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Abstract: A chitosan-based Cu2+ fluorescent probe was designed and synthesized independently
using the C-2-amino group of chitosan with 1, 8-naphthalimide derivatives. A series of experiments
were conducted to characterize the optical properties of the grafted probe. The fluorescence quenching
effect was investigated based on the interactions between the probe and common metals. It was
found that the proposed probe displayed selective interaction with Cu2+ over other metal ions and
anions, reaching equilibrium within 5 min.
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1. Introduction

Heavy metal ions are important environmental pollutants, primarily caused by human
activities. The disruption caused by heavy metal ions can lead to their accumulation and
even transmission in plants and animals, from lower to higher levels in the food chain,
resulting in an extreme ecotoxicological impact, particularly on humans [1–3]. Cu2+ is a
significant environmental pollutant and a harmful element in biological systems under
overload conditions, which may lead to neurodegenerative disorders due to its likely
involvement in the formation of reactive oxygen species [4–6]. The detection of Cu2+

in vitro or in vivo consistently represents an active area of research.
Various traditional analytical methods exist, including AAS (atom absorption spectrom-

etry), ICP-ES (inductively coupled plasma emission spectrometry) and ICP-MS (inductively
coupled plasma mass spectrometry), etc. It is well known that these technologies offer
good intelligent automation and limits of detection, but are very expensive and do not
easily analyze on site [7–9]. Fluorescence probes have become a promising strategy because
of their simplicity, non-destructive characteristics and structural modification to various
conditions, etc. [10–12], which can translate molecular recognition information into tangible
fluorescence signals by connecting a specific group to a fluorophore through organic meth-
ods. Currently, the development of Cu2+-specific fluorescent probes has been extensively
explored [13–15]. Even though many innovative achievements have been made to realize
Cu2+-related detection, most of them restricted their applications due to a long equilibrium
time, lack of selectivity or poor sensitivity [16–18]. Therefore, the development of new
technologies is urgently needed to address these issues to meet a wider range of demands.
In recent years, researchers have explored a novel approach to design and prepare sensing
materials by modifying chitosan with fluorescence dyes. These fluorescent materials have
been applied to recognize heavy metal ions and have shown high selectivity and sensitivity.

Chitosan, the only cationic natural polysaccharide found in nature so far, has been widely
used in cosmetics, the food industry, medical supplies and bioengineering, etc. [19–21]. Firstly,
chitosan is a natural polymer with non-toxic, hydrophilic properties, biodegradability, and
good renewability. Secondly, the hydroxyl and amino groups within chitosan molecules
exhibit strong activity, making them easily amenable to chemical grafting and modification.

Sensors 2024, 24, 3425. https://doi.org/10.3390/s24113425 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24113425
https://doi.org/10.3390/s24113425
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s24113425
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24113425?type=check_update&version=2


Sensors 2024, 24, 3425 2 of 10

Additionally, the presence of amino and hydroxyl groups enables chitosan molecules to
form intramolecular and intermolecular hydrogen bonds, resulting in a three-dimensional
complex network structure capable of chelating heavy metal ions. Lastly, the attachment
of multiple dye molecules onto a single chitosan molecule exhibits an optical additive
effect during tissue binding and imaging, which significantly enhances the sensitivity and
reduces the usage of probe. These unique properties render chitosan as an ideal carrier
for functional fluorescent probes. In recent years, the amino group has been identified as
the key factor affecting the activity of chitosan in the construction of fluorescent probes.
Pournaki constructed a fluorescent probe through the esterylamolysis reaction between C-2
amino of chitosan and benzopyran derivatives to realize the identification of Fe3+ under
acidic conditions [22]. Men et al. produced a Schiff base using the chitosan C-2-amino
group with rhodamine glyoxal derivatives, which was successfully applied to recognize and
adsorb Hg2+ in water [23]. The aforementioned studies validated the potential application
of chitosan-based multifunctional materials in metal ion analysis.

Herein, we presented a novel fluorescent material obtained through the modification
of chitosan with naphthalimide dye. We anticipated that this fluorescent material could
serve as a probe for the analysis of Cu2+ in environmental samples through fluorimetric
or colorimetric methods. The synthetic scheme employed for chitosan-based fluorescent
materials is illustrated in Figure 1.
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2. Materials and Methods
2.1. Instruments and Reagents

Fluorescence spectra were determined with an F-4600 fluorescence spectrometer (Hi-
tachi, Tokyo, Japan). FT-IR spectra were recorded on a Nicolet Magna-IR 750 spectrometer
equipped with a Nic-Plan Microscope (Nicolet, Madison, WI, USA). 1H NMR spectra
were performed by a Bruker AV 400 instrument with tetramethylsilane (TMS) as an in-
ternal standard and DMSO-d6 as a deuterium generation reagent (Bruker, Karlsruche,
Germany). Absorption spectra were measured with a U-2910 spectrophotometer (Hitachi,
Tokyo, Japan). All pH measurements were made with a Model PHS-3C meter (Jinpeng,
Shanghai, China).

All reagents were analytically pure and purchased from Sigma-Aldrich Co. (St. Louis,
MO, USA) without special treatment before use. The metal ion salts used were NaCl, KCl,
CaCl2·2H2O, MgCl2·6H2O, CdCl2, CrCl3·6H2O, HgCl2, CuCl2·2H2O, FeCl3·6H2O, AgNO3
and AlCl3·6H2O; and anion species were from various salts such as NaHCO3, NaNO3,
Na2CO3, NaF, Na2SO4, Na2C2O4 and Na2HPO4.
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2.2. Synthesis of LCS-a

First, 1.0013 g of chitosan (LCS) was dissolved in 200 mL of anhydrous ethanol.
Subsequently, 3.0185 g of 4-bromo-1, 8-naphthalene anhydride was added to the reaction
flask. The mixture was refluxed for 8 h. The resulting product was then promptly filtered
and washed with hot ethanol. The precipitate of LCS-a obtained was subjected to extraction
using Sechelt’s extractor with ethanol for 12 h. IR (KBr): 3425.23 cm−1, 1779.22 cm−1,
1732.91 cm−1, 1588.16 cm−1, 1570.09 cm−1, 1299.06 cm−1, 1224.03 cm−1, 1132.76 cm−1,
1022.02 cm−1, 773.77 cm−1.

2.3. Synthesis of LCS-b

First, 0.5000 g of newly prepared LCS-a, 20 mL of anhydrous ethanol and 8 mL of
hydrazine hydrate (85%) were placed in a round-bottom flask. The reaction mixture was
refluxed for 6 h and cooled to room temperature. Then, the red brown precipitate of LCS-b
was extracted by Sechelt’s extractor with ethanol for at least 12 h. IR (KBr): 3441.09 cm−1,
3329.42 cm−1, 1638.30 cm−1, 1581.41 cm−1, 1537.33 cm−1, 1396.95 cm−1, 1366.06 cm−1,
1254.23 cm−1, 974.48 cm−1, 768.30 cm−1.

2.4. Synthesis of P

First, 0.2500 g of LCS-b and 40 mL of anhydrous ethanol were put into a three-neck
flask. Then, 1.1 mL of salicylaldehyde was added dropwise. After reflux for 7 h, it was
cooled to room temperature and filtered to obtain the crude product, which was further
purified using a Soxhlet extractor with anhydrous ethanol for 4 h to obtain P. IR (KBr):
3434.04 cm−1, 3278.44 cm−1, 1666.57 cm−1, 1583.60 cm−1, 1382.21 cm−1, 1336.13 cm−1,
1290.53 cm−1, 1239.53 cm−1, 1129.35 cm−1, 757.91 cm−1.

2.5. Preparation of the Test Solution

The solutions of various testing metal ion species were prepared from NaCl, KCl,
CaCl2·2H2O, MgCl2·6H2O, CdCl2, CrCl3·6H2O, HgCl2, CuCl2·2H2O, FeCl3·6H2O, AgNO3
and AlCl3·6H2O; and anion species were from various salts such as NaHCO3, NaNO3,
Na2CO3, NaF, Na2SO4, Na2C2O4 and Na2HPO4 to obtain 1 mM stock solution in the
twice-distilled water. A solution containing 2000 ppm of P was prepared in DMSO.

2.6. UV–Vis and Fluorescence Titration

Test solutions were prepared by placing 50 µL of the P stock solution (2000 ppm) into
a test tube, adding an appropriate aliquot of individual ions stock solution (1 mM), and
then diluting the solution to 5 mL with aqueous-ethanol media (pH 7.0, 20 mM HEPES,
v:v = 1:9). The excitation wavelength was recorded at 430 nm. The test medium was in the
aqueous-ethanol media (pH 7.0, 20 mM HEPES, v:v = 1:9).

2.7. The Calculation of the Combined Constant

The binding constants for the formation of the P-Cu2+ complex were evaluated using
the Benesi–Hildebrand plot [24].

1
F − F0

=
1

K(Fmax − F0)[Cu2+]n0
+

1
Fmax − F0

F0 is the fluorescence intensity of P without Cu2+, F is the fluorescence intensity of P
obtained with Cu2+, Fmax is the fluorescence intensity of P in the presence of an excess amount
of Cu2+ and K is the binding constant (M−1) determined from the slope of the linear plot.

3. Results and Discussion

3.1. FTIR and 1H NMR Spectra of the LCS, LCS-a and LCS-b

FTIR spectroscopy was employed to ascertain that the grafting of the naphthalimide
derivative onto chitosan was successful. As illustrated in Figure 2a, the IR spectra of LCS,
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LCS-a, LCS-b and P were presented. Initially, LCS exhibited vibrations about ~3400 cm−1

corresponding to the hydroxyl groups. Subsequent to the reaction of chitosan with naph-
thalimide, the characteristic absorption peak of the carbonyl group emerged in the range of
1800–1700 cm−1, signifying the successful synthesis of LCS-a. Following the grafting of the
hydrazyl group, LCS-b exhibited an absorption peak of the carbonyl group at 1600 cm−1,
accompanied by increased conjugation, while the characteristic absorption peak of -NH2
appeared at 3300 cm−1. After the Schiff base condensation reaction between LCS-b and
salicylaldehyde, the strong absorption peak at 1583 cm−1 was attributed to the stretching
vibration of C=N and the skeleton vibration of the benzene ring, and the absorption peak
of -NH2 disappeared. Crucially, a shift in the carbonyl stretching (i.e., 1666 cm−1) of the
grafted chitosan was observed, which was attributed to the presence of hydrogen bonding,
possibly between the carbonyl oxygen of naphthalimide and the available hydroxyl and
unreacted amine groups of chitosan. These results collectively indicated the successful
construction of P.
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In 1H NMR spectra of LSC-b (Figure S1) and P (Figure S2), the characteristic peak
of -NH2 at 5.67 ppm disappeared after the reaction of LCS-b and salicylaldehyde. The
peak of -NH shifted from a high field of 4.64 ppm to a low field of 11.10 ppm, while the
characteristic peaks of -OH and -N=CH appeared at 11.52 and 10.20 ppm, respectively,
which also confirmed the formation of P.

3.2. Application of P for the Detection of Cu2+

Fluorescent material P featured excellent optical property and displayed strong green
fluorescence at 560 nm in 10% aqueous solution at pH 7.0 (Figure 3a). With 100 µM of Cu2+,
the fluorescence intensity of P (20 ppm) was almost completely quenched, which could be
ascribed to a PET mechanism and/or a paramagnetic effect of Cu2+ [25]. No significant
spectral changes in P occurred in the presence of alkali or alkaline, earth metals or the first-
row transition metals including Na+, K+, Ca2+, Mg2+, Cd2+, Hg2+, Ag+, Cr3+, Fe3+ and Al3+.
The absorption spectra of P to Cu2+ were depicted in Figure 3b. P displayed an absorption
band with a peak at 462 nm, which was attributed to the energy bond of n-π* and π-π* in
the electron transition of naphthalimide. Upon addition of Cu2+, there was a noticeable
spectral change accompanied by a red-shifted absorption peak at 499 nm. Furthermore,
upon adding 1 equiv. of Cu2+ to the above other metal ions solution (100 µM), drastic
quenching occurred, consistent with the addition of 1 equiv. of Cu2+ alone, indicating
that Cu2+-specific responses were not affected by competitive metal ions (Figure 3c). The
fluorescence responses of probe P to Cu2+ in the presence of various coexistent anions
such as HCO3

−, NO3
−, CO3

2−, F−, SO4
2−, C2O4

2− and HPO4
2− were also investigated.

However, it is worth noting that C2O4
2− and HPO4

2− caused some interference.
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Figure 3. (a) Selectivity of P (20 ppm) in the presence of common metal ions (100 µM) including Na+,
K+, Ca2+, Mg2+, Cd2+, Hg2+, Ag+, Cr3+, Fe3+ and Al3+; (b) absorption spectra of P (20 ppm) for metal
ions (100 µM); (c) fluorescence response of P (20 ppm) to Cu2+ (100 µM) in the presence of other metal
ions (100 µM); (d) fluorescence response of P (20 ppm) to Cu2+ (100 µM) in the presence of anion ions
including HCO3

−, NO3
−, CO3

2−, F−, SO4
2−, C2O4

2− and HPO4
2− (100 µM) in the aqueous-ethanol

media (pH 7.0, 20 mM HEPES, v:v = 1:9).

Under the same experimental conditions, the interaction of P and various Cu2+ con-
centrations were employed to explain the effect on the quenching. As shown in Figure 4a,
the gradual increase in Cu2+ concentration resulted in a linear decrease in fluorescence in-
tensity, and there was no obvious change in spectral shape. It was found that the quenched
fluorescence intensity of P was directly proportional to the Cu2+ concentration, the emission
intensity at 561 nm and Cu2+ concentration in the range of 0.5–9 µM, which were found
linear with R2 = 0.998, indicating that P would be a highly efficient fluorescence probe for
Cu2+; the association constant K was determined from the slope to be 1.9 × 105 M−1, which
could be described by a Benesi–Hildebrand equation [24]. Meanwhile, the detection limit
of P for Cu2+ was established at 0.027 µM under current experimental conditions (based
on 3 s/k, s is the standard deviation of the measured intensity of the blank solution and k
is the slope of the plot in the inset of Figure 4a), which demonstrated that probe P could
be utilized for both qualitative and quantitative sensing of Cu2+, achieving a sensitivity
threshold of 30 µM Cu2+ in drinking water according to the World Health Organization
(WHO) standard [26]. As seen from Figure 4b, upon sequential addition of Cu2+, the absorp-
tion band centered at 499 appeared with increasing intensity, which induced a clear color
change from pale yellow to orange; meanwhile, the band at 462 nm decreased gradually
in intensity, with an isosbestic point at 413 nm. The ratio of absorbance at 499–462 nm
increased linearly with the increase in Cu2+ concentration (inset of Figure 4b).

Moreover, the fluorescence signal was significantly enhanced by adding different con-
centrations of EDTA to the solution containing P and Cu2+ (Figure 4c III–IV), while the
fluorescence intensity was again quenched when excessive Cu2+ was added (Figure 4c V–VI).
The experiment proved that probe P had good reversibility, which will be helpful for recycling.
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(0.5–9 µM) in the aqueous-ethanol media (pH 7.0, 20 mM HEPES, v:v = 1:9). Inset: Linear fluorescence
intensity at 561 nm of P (20 ppm) upon addition of Cu2+ (0.5–9 µM); (b) absorption spectra of P
(20 ppm) in the presence of different amounts of Cu2+ (0–0.6 µM) in the aqueous-ethanol media
(pH 7.0, 20 mM HEPES, v:v = 1:9). Inset: Absorbance ratio at 499 nm and 462 nm of P (20 ppm) upon
addition of Cu2+ (0–0.6 µM); (c) the reversibility experiment: I. P (20 ppm), II. P (20 ppm) + Cu2+

(10 µM), III. P (20 ppm) + Cu2+ (10 µM) + EDTA (10 µM), IV. P (20 ppm) + Cu2+ (10 µM) + EDTA
(100 µM), V. P (20 ppm) + Cu2+ (10 µM) + EDTA (100 µM) + Cu2+ (10 µM); VI. P (20 ppm) + Cu2+

(10 µM) + EDTA (100 µM) + Cu2+ (100 µM).

In addition, under the aforementioned optimal experimental conditions, we utilized
the standard addition method for quantitative analysis and detection of Cu2+ in three
types of commercially available bottled water. The results of the analysis are detailed
in Table 1. The experimental data indicated a high recovery rate (100.3–118%) for the
determination of Cu2+ in water samples using this method. Therefore, it is reasonable to
infer that fluorescence probe P can hold a significant practical application potential for
the analysis and detection of Cu2+ in real-world samples. Meanwhile, a comparison of
Cu2+-specific probes is presented in Table 2. Different probes derived from chitosan-based
naphthalimide or naphthalimide displayed different characteristics, exhibiting fluorescence
enhancement or quenching, which demonstrated a quick response [27–29], potential ap-
plication value [27,30–32] and high sensitivity [27,29,31]. Meanwhile, various drawbacks
could not be ignored, such as the organic solvent for dissolving [27–33], the long equilib-
rium time [31,32], narrow detection ranges [28], and low sensitivity [29,31]. Our probe P
was a valuable probe with a fast equilibrium time, wide detection range, good reversibility,
a visible light for excitation and emission. However, further optimization of probe structure
is needed to improve water solubility and extend applications. Generally, P had some
outstanding superiority to the other mentioned Cu2+-probes.
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Table 1. Determination of Cu2+ in sample water (n = 3).

Real Samples
Cu2+ (µM) Sum Results (n = 3)

(µM)
Recovery (%)

Added

Sample 1 6.0 7.0 118
8.0 8.4 105.4

Sample 2 6.0 6.8 112.7
8.0 8.0 100.3

Sample 3 6.0 6.9 115.6
8.0 8.2 102.6

Table 2. Performance comparison of various fluorescent probes for Cu2+.

Fluorescent Probes Fluorescence Modes Respond
Time (min) Reversibility Linear

Range (µM)
LOD
(µM) Testing Media Applications Ref.

Naphthalimide
derivative

Quench
ex/em = 390/520 nm 2 NA 0–7.5 0.0455 Water-DMSO

(1:9, v:v, pH 6.0) HeLa cells [27]

Naphthalimide
derivative

Quench
ex/em = 410/523 nm 2 NA 0.25–4.0 0.015 Water-MeOH

(2:1, v:v, pH 5.5) NA [28]

Chitosan-based
naphthalimide

Enhancement
ex/em = 480/557 nm 1 NA 0–55 4.75 NA NA [29]

Naphthalimide
derivative

Quench
ex/em = 430/525 nm NA NA 0.5–5.0 0.567 Water-MeOH

(1:1, v:v, pH 7.4)
River and tap
water samples [30]

Naphthalimide
derivative

Enhancement
ex/em = 360/432 nm NA reversible 0.05–0.9 0.03 Water-EtOH

(3:2, v:v, pH 7.4) NA [33]

Chitosan-based
naphthalimide

Quench
ex/em = 338/479 nm 15 NA 5–100 NA Acetic acid

aqueous solution Disease diagnose [31]

Chitosan-based
naphthalimide

Quench
ex/em = 365/532 nm 30 reversible 0–40 0.029 Water-DMF

(6:4, v:v, pH 7.0)
River, lake and tap

water samples [32]

Chitosan-based
naphthalimide

Quench
ex/em = 430/561 nm 5 reversible 0.5–9.0 0.027 Water-EtOH

(1:9, v/v, pH 7.0) NA This
work

3.3. Reaction Mechanism Research

The probable complexation between P and Cu2+ was further verified through the
selectivity of a series of controls as shown in Figure 5. The experimental results clearly dis-
played the interaction between each control compound and Cu2+. There was no significant
fluorescence signal change after Cu2+ was added to the solution of LCS-a. The combination
of LCS-b and Cu2+ only produced a weak fluorescence enhancement at 544 nm. However,
when P combined with Cu2+, the fluorescence quenching phenomenon was obvious at
561 nm, explaining the selectivity of P in Cu2+ detection and recognition.
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3.4. Experimental Condition Optimization

The effect of pH was first investigated to evaluate the sensing for Cu2+ as depicted in
Figure 6a. When pH < 4.5, the fluorescence intensity of P at 561 nm increased gradually
and a decrease in the fluorescence intensity followed the mixing of P with Cu2+. When
pH > 4.5, the fluorescence intensity of P and the P-Cu2+ system tended to remain fairly
static in the wide range of pH 5–10. Thereby, the pH control measurements revealed that
P was utilized in weak acid, neutral and weakly alkaline environments, which was an
advantage in later applications. To study the influence of time on the fluorescence intensity,
freshly prepared samples were immediately tested, and then a 5 min interval was set, as
seen in Figure 6b. The fluorescence signal was almost completely quenched within 5 min
after Cu2+ was added to the solution of P, which indicated that the reaction between P and
Cu2+ was almost instantaneous. Meanwhile, the effect of water content on fluorescence
quenching was also studied. Figure 6c showed that with the increasing volume fraction
of water, the fluorescence emission of P and P-Cu2+ can be strongly quenched. In order
to further explore the effect between P and Cu2+, all measurements were carried out in
aqueous-ethanol media (pH 7.0, 20 mM HEPES, v:v = 1:9).
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4. Conclusions

In summary, we successfully constructed a chitosan-naphthalimide fluorescence probe
that is capable of instantaneous selective detection of Cu2+. The result showed that the
chitosan-based fluorescent probe possessed high selectivity and sensitivity for Cu2+ over
other common metal ions, which confirmed that our idea was feasible. We believe that
this design concept should serve as a reference to develop new chitosan-based probes for
transition metal ions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s24113425/s1, Figure S1: 1H NMR of LCS-b, Figure S2: 1H NMR
of P.

https://www.mdpi.com/article/10.3390/s24113425/s1
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