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Abstract: The continuous scanning laser Doppler vibrometry (CSLDV) technique is usually used to
evaluate the vibration operational deflection shapes (ODSs) of structures with continuous surfaces.
In this paper, an extended CSLDV is demonstrated to measure the non-continuous surface of the
bladed disk and to obtain the ODS efficiently. For a bladed disk, the blades are uniformly distributed
on a given disk. Although the ODS of each blade can be derived from its response data along
the scanning path with CSLDV, the relative vibration direction between different blades cannot be
determined from those data. Therefore, it is difficult to reconstruct the complete vibration mode of
the whole blade disk. In order to measure the complete ODS of the bladed disk, a method based on
ODS frequency response functions (ODS FRFs) has been proposed. While the ODS of each blade
is measured by designing the suitable scanning paths in CSLDV, an additional response signal is
obtained at a fixed point as the reference signal to identify the relative vibration phase between
the blade and the blade of the bladed disk. Finally, a measurement is performed with a simple
bladed disk and the results demonstrate the feasibility and effectiveness of the proposed extended
CSLDV method.

Keywords: bladed disk; laser Doppler vibrometry; ODS FRF; phase identification

1. Instruction

A bladed disk is one of the important components of rotating machinery such as
aeroengines, turbines and impellers, etc. High vibratory stresses of turbomachinery compo-
nents can be a major cause of vibration cracks and even breaking for blades [1–3], so the
dynamic behavior of bladed disks has always interested the engineering community over
the years. In recent decades, there have been several numerical methods used to predict
the dynamic characteristics of bladed disks via numerical modeling [3,4] and finite element
modeling (FEM) [5,6]. These studies indicate that the bladed disk is highly sensitive to
mistuning, such that even small deviations in the structural properties of individual sectors
of the bladed disks can result in the localization of vibration energy and a significant
increase in forced responses. There are many causes that can change the properties of the
nominal design. However, it is very difficult to take uncertain factors into account when
establishing finite element modeling.

To more precisely explore the dynamic features of the bladed disk structure, an experi-
mental study is indispensable. Zhao Z B et al. [7] took the bladed disk with 12 blades as an
example to conduct an experimental study on the natural characteristics of the tuned and
detuned bladed disks. Yao J et al. [8,9] studied the spatial distributions of the mistuned
mode shapes and the mode location of a simplified bladed disk, demonstrating the defor-
mation characteristics of all the modes within the experimental frequency band and the
deformation differences among the various modes through the test data of 120 measuring
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points. To experimentally acquire the modal shape of the bladed disk, a large amount of
measuring points need to be arranged on the surface of the bladed disk. However, this
greatly increases the time and cost of experimental testing and it is difficult to obtain accu-
rate vibration mode shapes. Therefore, the experimental measurement of the operational
deflection shapes of bladed disks is still a relatively demanding task.

In recent years, laser Doppler vibrometry (LDV), as a new non-contact measurement
method, has been widely used in aerospace [10], automobile [11] and other fields due
to its advantages of long-distance measurement, high measurement accuracy and no
installation. Heinemann [12] et al. measured the natural frequencies and the modal shapes
of a five-blade axial-flow fan with scanning laser Doppler vibrometry (SLDV). In fact,
the density of measurement points has been improved to some extent, but also greatly
increased the time-consuming nature and the storage requirements of test data. In order
to further improve the test efficiency and the density of test points, continuous scanning
laser Doppler vibrometry (CSLDV) is proposed based on SLDV, where the laser point,
instead of dwelling at a fixed location, is continuously moving across a measurement
surface along the designed path. The SLDV was used in vibrational measurements to
extract only a few dozen measured points across the grid. However, the CSLDV is able to
measure thousands of vibration points in a few seconds and reconstruct a more accurate
ODS through the demodulation method, arranging each single ODS according to the
position of scan paths on the measured structure. Therefore, this CSLDV is also called the
full-field measurement technique. Sriram P. et al. [13] first applied the CSLDV to measure
the vibration of a cantilever beam in the line scanning mode. With the application of
the CSLDV, Y Hu et al. performed an experiment on a free-hanging aluminum plate in a
thermal environment, and the findings revealed that the accuracy of the ODS was improved
by 20 times compared to a manual-moving LDV method [14]. Additionally, there are also
some studies reported on excitation methods for the CLSDV [15–18]. K Yuan et al. [19,20]
obtained the modal parameters of a model turbine blade with a curved surface excited
by white noise by the CSLDV, and the results demonstrated that the identified modal
parameters possess significantly higher accuracy and efficiency in comparison to those
from the SLDV.

Most of the studies reported on CSLDV techniques are mainly based on the simple
continuous surface of structures, such as beams, plates, disks or a single blade [21], and
the measurement can be completed at once along a continuous scanning path. However,
there is still a great challenge for the testing of discontinuous multi surfaces of structures
such as bladed disks. For the bladed disk, if the laser beam conducts a continuous scanning
test within a large area covering the bladed disk, laser leakage will occur in the area
without the bladed disk. And then in the output data of the LDV corresponding to the
scanning trajectory, there will be some small segments of invalid data. The invalid data
segments will reduce the accuracy of the reconstructed ODS. Therefore, it is best that the
scanning path precisely matches the bladed disk. The continuous scanning path of the laser
precisely switches from one blade to another to exactly cover the structure surface while
also ensuring that the scanning frequency does not change, which is rather complicated.
Because reconstruction of the ODS from the output data in CSLDV demanded that the
scanning frequencies of the laser beam in the x direction and the y direction should be
unchanged during the entire scanning process, this will pose great difficulties for the
CSLDV applied to the bladed disk.

To address these issues of the ODS testing of the bladed disk in CSLDV, this paper
has also conducted some studies. The aim of the present paper is to extend the CSLDV
techniques for bladed disk structures, in that a suitable continuous scanning path for a
multi-blade disk structure is designed and the ODSs of all the blades can be derived from
the sideband patterns of the CSLDV output spectrum. Then, a vibration phase identification
method of all blades is needed to reconstruct the ODS of the whole-bladed disk. As an
example, a 16-blade disk for vibration measurement is taken. A continuous scanning path
suitable for full field testing in CSLDV is designed and the ODS of the bladed disk is
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reconstructed by identifying the vibration phase between each blade. The results show
that the design of the continuous scanning path is feasible and the effectiveness of the
identification method of the vibration phase in serving CSLDV is evaluated.

The rest of this paper is organized as follows. Section 2 describes the theoretical basis of
ODS reconstruction in CSLDV. In Section 3, the design of the measurement campaigns on a
16-blade disk is discussed, including how to switch the laser beam to scan the next test blade.
The ODSs of all blades were reconstructed from the measured sideband spectrums. The
identification method of the vibration phase between each blade is described in Section 4.
The main purpose of this section is to obtain the relative vibration phase of all the blades
and to reconstruct the ODS of the whole-bladed disk.

2. Theoretical Basis of ODS Reconstruction in CSLDV

The small damping structure will resonate when the excited frequency is near the
natural frequency. The vibration response of the structure measured by the laser Doppler
vibrometers, which can be expressed as follows:

v(x, y, t) = d′(x, y, t) = VR(x, y) cos ωt + VI(x, y) sin ωt (1)

where v(x, y, t) is the vibrational velocity of point (x, y) at time t. VR(x, y) and VI(x, y) are
the real and imaginary components of the vibration, respectively. They can be fitted by the
polynomial series as follows:

VR(x, y) =
p,q
∑

m,n=0
VRm,nxmyn

VI(x, y) =
p,q
∑

m,n=0
VIm,nxmyn

(2)

where p and q are the polynomial order in the x and y direction, respectively. For a
rectangular plate, the scanning path of the area sine scan moved on the surface of the
structure can be expressed by two sinewaves equations when the scanning speed of the
laser spot has a sine variation.

x = cos(ωsxt)
y = cos(ωsyt)

(3)

where ωsx and ωsy are the scanning frequencies of the laser point along the X and Y
directions, respectively. The scanning paths covered on the rectangular plates can be
generated by dissimilar frequency sinusoids using sinusoidal trajectories, e.g., 2D Lissajou
trajectories, as shown in Figure 1.
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Substituting Equations (2) and (3) into Equation (1), and expanding out trigonometri-
cally, the following form of the vibration signal is derived:

v(x, y, t) =
p,q

∑
m,n=0

ARm,n cos[(ω ± mωsx ± nωsy)t] +
p,q

∑
m,n=0

AIm,n sin[(ω ± mωsx ± nωsy)t] (4)

where ARm,n and AIm,n are the sideband spectrum amplitudes of real and imaginary
components at different frequencies, respectively. According to Equation (4), the sideband
spectrum of vibration velocity signal obtained by laser continuous surface scanning test
consists of all components when m and n are taken as different values. It can be deduced
that the transformation to recover the polynomial coefficients from the spectral amplitudes
of the LDV output is:

[AR]m×n = [T]m×m[VR]m×n[T]
T
n×n

[AI ]m×n = [T]m×m[VI ]m×n[T]
T
n×n

(5)

Each element of matrix T satisfies the following equation:

T(i, j) =

{
0 i + j is odd, i > j
Ci−j

i
2i i + j is even

, i and j are natural number (6)

By expanding the Fourier series of the vibration signal obtained from the output of
CSLDV, the amplitudes of the sideband spectrum ARm,n, AIm,n and the transformation
matrix T can be deduced. Therefore, the real and imaginary components of the operational
deflection shape can be obtained as follows:

[VR] = [T]−1[AR][T]
T

[VI ] = [T]−1[AI ][T]
T

(7)

3. ODS of Bladed Disc in CSLDV
3.1. Modal Characteristics of Bladed Disk

A bladed disk, as shown in Figure 2a, is a circularly symmetric structure whose modes
are described by the mode shapes of a single sector and numbers of nodal diameter. The
thickness of the structure is 2 mm, and the other dimensions are shown in Figure 2b. The
finite element model (FEM) of a single sector is built with hexahedral elements, as shown
in Figure 2c. Material properties are given as follows: the density and the Young’s modulus
are 7840 Kg/m3 and 206 GPa, respectively. Poisson’s ratio is 0.3.
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The modal frequencies of the first 16 modes derived from the FEM as listed in Table 1.
The modal frequencies appear in pairs due to the characteristic of circularly symmetric
structure, except for the modes which Nd = 0 and Nd = 8 for the 16-blade disk. The
two modes of a modal pair have the same frequencies and orthogonal mode shapes, which
are demonstrated in Figure 3 (only one of the mode shapes is shown for modal pairs). In the
figure, the ‘*’ indicates the frequency values of different nodal diameters, and the arrow
points to is the modal vibration mode corresponding to this frequency.

Table 1. Frequencies of the 1st family of modes.

Order Frequency/Hz Nd Order Frequency/Hz Nd

1 26.74 1 9 38.40 4
2 26.74 1 10 41.16 5
3 27.10 0 11 41.16 5
4 28.51 2 12 42.76 6
5 28.51 2 13 42.76 6
6 33.89 3 14 43.61 7
7 33.89 3 15 43.61 7
8 38.40 4 16 43.87 8
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3.2. Measurement in CSLDV
3.2.1. Design of the Continuous Scanning Path

The bladed disk shown in Figure 2a is employed to measure operational deflection
shapes in CSLDV. The fan-shaped blades cannot be completely covered by the continuous
scanning path of the laser spot described in Equation (3), so it is necessary to design a
suitable continuous scanning path for the specific surface.

The scan pattern of the fan-shaped blades is much more complicated than the rectan-
gular plate, as shown by the following:

x(t) =
[

Ro−Ri
2 cos(2πωsyt) + Ro+Ri

2

]
cos(ϕ(t) + τ)

y(t) =
[

Ro−Ri
2 cos(2πωsyt) + Ro+Ri

2

]
sin(ϕ(t) + τ)

(8)

where Ro and Ri are the initial radius and final radius of the scanning range in the radial di-
rection, respectively. τ is the initial phase angular position, while ϕ(t) is the circumferential
scanning control parameters which is described by the equation:

ϕ(t) = θ sin(2πωsxt) (9)

where θ is the edge amplitude of the blades.
Take the scanning frequency ωsy = 3 Hz, ωsx = 30 Hz as an example, the scanning

path of the laser spot on the blade surface is shown in Figure 4.
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For the different blades, the scanning pattern is the same except for the initial phase
angular position τ. The blades are evenly distributed on the circumference of the disk;
therefore, the initial phase angular position of each blade in Equation (8) is instead given
by τn, which can be expressed as:

τn =
π

2
+

n − 1
N

· 2π (10)

where n is the number of blades, N is the total number of blades of the bladed disk.
Therefore, the continuous scanning test of all blades could be carried out by changing
different blade numbers n ( n = 1, 2, 3, · · · , N).

3.2.2. Experimental Test

The scanning frequencies are set to ωsy = 1.1 Hz and ωsx = 10 Hz, respectively. The
sampling frequency Fs is 8192 Hz, which needs to satisfy Nyquist’s sampling theorem.
In this experiment, the design of CSLDV is used to measure the fan-shaped blade, the
vibration data is collected for 5 s, and then the next blade is switched for testing until
all the blades are traversed. The experimental four-nodal diameter bending mode of the
bladed disk measured by LDV is 36.88 Hz, and there is a deviation of 3.96% compared
with the 38.40 Hz derived from the FEM. Thus, a sinusoidal signal with a single frequency
ω = 36.88 Hz was supplied to the electromagnetic exciter to excite the bladed disk in the
test. It is known in advance that when the excitation frequency approaches or equals the
natural frequency, the mode corresponding to that natural frequency can be well excited.

The continuous scanning path of all blades (No. 1–16) is shown in Figure 5.
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The CSLDV measurements are carried out on all blades and the vibration signals in
the time domain are obtained from the output of a laser Doppler vibrometer. Taking the
first four blades as an example, the vibration signal and the sideband spectrums are shown
in Figure 6. It can be found that the vibration forms of the odd-numbered blades shown
in Figure 6a,c are consistent and their vibration amplitudes are relatively small, while the
vibration forms of even-numbered blades shown in Figure 6b,d have the same form and
larger amplitude. This phenomenon coincides with the four-nodal diameter mode of the
first family mode of the bladed disk. The values of m and n are determined by the sideband
spectrums. Specifically, according to the sideband spectrums shown in Figure 6, the values
of the sideband number m and n of the odd-numbered blades are both 0 and ±1, while the
values of the even blades are m = 0, n = 0, ±1, respectively.
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The operational deflection shapes of all the blades have been reconstructed from the
measured sideband spectrums, and are listed in Table 2. The results show that the vibration
amplitude of the even-numbered blades is much larger than that of the odd-numbered
blades. According to the number sequence and vibration amplitude of blades, it can be
concluded that all the odd blades in the operation condition are located in the four-nodal
diameter positions of the bladed disk.
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Table 2. ODSs of all blades.

No. ODS No. ODS

1
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Table 2. Cont.

No. ODS No. ODS

11

Sensors 2024, 24, x FOR PEER REVIEW 9 of 16 
 

 

5 

 

6 

 

7 

 

8 

 

9 

 

10 

 

11 

 

12 

 

13 

 

14 

 

12

Sensors 2024, 24, x FOR PEER REVIEW 9 of 16 
 

 

5 

 

6 

 

7 

 

8 

 

9 

 

10 

 

11 

 

12 

 

13 

 

14 

 

13

Sensors 2024, 24, x FOR PEER REVIEW 9 of 16 
 

 

5 

 

6 

 

7 

 

8 

 

9 

 

10 

 

11 

 

12 

 

13 

 

14 

 

14

Sensors 2024, 24, x FOR PEER REVIEW 9 of 16 
 

 

5 

 

6 

 

7 

 

8 

 

9 

 

10 

 

11 

 

12 

 

13 

 

14 

 

15

Sensors 2024, 24, x FOR PEER REVIEW 10 of 16 
 

 

15 

 

16 

 

Although all ODSs of the blades are obtained by using the extended CSLDV, the ODS 
of the whole-bladed disk cannot be directly reconstructed because of the unknown vibra-
tion phase of different blades, which cannot be derived from the sideband spectra of 
CSLDV. Therefore, it is necessary to identify the vibration phase between the blades for 
reconstructing the ODS of the whole-bladed disk. 

3.3. Identification of Vibration Phase and ODS Reconstruction of the Whole-Bladed Disk 
For continuous scanning tests, the vibration phase of different blades cannot be di-

rectly identified. However, that can be derived from the frequency response function of a 
series of points on all blades. That is to say, to ensure the same installation and excitation 
conditions as the above continuous scanning test, a series of points is selected at the same 
position of each blade to obtain the frequency response functions (FRFs). The vibration 
phase angle of all blades can be determined by the phase frequency curve of FRFs. But for 
the conditions of unknown excitation, it is impossible to directly measure the FRF, so the 
reference response is necessary to obtain the ODS FRF of the series of points. The ODS 
FRFs of each measurement point are measured by calculating the response of the test point 
with the response of a fixed reference point, from which the relative vibration phase be-
tween different blades can be extracted. The selection of measuring points and the fixed 
reference point used for blade identification of the vibration phase are shown in Figure 7a. 
The measurement system employed in this experiment is composed of a Polytec-PSV-400 
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Although all ODSs of the blades are obtained by using the extended CSLDV, the
ODS of the whole-bladed disk cannot be directly reconstructed because of the unknown
vibration phase of different blades, which cannot be derived from the sideband spectra of
CSLDV. Therefore, it is necessary to identify the vibration phase between the blades for
reconstructing the ODS of the whole-bladed disk.

3.3. Identification of Vibration Phase and ODS Reconstruction of the Whole-Bladed Disk

For continuous scanning tests, the vibration phase of different blades cannot be directly
identified. However, that can be derived from the frequency response function of a series of
points on all blades. That is to say, to ensure the same installation and excitation conditions
as the above continuous scanning test, a series of points is selected at the same position
of each blade to obtain the frequency response functions (FRFs). The vibration phase
angle of all blades can be determined by the phase frequency curve of FRFs. But for the
conditions of unknown excitation, it is impossible to directly measure the FRF, so the
reference response is necessary to obtain the ODS FRF of the series of points. The ODS
FRFs of each measurement point are measured by calculating the response of the test
point with the response of a fixed reference point, from which the relative vibration phase
between different blades can be extracted. The selection of measuring points and the fixed
reference point used for blade identification of the vibration phase are shown in Figure 7a.
The measurement system employed in this experiment is composed of a Polytec-PSV-400
scanning laser vibrometer and a self-developed external scanning system, as presented
in Figure 7b. The self-developed external scanning system is used to obtain the response
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of the measuring points on each blade, while the Polytec-PSV-400 is used to measure the
response data of the fixed reference point simultaneously.
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Figure 7. Testing scheme. (a) Location of measuring points. (b) Measurement system.

3.3.1. Identification of Vibration Phase Based on FRF

In the test of identification of the vibration phase, the electromagnet exciter is also
supplied to the sine signal with a frequency of 36.88 Hz, which is exactly the same as
the continuous scanning test. A total of 16 measuring points are selected from the same
position on each blade and the fixed reference point is located on the tip of the No. 1 blade.
The motion equation of the excited structure is given by:

M
..
x(t) + C

.
x + Kx(t) = F(t) (11)

where M, C and K are the Mass matrix, damping matrix and stiffness matrix, respectively.
F(t) is the vector of excitation force. The frequency response function can be directly
derived from the motion equation, and is expressed as:

H(ω) = (K − ωM + iωC)−1 =
{X}
{F} (12)

In this paper, the non-contact electromagnet exciter is used to excite the bladed disk
and the frequency response function is obtained by dividing the vibration response of the
input signal of the exciter [22]. Taking the frequency response function of the previous six
measuring points as an example, the frequency response functions of measuring points are
shown in Figure 8. It can be found that only one peak appears in the frequency amplitude
curve near the excitation frequency of 36.88 Hz.

The vibration phase angles corresponding to the peak frequency are extracted from the
phase frequency curve of the 16 measurement points, as shown in Table 3. It is obvious that
the difference in phase angle between adjacent the even-numbered blades is about 180◦.
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Table 3. Phase angles of all blades based on FRF.

No. Phase Angle/◦ No. Phase Angle/◦

1 113.63 2 −67.65
3 −56.86 4 112.8
5 149.26 6 −65.49
7 20.83 8 115.42
9 −4.97 10 −65.03
11 152.42 12 114.58
13 −4.96 14 −64.41
15 −85.40 16 114.76
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3.3.2. Identification of Vibration Phase Based on ODS FRF

When the excitation signal is unknown, the frequency response function of the mea-
surement point cannot be obtained directly. However, the transfer function between the
reference point and the measurement point can be obtained by taking the response of a
fixed point as a reference signal as follows:

Txy(ω) =
Xx(ω)

Xy(ω)
(13)

where Xx(ω), Xy(ω) are the frequency spectrums of the measuring points and the reference
points, respectively. In order to improve the signal-to-noise ratio in practical engineering
test, auto power spectrum and cross power spectrum are usually used to optimize the
transfer function as follows:

T̃xy(ω) =
Xx(ω) · X∗

y(ω)

Xy(ω) · X∗
y(ω)

=
Gxy(ω)

Gyy(ω)
(14)

The concept of ODS FRF on the basis of transfer function is first proposed by Richard-
son M H [23] in 1997. Similar to the transfer function, ODS FRFs are similarly calculated by
the auto spectrum and cross-spectrum between the response of fixed reference point and
the responses of the measuring points:

ODSFRF(ω) =
√

Gxx(ω) ·
Gxy(ω)∣∣Gxy(ω)

∣∣ = |Xx(ω)| ·
Gxy(ω)∣∣Gxy(ω)

∣∣ = Xx(ω) (15)

ODS FRF not only contains the correct amplitude of the response of each measuring
point but also the phase information relative to the reference point. Compared with the
transfer function, ODS FRF has a higher signal-to-noise ratio [24,25]. According to the ODS
FRF theory, the test for vibration phase identification is carried out and makes sure that it is
consistent with the condition and environment of the continuous scanning laser test. In
the phase identification experiment based on ODS FRF, two laser beams are necessary to
obtain the response of the measurement point and the fixed reference point simultaneously,
and the experiment flow is shown in Figure 9.
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First, a fixed reference response point needs to be selected on the blade disk (see
Figure 7). Then, two laser beams are used to simultaneously measure the response of the
fixed reference point and the response of each blade measurement point. Take the ODS
FRFs measured from blade 1 and blade 2 as an example, the frequency amplitude curves
and the phase frequency curves are shown in Figure 10. The phase angles can be easily
extracted from the phase frequency curves of ODS FRF. For the two blades, they are −0.6◦

and 179.3◦, respectively.
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The phase angles of relative vibration between different blades are extracted from ODS
FRFs of measuring points, as shown in Table 4. The results show that the difference in the
vibration phase of two adjacent even-numbered blades is about 180◦, which signifies that
the vibration direction of two adjacent even-numbered blades is opposite. This is consistent
with the phase identification results derived from the method based on FRF.

Table 4. Vibration phase angles of all blades based on ODS FRF.

No. of Blade Phase Angle No. of Blade Phase Angle

1 −0.60 2 179.28
3 −171.02 4 −0.79
5 36.01 6 179.24
7 −93.00 8 −0.08
9 −123.11 10 179.5
11 35.16 12 −0.71
13 −123.26 14 179.41
15 156.99 16 −0.66

3.3.3. ODS Reconstruction of the Whole-Bladed Disk

Combined with the vibration phase angles of all blades identified by the above meth-
ods and the ODS of all blades tested in Section 3.2.2, the ODS of the whole-bladed disk
is reconstructed, as shown in Figure 11. To verify the accuracy of the measurement, a
comparison with the FEM (as presented in Section 3.1) is made. The modal assurance
criterion (MAC) value is typically to quantitatively describe the similarity between two
modes. The closer the MAC value approaches to 1, the higher the consistency between the
two modes. The results showed that the MAC value between the ODS of the bladed disk
obtained through testing and the ODS calculated by the finite element method is 0.91. The
errors are mainly caused by the fact that the boundary conditions in FEM are not exactly
the same as the actual situation, as well as experimental errors, etc.
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entire test. Finally, the four-nodal diameter bending mode of the bladed disk from the test 
data in SLDV is shown in Figure 12b. 

Figure 11. ODS of the whole-bladed disk. (a) Three-dimensional perspective. (b) Plane perspective.

To better investigate the validity and accuracy of the ODS reconstruction method
based on ODSFRF in CSLDV, the conventional SLDV method is also employed to conduct
experiments in the same installation conditions and experimental environment for com-
parison. Regarding the test, the fewer the measuring points are, the rougher the obtained
modal vibration mode will be. For the test, 5 × 9 measurement points were arranged on
each blade, and there are a total of 1440 measurement points on the entire bladed disk
as shown in Figure 12a. In order to reduce the random error in the testing process, each
measuring point is tested three times, and the single testing time is 4.096 s. The frequency
response function adopts the average of three times. It takes about 3 h to complete the
entire test. Finally, the four-nodal diameter bending mode of the bladed disk from the test
data in SLDV is shown in Figure 12b.
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Figure 12. Measurement of ODS in SLDV. (a) Arrangement of measuring points. (b) The 4-nodal
diameter bending mode.

Compared to SLDV, the ODS reconstruction method based on CSLDV only takes a
few minutes in terms of time consumption. However, the MAC value between the ODS
obtained by the two is as high as 0.97. This demonstrates that the measurement method
proposed in this paper is feasible and accurate.

4. Conclusions

In this paper, a fast measurement method of operational deflection shapes of bladed
disks with CSLDV is presented, in which all blades are tested in the same condition by
switching the initial phase of the laser point and a phase identification method based
on ODSFRF is proposed to reconstruct the ODS of the whole-bladed disk. In order to
determine the relative vibration phase between each blade, two laser beams are needed
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to participate in the experiment. In this paper, the vibration phases of each blade of the
bladed disk are, respectively, identified through the utilization of FRFs and ODSFRFs,
and the two methods yield consistent results. However, the ODSFRF is applicable in the
situation of unknown excitation. Bladed disks typically rotate at high speeds, and the
excitation under operating conditions is rather difficult to measure. Hence, this ODSFRF
method is anticipated to be potentially applied in the ODS measurement of rotating bladed
disks. According to the ODSs and the relative vibration phase angles of all blades, the
ODS of the whole-bladed disk has been reconstructed. The effects of the extended CSLDV
measurement method and phase identification of the bladed disk have been investigated
experimentally. To validate the accuracy of the ODS reconstructed based on CSLDV and
ODSFRF, a discrete point testing experiment in SLDV was carried out supplementarily.
The results show that the CSLDV and phase identification method for the bladed disks are
feasible and they take less time to obtain the same high-precision ODS.
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