet coefficients. The basic principle of the wavelet
threshold function is to find an appropriate noise threshold to suppress the signal coef-
ficients below the threshold and retain the signal coefficient above the threshold. The
most common threshold functions are the hard threshold function and the soft threshold
function, which are defined as

yj,k =

ωj,k,
∣∣∣ωj,k

∣∣∣ > λ

0,
∣∣∣ωj,k

∣∣∣ ≤ λ
(7)

yj,k =

sgn
(

ωj,k

)
×
(∣∣∣ωj,k

∣∣∣− λ
)

,
∣∣∣ωj,k

∣∣∣> λ

0,
∣∣∣ωj,k

∣∣∣ ≤ λ
(8)

The hard thresholding function can preserve the basic characteristics of the original
signals. However, the hard thresholding function is discontinuous at ωj,k = ±λ, which
could cause signal oscillations in the reconstructed signals. In contrast, the soft thresholding
function has the advantage of being continuous at ωj,k = ±λ, but there exists a difference
between ωj,k and yj,k. This would cause the loss of useful information in the signals.
Therefore, an improved wavelet threshold function is introduced in this paper for vibration
signal denoising.

The improved wavelet function is given by

yj,k =

 sgn
(

ωj,k

)
×
(∣∣∣ωj,k

∣∣∣− (λ/α)× β

√
ω2

j,k−λ2
)

,
∣∣∣ωj,k

∣∣∣> λ

sgn
(

ωj,k

)
× (α − 1/α)× exp

(
10 ×

(∣∣∣ωj,k

∣∣∣− λ
))

×
∣∣∣ωj,k

∣∣∣, ∣∣∣ωj,k

∣∣∣≤ λ
(9)
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where α and β are the two tuning parameters. These two parameters can be changed to
adapt to different noise intensities.

The improved wavelet threshold function curve (with α = 2, β = 0.5) compared with
the curves of the hard threshold function and the soft threshold function is shown in
Figure 3.
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From Equation (9), it can be derived that lim
ωj,k→λ+

= lim
ωj,k→λ−

= (α − 1/α)× λ. Mean-

while, if β ∈ (0, 1), it can be derived that lim
ωj,k→∞

yj,k = ωj,k. This means that the improved

threshold function has the advantages of both the hard threshold function and the soft
threshold function.

The adaptive threshold δ is determined using the method introduced in [30]:

δ = σ(2 ln(N))
1
2 (10)

where σ is the noise standard deviation and N is the length of the signals.
After conducting the wavelet threshold function for vibration preprocessing, the

Pearson correlation-based feature selection strategy introduced in [31] is used to select
input parameters for the classifiers. The following dimensional and non-dimensional
parameters in both time and frequency domains are considered: (1) root mean square,
(2) standard deviation, (3) waveform factor, (4) kurtosis, (5) peak factor, (6) impulse factor,
(7) clearance factor, (8) frequency center, and (9) root-mean-square frequency.

Meanwhile, aiming to measure the signal uncertainty changing with the operation
condition, the following parameters based on the concept of information entropy are also
adopted as operation indicators for centrifugal pumps as follows:

(10) Power spectral entropy:

The power spectral entropy provides a quantitative description of the complexity of
signals’ energy distribution in the frequency domain. For a discrete-time signal sequence
{ x(n)|n =0, 1, . . ., N − 1}, according to the Parseval theorem

S(n) =
1
N
|DFT[xn]|2 (11)

N−1

∑
k=0

|xn|2 =
N−1

∑
k=0

|S(k)|2 (12)

where DFT[xn] is the discrete Fourier transform of the original signals.
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The power spectral density entropy psdE is defined as

psdE = −
N−1
∑

k=0
pk log pk

pk =
S(k)

∑N−1
k=0 S(k)

(13)

where pk represents the ratio of the energy of the kth spectral line to the total spectral energy.

(11) VMD energy entropy:

The concept of mode decomposition energy entropy was first proposed in [32] for
roller bearing fault diagnosis. In this research, the energy entropy is obtained based on the
VMD results. Variational mode decomposition (VMD) is an effective way to decompose
signals into a discrete number of sub-signals that have specific sparsity properties while
reproducing the input [33]. It is reported that VMD is almost free from mode mixing
difficulties [34,35]. In VMD, each mode k is assumed to be the most compact around a
center pulsation ωk. The constrained variational problem can be described as

min
{uk}, {ωk}

{
∑
k

∥∥∥∥∂t

[(
δt +

j
πt

)
∗ uk(t)

]
exp(−jωkt)

∥∥∥∥2
2

}
s.t. ∑

k
uk= f (14)

where f is the real-valued input signals, uk are the sub-signals, ωk are the center frequencies
of the sub-signals, and δ indicates the Dirac distribution subjected to ∑ uk(t)= f (t).

The Lagrangian multiplier λ and penalty factor α are introduced to transform the
constrained variational problem into an unconstrained one [34]. Once the VMD is imple-
mented, vibration signals can be decomposed into n sub-signals and a residue component

S(t) = ∑n
k=1 IMFk + rn (15)

The VMD energy entropy is defined as

VMD eE = −∑n
k=1 Pk log Pk (16)

where Pk = Ek/E is the ratio of the energy of IMFk to the total signal energy.

(12) Fuzzy entropy:

The definition of fuzzy entropy was first proposed in [35] for EMG signal processing.
Fuzzy entropy was also used in the diagnosis of rotating machines in [36]. For a given time
sequence x(i), the vector set sequences are constructed by

Xm(i) = [x(i), x(i+1), . . . , x(i + m − 1)]− x0(i), i = 1, 2, . . . , N (17)

x0(i) =
1
m

m−1

∑
k=0

x(i + k) (18)

For a certain vector sequence X(i), the distance between Xm(i) and Xm(j) is defined as
the maximum value of their corresponding scalar points as

dm
ij =

max
k ∈ (0, m − 1)

|(x(i + k)− x0(i))− (x(j + k)− x0(j))| (19)

A fuzzy function is introduced to measure the similarity between X(i) and X(j). Given
n and r, the fuzzy function is given by

Dm
ij = exp

((
−
(

dm
ij

) n
/r
)
) (20)
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The function ϕm is defined as

ϕm(n, r) =
1

N − m

N−m

∑
i=1

(
1

N − m − 1

N−m

∑
j=1,j ̸=i

Dm
ij

)
(21)

Similarly, ϕm+1 can be obtained as

ϕm+1(n, r) =
1

N − m

N−m

∑
i=1

(
1

N − m − 1

N−m

∑
j=1,j ̸=i

Dm+1
ij

)
(22)

The fuzzy entropy of a time signal sequence with the finite data length N is defined by

FuzzyEn(m, n, r, N)= lnϕm(n,r)− ln ϕm+1(n,r) (23)

where m is the embed dimension, n determines the gradient of the fuzzy function boundary,
and r determines the width of the fuzzy function boundary. In this research, m, n, and r are
fixed as 2, 2, and 0.15, respectively.

3.2. Signal Preprocessing and Feature Extraction of the Current Signals

Rotor rotational speed frequency and blade passing frequency are inherent in centrifu-
gal pumps, which indicate the torque oscillation characteristics, given by

fr = 2(1 − s) fe/Pn (24)

fBPF = kb fr (25)

where s, fe, Pn, and kb are the slip, the power frequency, the pole-pair number, and the blade
number.

For the stator current signals of centrifugal pumps, fr and its integer multiples (typically
f BPF) would produce observable harmonics due to power frequency modulation as

fs = | fe ± N fr| (26)

where N is a positive integer.
However, the current features are easily affected by the changes in the power supply.

The amplitudes of the characteristic harmonics may change due to the power frequency
fluctuations regardless of the pump conditions and induce false alarms. To address this
issue, the Park vector modulus transformation is applied to process the original stator
current signals. Currents in the d-q coordinate system [id, iq] can be obtained as

[
id
iq

]
=

√
2
3

[
1 − 1

2 − 1
2

0
√

3
2

√
3

2

]iA
iB
iC

 (27)

where iA, iB and iC are the three-phase stator currents.
In real industrial applications, due to the non-linear loads, the magnitudes of three-

phase stator currents may not be perfectly balanced. Suppose IA = Imsin(2π fet), and the
difference between the magnitude of IA and the magnitude of IC is k, then the Park vector
IS(t) and the square of the Park vector modulus of the stator current |IS(t)|2 can be
expressed as [37]:

IS(t) =

√
2
3
[
iA(t) + iB(t)ej(2π/3) + iC(t)e−j(2π/3)

]
(28)
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|IS(t)|2 =
(

3
2 − (1 − k) k+2

3

)
I2
m

−(1 − k)I2
m

[
1−k

3 cos
(
4π fet − 2

3 π
)
+ 1

2 cos
(
4π fet + 2

3 π
)
+

√
3

2 sin
(
4π fet + 2

3 π
)] (29)

Under an ideal condition where the three-phase stator currents are perfectly balanced
(k = 1), the |IS(t)|2 contains no oscillation component. In a centrifugal pump system, the
hydraulic torque oscillations would make the stator current waveforms distorted.

For an induction motor-centrifugal pump system with torque oscillations related to
the operation conditions, its three-phase stator currents can be expressed as

iA(t) = Imcos(2π fet) + Il1 cos[2π( fe − fr)t − φl1]

+Ir1 cos[2π( fe + fr)t − φr1] + Il2cos[2 π(N fr − fe) t − φl2]

+Ir2 cos[2π(N fr + fe)t − φr2]

iB(t) = Imcos
(
2π fet − 2

3 π
)
+ Il1 cos

[
2π( fe − fr)t − φl1 − 2

3 π
]

+Ir1 cos
[
2π( fe + fr)t − φr1 − 2

3 π
]
+ Il2 cos

[
2π(N fr − fe)t − φl2 − 2

3 π
]

+Ir2 cos
[
2π(N fr + fe)t − φr2 − 2

3 π
]

iC(t) = Imcos
(
2π fet+ 2

3 π
)
+ Il1 cos

[
2π( fe − fr)t − φl1 +

2
3 π
]

+Ir1 cos
[
2π( fe + fr)t − φr1 +

2
3 π
]
+ Il2 cos

[
2π(N fr − fe)t − φl2 +

2
3 π
]

+Ir2 cos
[
2π(N fr + fe)t − φr2 +

2
3 π
]

(30)

where Im is the amplitude of the power frequency component. Il1, Ir1, Il2, and Ir2 are the
amplitudes of the characteristic sidebands. φl1, φr1, φl2, and φr2 are the initial phase angles
corresponding to the characteristic sidebands.

The square of the Park vector modulus of the stator current can be obtained by

|IS(t)|2 = 3
2
(

I2
m + I2

l1 + I2
l2 + I2

r1 + I2
r2
)
+3Im Il1 cos[2π frt − φl1]+3Im Ir1 cos[2π frt − φr1]

+3Im Il2 cos[2π(N fr)t + φl2]+3Im Ir2 cos[2π(N fr)t − φr2]

+3Il1 Ir1 cos[2π(2 f r)t − φl1 − φr1]+3Ir1 Ir2 cos[2π(N − 1) frt+φr1 − φr2 ]

+3Il1 Ir2 cos[2π(N+1) frt−φl1 − φr2]+3Il2 Ir1cos[2 π(N+1) frt+φl2 − φr1]

+3Il1 Il2cos[2 π(N − 1) frt+φl1 + φl2] + 3Il2 Ir2 cos[2π(2N) frt+φl2 − φr2]

(31)

where 3/2·(Im2 + Il1
2 + Il2

2 + Ir1
2 + Ir2

2) is the DC offset of the square of the Park vector
modulus considering Il1, Ir1, Il2 and Ir2 are far less than Im. The square of the Park vector
modulus can be further simplified as

|IS(t)|2sim =
|IS(t)|2−|IS(t)|2DC

Im
= 3Il1 cos[2π frt − φl1] + 3Ir1 cos[2π frt − φr1]

+3Il2 cos[2π(N fr)t+φl2] + 3Ir2 cos[2π(N fr)t − φr2]
(32)

It can be seen from Equation (32) that the power frequency component is demodulated
in |IS(t)|2sim. The characteristic sidebands corresponding to fr and Nfr can be used to
reflect the intensity of torque oscillations. These sidebands extracted from the spectrum of
|IS(t)|2sim are immune to power frequency interference and can be used as the stator current
indicators used for pump diagnosis.

Meanwhile, it should be noted that when pumps operate under cavitation conditions,
high-frequency fluid-borne noise is created by the subsequent collapse of bubbles, and low-
frequency pulsations are created through large fluctuations of the cavitation zones [1]. Both
sources could cause broadband oscillations in pumps’ torque, which would be reflected
as sideband noise around the characteristic harmonics and high-frequency noise of the
stator current.

Therefore, the harmonic indicator alone may not be capable of detecting cavitation.
In this research,|IS(t)|2sim is also decomposed by the VMD method to analyze the energy
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distribution across different frequency bands, and an indicator that reflects the energy ratio
of each IMF component is developed as

Energy Ratio =
uk(t)

2(
|IS(t)|2sim

)2 (k= 1, 2, 3 . . . n) (33)

where uk(t) are the IMF components of |IS(t)|2sim.
Meanwhile, to obtain the energy distribution of the stator current signal in a sense

of probability, the Hilbert marginal spectrum is also employed for feature extraction. The
Hilbert transform is applied to each IMF component as

H[uk(t)] =
1
π

∫ ∞

−∞

uk(τ)

t − τ
dτ (34)

The analytic signals can be constructed by

z(t) = uk(t)+jH[uk(t)] =Ak(t) exp(jθk(t)) (35)

where Ak(t) =
√
(uk(t))

2 + {H[uk(t)]}2. is the instantaneous amplitude and θk(t) =
arctan{H[uk(t)]/uk(t)}. is the instantaneous phase. The instantaneous frequency fk(t)
can be calculated as

fk(t) =
dθk(t)
2πdt

(36)

The Hilbert spectrum describes the changing rule of signals over time and frequency,
which is given by

H( f , t) = Re
n

∑
i=1

Ak(t) exp(j2π
∫

fk(t)dt) (37)

The Hilbert marginal spectrum can be obtained based on the integration of the
Hilbert spectrum

h( f ) =
∫ T

0
H( f , t)dt (38)

The Hilbert marginal spectrum provides the local feature accuracy of signals. In this
research, the energy of the characteristic frequency band centered at fr and f BPF in the
Hilbert marginal spectrum is also used as a current-based indicator, in order to capture
local detail fluctuations of |IS(t)|2sim caused by cavitation-induced torque oscillations.

4. Intelligent Diagnosis Algorithms

In this research, t-Distributed Stochastic Neighbor Embedding (t-SNE) is used for
vibration–current fusion and data compression. It works by modeling the similarity be-
tween pairs of high-dimensional data points as a probability distribution and then finding
a low-dimensional representation of the data that minimizes the divergence between the
high-dimensional and low-dimensional distributions. In this algorithm, the conditional
probability that represents the similarity between xi and xj is given by

Pj|i =
exp

(
−
∥∥xi − xj

∥∥2/2σ2
i

)
∑k ̸=i exp

(
−∥xi − xk∥2/2σ2

i

) (39)

where σi is the variance of the Gaussian that is centered on xi.
The joint probabilities pij in the high-dimensional space is calculated by symmetrizing

the conditional probabilities

Pij =
Pj|i + Pi|j

2n
(40)



Sensors 2024, 24, 3410 11 of 28

t-SNE aims to minimize the Kullback–Leibler divergence between the Gaussian distribution
of the data points in the original high-dimensional space and the Student’s t-distribution
of the data points in the lower-dimensional space. The joint probabilities in the low-
dimensional space can be calculated as

qij =

(
1+
∥∥yi − yj

∥∥2
)−1

∑k ̸=l

(
1+∥yk − yl∥2

)−1 (41)

The Kullback–Leibler divergence between the two joint probability distributions P
and Q can be calculated as

C = KL(P∥Q ) =∑
i

∑
j

pij log pij − pij log qij (42)

To minimize the Kullback–Leibler divergence, the optimized gradient can be calcu-
lated as

∂C
∂yi

= 4∑
j

(
pij − qij

)(
yi − yj

)(
1+∥yk − yl∥2

)−1
(43)

The embedded points in the low-dimensional space at the tth iteration can be up-
dated as

y(t) = y(t−1) + γ
∂C
∂y

+ α(t)(y(t−1) − y(t−2)) (44)

where γ is the learning rate and α(t) is the momentum at the tth iteration.
In this research, several classification algorithms used to perform operation diagnosis

are evaluated, namely: 1. Mahalanobis distance-based k-nearest neighbor (MD-KNN);
2. Euclidean distance-based k-nearest neighbor (ED-KNN); 3. Bayes learning; 4. support
vector machines; 5. random forest; 6. Adaboost; 7. gradient boosting decision tree (GBDT);
and 8. eXtreme Gradient Boosting (XGBoost).

5. Experimental Section
5.1. Experimental Setup

A comprehensive experiment test bench was designed to automatically detect off-
design operation and cavitation for the centrifugal pump, as illustrated in Figure 4. An
IS65-50-160-00 centrifugal pump was tested. The pump casing was made of stainless steel
and the impeller was made of cast iron. The drive induction motor was connected to a
380 V, 50 Hz AC power supply. The parameters of the centrifugal pump and induction
motor are shown in Table 1.

As depicted, the fluid loop mainly consisted of the centrifugal pump, the inlet tube, the
outlet tube, and the water tank. The solenoid valve, coupled to a functional analog voltage
generator, was installed in the outlet tube to obtain different flow rates corresponding to
the valve opening. The vacuum pump, linked to the water tank, was used to reduce the
inlet pressure and enable the centrifugal pump to operate under cavitation conditions.
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Table 1. Main parameters of the centrifugal pump and the induction motor.

Device Parameter Value

Y160M-2 B3 three-phase
asynchronous motor

(Manufacturer: Shanghai Qisheng
Machinery Equipment Co., Ltd.;

Shanghai; China)

Rated voltage 380 V
Rated speed 2980 rpm
Rated power 15 kW

Efficiency 89.4%
Power factor 0.8

IS-65-50-160-00
centrifugal pump

Impeller inlet diameter 74 mm
Impeller outlet diameter 174 mm

Blade width 12 mm
Blade number 6

Rated flow 50 m3/h
Rated head 34 m
Rated speed 2980 rpm

Efficiency 72.8%
Specific speed 0.8
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5.2. Sensors Used in the Experiment

In this experiment, a torque meter, an electromagnetic flowmeter, and two pressure
sensors mounted on the pump inlet and pump outlet were used to monitor the pump’s
performance parameters. Three-phase stator current signals were measured by three Hall-
effect current sensors. A triaxial accelerometer was used to record vibration signals in the
radial, longitudinal, and axial directions. An NI-USB-6343 base acquisition module was
deployed for data acquisition. The vibration and current signals were measured simultane-
ously with a sampling frequency of 10 kHz under stable-state operation conditions. The
main parameters of the sensors used in the experiment are shown in Table 2.

5.3. Experiment Process

The centrifugal pump was tested first at 0Qdes, 0.1Qdes, 0.2Qdes, 0.3Qdes, 0.4Qdes, 0.5Qdes,
0.6Qdes, 0.7Qdes, 0.8Qdes, 0.9Qdes, 1.0Qdes, 1.1Qdes, 1.2Qdes, and 1.3Qdes. Vibration and current
signals under off-design operation conditions were obtained, as well as the Q-H, Q-η, and
Q-P characteristic curves. According to [1], the preferred operation range for a centrifugal
pump is defined as 0.85 < q* < 1.1, which is set as the health status for the tested centrifugal
pump in this research. As for the cavitation experiments, drops in the heads of the suction
impeller by 1% and 3% were determined as the two cavitation criteria, where a 1% drop in
head indicated cavitation inception and a 3% drop in head represented the critical value at
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which cavitation was fully developed. Cavitation experiments were repeated at 0.8Qdes,
1.0Qdes, and 1.2Qdes. The experiments were carried out for about 200 h for a period of
40 days.

Table 2. Main parameters of the sensors used in the experiment.

Device Parameter Value

SGDN-50 torque transducer
Measurement range 0 ± 50 N·m
Frequency output 5–15 kHz

Precision 0.3%

WBI021F27-1.0 Hall-effect current sensors
Measurement range AC/DC 0–40 A

Response time 10 µs
Precision 1.0%

356A02 accelerometer

Measurement range ±500 g pk
Sensitivity 10 mV/g

Frequency range (±5%) 1–5000 Hz
Broadband resolution 0.0005 g rms

LDG-SIN-CN65-Z2
electromagnetic flowmeter

Measurement range 0–100 m3/h
Precision 0.5%

WIKA S-10 pressure sensors Measurement range Inlet: 0–1.6 bar/Outlet: 0–4 bar
Precision 0.2%

6. Results and Discussion

Figure 5 shows the Q-H, Q-η, and Q-P characteristic curves of the centrifugal pump.
The centrifugal pump has the best efficiency at the design flow rate (50 m3/h). Meanwhile,
the pump power increases with the increasing flow rate. As illustrated in Figure 5, the green
shaded area depicts the preferred operation range (POR) of the tested centrifugal pump, and
the purple shaded area depicts the hump instability range (HIR) of the tested centrifugal
pump. The hump instability range is also called the positive slope at shut-off in [1]. As the
flow rate gradually increases from the shut-off point, the head first gradually increases to
the maximum value, and then it decreases as the flow rate increases. In this research, the
HIR is defined as the operation range with ∂H/∂Q > 0 [1] (0–10 m3/h), which indicates that
the increasing turbulent disturbance corresponds to the unstable characteristic range.
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Figure 5. Characteristic curves of the centrifugal pump.

Figure 6 presents the pump cavitation characteristic curves at different flow rates.
The smaller NPSH value means more serious cavitation. According to [1], the NPSH1% is
determined by a 1% drop in the total delivery head, indicating cavitation inception. The
NPSH3% is determined by a 3% drop in the total delivery head, indicating cavitation is
fully developed.
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6.1. Performance of the Vibration-Based Indicators

Figure 7 shows the selected vibration-based indicators for the off-design operation
diagnosis of the centrifugal pump. It can be seen that the indicator curves of the radial,
longitudinal, and axial directions extracted from the denoised vibration signals show
similar tendencies versus the flow rate.

The indicator curves (a)~(k) have significant saddle-type zones in the preferred opera-
tion range, and the indicator curve (l) has a significant hump-type zone in the preferred
operation range. This means that these indicators have the ability to recognize the high-
efficiency operation range of the centrifugal pump. Meanwhile, it is observed that the
indicator curves (a)~(k) show upward trends near the shut-off point, which partially or to-
tally overlap with the hump instability range. The indicators reach the extreme at 0.2~0.4q*,
which is also the range where serious recirculation occurs at the impeller inlet and outlet.
Once the indicator curves cross the instability range, they steadily fall with the increasing
flow rate until they reach the preferred operation range. Moreover, it is observed that
the VMD energy entropy presents the opposite tendency compared to (a)~(k). The VMD
energy entropy basically decreases as the operation condition gets worse, which means the
energy distributes mainly in the resonance frequency band, and the distribution uncertainty
becomes relatively lower under the off-design operation conditions.
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Figure 7. The vibration-based indicators versus Q for off-design operation detection.

As for cavitation diagnosis, Figure 8 illustrates the longitudinal vibration-based indi-
cators versus NPSH at 1.0Qdes before and after wavelet threshold denoising. It is observed
that the indicators obtained from the denoised vibration signals show noticeably greater
linear trends with the cavitation process than the original signal-based indicators.

Similar trends of the denoised longitudinal vibration-based indicators versus NPSH
are also observed at 0.8Qdes and 1.2Qdes, as shown in Figures 9 and 10. One thing that
should be noted is that the inflection points of FC, RMSF, and VMD energy entropy appear
near the NPSH3% point at which cavitation is fully developed. The FC and RMSF indicators
keep increasing as cavitation develops until they reach the critical value, and then they
start to decrease. Meanwhile, the VMD energy entropy indicator exhibits an opposite trend.
This is because during fully developed cavitation, bubbles collapse in close proximity to
impeller walls and act like impulses. Vibration excited by pressure pulsations and resultant
noise shift in the high-frequency direction, and the energy distribution of the vibration
signals in each frequency band becomes uneven. The inflection points of FC, RMSF, and
VMD energy entropy can be utilized to indicate the fully developed cavitation state in the
centrifugal pump.
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As for the analyses of the vibration signals in all three directions, the trends of the
indicator curves are similar except for the fuzzy entropy indicator in the longitudinal and
axial directions. Figure 11 shows the axial vibration-based fuzzy entropy indicator versus
NPSH at 0.8Qdes, 1.0Qdes, and 1.2Qdes.
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As illustrated in Figure 11, the fuzzy entropy in the axial direction shows an opposite
trend versus NPSH compared to that in the longitudinal direction. This is different from
the detection of off-design operation—in this case, the vibration indicators in all three
directions show similar trends versus Q. Therefore, an indicator that is only sensitive to
cavitation in the centrifugal pump is developed as

FuzzyEncombined =
FuzzyEnlongitudinal

FuzzyEnaxial
(45)
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Therefore, instead of using vibration indicators in all three directions, this research
uses the twelve longitudinal vibration-based indicators and a combined indicator based on
the fuzzy entropy in two directions to generate the vibration-based input matrix for the
training of the classifiers.

6.2. Performance of the Current-Based Indicators

Figure 12 shows the spectrum comparison between IA and |IS(t)|2sim. It can be seen that
in the spectrum of IA, the major contribution comes from the power frequency component
fe at approximately 50 Hz. The fundamental frequency component of |IS(t)|2sim is the blade
passing frequency f BPF, which represents the fundamental frequency of hydraulic torque
oscillation of the centrifugal pump.
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Figure 12. Frequency spectra of IA and |IS(t)|2sim.

According to Equation (33), the sum of the harmonic amplitudes of |IS(t)|2sim is used
as a stator current-based indicator for pump operation diagnosis. Figure 13a shows the
stator current-based harmonic indicators versus Q. It can be seen that the changing trend
of the harmonic indicators is similar to that of the vibration-based indicators, as shown in
Figure 7a–k. The destabilizing effect on the pump characteristic in the hump instability
range is reflected in the indicator curve as an increasing trend. Meanwhile, the harmonic
indicator has its minimum in the preferred operation range, which represents the weakest
hydraulic torque oscillations in a relatively stable state.

According to Equation (31), the sum of the harmonic amplitudes of |IS(t)|2sim is used
as a stator current-based indicator for pump operation diagnosis. Figure 13a shows the
stator current-based harmonic indicators versus Q. It can be seen that the changing trend
of the harmonic indicators is similar to that of the vibration-based indicators as shown in
Figure 7a–k. The destabilizing effect on the pump characteristic in the hump instability
range is reflected in the indicator curve as an increasing trend. Meanwhile, the harmonic
indicator has its minimum in the preferred operation range, which represents the weakest
hydraulic torque oscillations in a relatively stable state.

Figure 13b shows the measured total delivery head and the corresponding harmonics
indicator versus NPSH with the pump set with cavitation at 1.0Qdes. The indicator shows
a fluctuating increasing trend as cavitation develops, as shown in the dotted trend line.
However, the implosion of vapor bubbles in the pump appears chaotically. They can cause
torque disturbances in a wide frequency range or at some specific frequency components;
so, the cavitation may cause changes in the characteristic harmonics or energy of certain
frequency bands in the stator current signals.
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Figure 14. RMS of |IS(t)|2 versus NPSH for cavitation detection at different flow rates. 

Figure 13. The stator current-based harmonic indicator for operation diagnosis of the centrifugal
pump. (a) The stator current-based harmonic indicator versus Q for off-design operation detection,
(b) The stator current-based harmonic indicator versus NPSH for cavitation detection at 1.0Qdes.

Figure 14 shows the RMS value of |IS(t)|2 versus NPSH at different flow rates. It is
seen that the RMS indicator follows a trend similar to the cavitation characteristic curve. The
RMS indicator reflects the trend of changes in the blade load of the centrifugal pump. As
cavitation develops, the static pressure distribution on the surface of the blade is changed,
which causes the decrease in blade load and is reflected in the decrease in the RMS of
|IS(t)|2.
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According to Equation (33), the energy ratios of IMFi to the whole-signal energy
are also used as current-based indicators. Figure 15 shows the energy ratios of IMFi to
the whole-signal energy versus the NPSH value at 1.0Qdes, where the number of modes
K = 8. IMF1, which contains the low-frequency component below 300 Hz, is the dominant
signal source. As illustrated, the energy ratio of IMF1 fluctuates slightly as cavitation
develops. When the critical value of NPSH is reached, the energy ratio of IMF1 begins to
decrease steeply. Meanwhile, the energy ratios of other IMF components show a tendency
to decrease at first; then, they increase, especially after cavitation is fully developed. The
relative strength between the high-frequency component and the low-frequency component
of the current signals could reflect the cavitation development process: at the beginning
of cavitation, low-frequency pulsations within large amplitudes are created through large
fluctuations of the cavitation zones. The compressibility of cavities may result in cavitation
surges. These may excite the torsional vibration of shafting, which could cause low-
frequency torque oscillations and be reflected in the current signals through the mechanical-
electric coupling effect. At this stage, it can be seen that the energy proportion of the
high-frequency current signal component keeps decreasing. As cavitation continues to
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develop, high-frequency fluid-borne noise and vibration are created by the implosion of
vapor-filled zones (bubbles), acting like impulses to the metal itself and eroding it. The
induced high-frequency torque oscillations could be reflected in the stator current signal.
As a result, it is observed that the high-frequency energy ratio of the current signal increases,
and, on the contrary, the low-frequency energy ratio falls steeply.
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Figure 15. Energy ratios of IMFi versus NPSH for cavitation detection at 1.0Qdes.

Similar patterns of variation in the energy ratios of IMFi also occur at 0.8Qdes and
1.2Qdes, as shown in Figures 16 and 17.
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Figure 17. Energy ratios of IMFi versus NPSH for cavitation detection at 1.2Qdes.

The marginal spectra of |IS(t)|2sim for different NPSH values at different flow rates
are shown in Figure 18. It is observed that the dominant signal component is mostly
concentrated in the frequency band centered at 300 Hz with a bandwidth of about 100 Hz.
Broadband components centered at 2 × RF with a bandwidth of about 100 Hz are also
noticed in the spectra. These two broadband components are the reflection of pump
hydraulic torque oscillations. The energy of each frequency band can be calculated by
amplitude accumulation. The energy ratio of the frequency bands centered at BPF to the
frequency bands centered at 2 × RF is used as the marginal spectrum indicator.
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pump, a steep increase followed by a strong fluctuation occurs, which means there is a 
strong energy transfer from RF to BPF in hydraulic torque oscillations, which could be 
subject to the effect of cavitation. 

Conclusively, these stator current-based indicators are used to generate the current-
based input matrix for training the classifiers. 

6.3. Performance of the Classifiers 
Accuracy, precision, and sensitivity are commonly used representative scores to eval-

uate classifiers. They can be calculated as 

Accuracy = TP+TN
TP+TN+FP+FN (46) 

Precision=
TP

TP+FP (47) 

Sensitivity=
TP

TP+FN (48) 

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative. 
In this study, these scores are used to evaluate the performance of both vibration-based 
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Figure 18. Marginal spectra of |IS(t)|2sim for different NPSH values at different flow rates.

Figure 19 shows the normalized marginal spectrum indicator versus the NPSH value
at different flow rates.
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As illustrated, the indicator value is maintained at a relatively low level, with a slightly
downward trend before the onset of cavitation. When cavitation occurs in the pump, a
steep increase followed by a strong fluctuation occurs, which means there is a strong energy
transfer from RF to BPF in hydraulic torque oscillations, which could be subject to the effect
of cavitation.

Conclusively, these stator current-based indicators are used to generate the current-
based input matrix for training the classifiers.

6.3. Performance of the Classifiers

Accuracy, precision, and sensitivity are commonly used representative scores to evalu-
ate classifiers. They can be calculated as

Accuracy =
TP + TN

TP + TN + FP + FN
(46)

Precision =
TP

TP + FP
(47)

Sensitivity =
TP

TP + FN
(48)

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative.
In this study, these scores are used to evaluate the performance of both vibration-based
classifiers and stator current-based classifiers for the following four cases, as shown in
Figure 20.

Case 1: Operation without cavitation of four combined classes, namely the hump
instability range, off-design operation range below BEP, preferred operation range, and
off-design operation range above BEP.

Case 2: Cavitation at 0.8Qd of three combined classes (non-cavitation, cavitation
inception, fully developed cavitation).

Case 3: Cavitation at 1.0Qd of three combined classes (non-cavitation, cavitation
inception, fully developed cavitation).

Case 4: Cavitation at 1.2Qd of three combined classes (non-cavitation, cavitation
inception, fully developed cavitation).

For case 1, it can be found that the current-based classifiers demonstrate significantly
better performances than the vibration-based classifiers. The performance scores using
stator current are mostly above 95%. Therefore, the stator current is more recommended to
be used for off-design operation detection. For case 2, the performances of the vibration-
based classifiers are relatively similar to those of the current-based classifiers. For case 3,
the performance of vibration-based ensemble classifiers, mainly random forest, Adaboost,
GBDT, and XGBoost perform better than other vibration-based classifiers and all the current-
based classifiers. For case 4, it should be noted that no current-based classifier achieves
good results; GBDT is the best (accuracy: 91.13%), which can hardly be called satisfaction.
Most of the vibration-based classifiers perform much better. In this sense, information
fusion and data compression are considered necessary parts of the proposed diagnosis
methodology. In Figure 20, a visual depiction of the newly extracted three-dimensional
fusion features space achieved through the use of the t-SNE is presented.

In Figure 21, it can be appreciated that different clusters appear to be distinct, and each
cluster represents a specific operation condition of the centrifugal pump, namely H (health
status: preferred operation range), OC1 (hump instability range), OC2 (operation range
below POR), OC3 (operation range above POR), OC4 (cavitation inception at 1.0Qdes), OC5
(critical cavitation at 1.0Qdes), OC6 (cavitation inception at a small flow rate), OC7 (critical
cavitation at a small flow rate), OC8 (cavitation inception at a large flow rate), and OC9
(critical cavitation at a large flow rate). The preferred operation range is well separated
from others, which means the healthy condition of the centrifugal pump can be assured. In
this research, the original hybrid feature space is reduced to five dimensions.
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6.4. Results Overview and Further Applications

Table 3 shows the classifiers’ performance in all considered conditions. In Table 3, the
models based on stator current–vibration fusion outperform the model based on one single
source in terms of accuracy, precision, and sensitivity. This means the analyses of vibration
and stator current can be complementary, and their combination can provide maximum
reliable off-design operation and cavitation detection results for the centrifugal pump.

Table 3. Classifiers’ performance in all considered conditions.

Vibration-Based
Classifiers

Current-Based
Classifiers

Information
Fusion-Based

Classifiers

(a) Accuracy

MD-KNN 90.95% 91.59% 91.91%

ED-KNN 91.32% 92.35% 92.72%

Naive Bayes 89.51% 90.39% 92.94%

SVM 93.07% 93.24% 98.03%

Random Forest 92.82% 93.61% 97.34%
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Table 3. Cont.

Vibration-Based
Classifiers

Current-Based
Classifiers

Information
Fusion-Based

Classifiers

Adaboost 93.78% 94.57% 98.40%

GBDT 93.07% 93.88% 98.06%

XGBoost 93.70% 94.15% 98.55%

(b) Precision

MD-KNN 92.52% 88.87% 92.92%

ED-KNN 91.98% 92.43% 94.35%

Naive Bayes 89.20% 89.86% 92.18%

SVM 92.90% 92.50% 98.15%

Random Forest 92.30% 93.00% 97.43%

Adaboost 93.98% 94.50% 98.43%

GBDT 92.88% 93.05% 97.63%

XGBoost 93.33% 93.68% 98.35%

(c) Sensitivity

MD-KNN 86.35% 87.60% 88.89%

ED-KNN 86.55% 89.64% 89.32%

Naive Bayes 92.61% 88.22% 95.66%

SVM 91.84% 89.32% 97.48%

Random Forest 91.43% 90.44% 96.31%

Adaboost 92.24% 91.71% 97.23%

GBDT 91.34% 91.71% 97.05%

XGBoost 92.39% 91.66% 97.22%

It should be noted that this research is limited to pumps operating at constant speeds.
Future work will be proposed to address variable speed operation.

7. Conclusions

This paper discusses the detection of off-design operation and cavitation for centrifugal
pumps using accelerometers and current sensors, which is suitable for centrifugal pumps
that lack flowmeters and pressure sensors. In this research, a machine learning-based
off-design operation and cavitation detection method is proposed. A centrifugal pump
is tested considering different operation ranges and different degrees of cavitation. A
three-axis accelerometer and three Hall-effect current sensors were used to collect vibration
and stator current signals. The vibration signals are processed using the improved wavelet
threshold function. A set of time-domain indicators, frequency-domain indicators, and
entropy-based indicators are extracted to generate the vibration-based input matrix for
machine learning. Meanwhile, the square of the Park vector modulus is used as a function
of the stator current signals for power-line demodulation. The RMS indicator, the harmonic
indicator, the energy ratios of different IMF components obtained by VMD, and the energy
ratio between the feature bands of the marginal spectrum are selected as the current-based
indicators. Indicators extracted from both types of signals are proven to be effective for the
diagnosis of the centrifugal pump.

Eight classifiers are used to perform machine learning. The majority of classifiers
identify the operation conditions of the centrifugal pump correctly. Most ensemble classi-
fication algorithms perform better than other single-model classification algorithms. By
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comparing the classification performance based on different types of signals, it is found
that the stator current performs better than the vibration in detecting off-design operations.
On the contrary, the vibration performs better in detecting cavitation at the design flow
rate and high flow rates. The classifiers based on the fusion of vibration and stator current
signals achieved through the use of t-SNE offer higher accuracy, precision, and sensitivity
than the classifiers based on one single signal source. In particular, the XGBoost classifier
based on the fusion of vibration and the stator current source achieves the highest accuracy
of 98.55%. The Adaboost classifier based on the fusion of vibration and the stator current
source achieves the highest precision of 98.43%. The SVM classifier based on the fusion
of vibration and the stator current source achieves the highest sensitivity of 97.48%. This
means the analyses of vibration and stator current signals can be used as a complementary
tool for achieving the most reliable detection of off-design operation and cavitation in
centrifugal pumps.
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