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Abstract: This paper investigates the application of ensemble learning techniques, specifically meta-
learning, in intrusion detection systems (IDS) for the Internet of Medical Things (IoMT). It underscores
the existing challenges posed by the heterogeneous and dynamic nature of IoMT environments,
which necessitate adaptive, robust security solutions. By harnessing meta-learning alongside various
ensemble strategies such as stacking and bagging, the paper aims to refine IDS mechanisms to
effectively counter evolving cyber threats. The study proposes a performance-driven weighted
meta-learning technique for dynamic assignment of voting weights to classifiers based on accuracy,
loss, and confidence levels. This approach significantly enhances the intrusion detection capabilities
for the IoMT by dynamically optimizing ensemble IDS models. Extensive experiments demonstrate
the proposed model’s superior performance in terms of accuracy, detection rate, F1 score, and false
positive rate compared to existing models, particularly when analyzing various sizes of input features.
The findings highlight the potential of integrating meta-learning in ensemble-based IDS to enhance
the security and integrity of IoMT networks, suggesting avenues for future research to further
advance IDS performance in protecting sensitive medical data and IoT infrastructures.
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1. Introduction

The healthcare sector has undergone a significant transformation with the rise of the
Internet of Things (IoT) and the emergence of the Internet of Medical Things (IoMT), aimed
at improving patient quality of life [1]. In this context, the application of ensemble learning
in intrusion detection systems (IDS) for IoT and IoMT networks presents a promising
approach to enhance cybersecurity measures. Researchers have explored various ensemble
techniques, such as stacking, bagging, and boosting, to optimize the combination of diverse
base models for improved predictive accuracy and robustness in detecting anomalies within
IoT and IoMT environments [2,3]. The integration of ensemble learning in IDS for IoT and
IoMT networks addresses the critical need for reliable security solutions to protect sensitive
medical data and ensure the integrity of healthcare systems amidst the proliferation of
connected devices and services [4,5]. The use of ensemble learning in IDS for IoT and
IoMT networks provides a sophisticated approach to combat cyber threats and enhance
network security. By utilizing meta-learning and ensemble techniques, researchers can
develop adaptive intrusion detection mechanisms that dynamically adjust decision fusion
strategies based on evolving attack patterns and network conditions [6,7]. The combination
of machine learning algorithms, deep learning models, and ensemble methods in IDS for
IoMT networks not only improves anomaly detection capabilities but also contributes to
the creation of lightweight and efficient security solutions tailored to the unique challenges
posed by interconnected medical devices and IoT ecosystems [8,9]. As the field of IoT
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security evolves, the application of ensemble learning in IDS for IoT and IoMT networks
holds significant potential in strengthening healthcare systems against cyber threats and
ensuring the confidentiality and integrity of patient data [10,11].

Ensemble-based intrusion detection systems (IDSs) for the Internet of Medical Things
(IoMT) and the Internet of Things (IoT) face several challenges that impact their effective-
ness and reliability. One significant challenge is the inherent heterogeneity and resource
constraints of devices within IoMT and IoT networks, leading to difficulties in standardizing
security measures and ensuring consistent protection across all connected devices [12–14].
Moreover, the dynamic and evolving nature of cyber threats in healthcare environments
poses a challenge for ensemble-based IDSs, as they must continuously adapt to new attack
vectors and vulnerabilities to maintain robust security measures [15,16]. The complexity of
data fusion and analysis in IoMT and IoT environments further complicates the detection
of anomalies and intrusions, requiring sophisticated ensemble learning techniques to effec-
tively identify malicious activities while minimizing false positives [17,18]. Additionally,
the privacy and confidentiality of sensitive medical data present a critical challenge for
ensemble-based IDSs in IoMT and IoT networks, as unauthorized access or data breaches
can have severe consequences for patient safety and trust in healthcare systems [18,19]. The
scalability and interoperability of security mechanisms across diverse IoMT and IoT devices
also pose challenges for ensemble-based IDSs, as they must ensure seamless integration
and communication while maintaining robust security protocols [20,21]. Furthermore, the
rapid proliferation of connected devices and the increasing complexity of IoMT and IoT
ecosystems introduce challenges in managing and securing a vast network of intercon-
nected devices, requiring ensemble-based IDSs to adapt to the scale and diversity of these
environments to effectively mitigate security risks [2,22].

To address the challenges, leveraging meta-learning techniques can play a crucial
role in optimizing the combination of diverse base models within ensemble systems,
enhancing the adaptability and performance of IDSs in detecting anomalies and cyber
threats [23,24]. By utilizing meta-learning, IDSs can dynamically adjust decision fusion
strategies based on evolving attack patterns and network conditions, improving the robust-
ness and reliability of intrusion detection mechanisms in the IoMT environment [25,26].
Moreover, meta-learning can aid in addressing the interpretability challenges of ensemble
models, providing insights into how predictions are generated and enhancing trust in the
decision-making process of IDSs [27,28]. Furthermore, meta-learning can help overcome
the scalability challenges of ensemble-based IDSs in IoMT and IoT networks by optimizing
computational resources and improving efficiency in handling large datasets and real-time
applications [29,30]. By incorporating meta-learning techniques, IDSs can enhance their
generalization capabilities across diverse datasets and domains, ensuring consistent per-
formance and adaptability to varying network conditions and security threats [31,32].
Additionally, meta-learning can contribute to the development of robust and efficient
security measures in the IoMT, addressing privacy concerns, data integrity issues, and
the interoperability of security mechanisms across connected devices [33,34]. Overall, the
integration of meta-learning in ensemble-based IDSs for the IoMT holds significant promise
in advancing cybersecurity measures and ensuring the integrity and confidentiality of
sensitive data in connected environments.

Ensemble learning based on meta-learning encounters several challenges that affect
its effectiveness and applicability in various domains. One significant challenge is the
complexity of integrating multiple base models and meta-learners, necessitating careful
consideration of model selection, hyperparameter tuning, and feature engineering to opti-
mize the ensemble’s performance [35,36]. The interpretability of meta-ensemble models
poses another challenge, as the decision-making process may become opaque due to the
intricate interactions between base models and meta-learners, hindering the understanding
of how predictions are generated and affecting trust in the model’s outcomes [37,38]. More-
over, the scalability of meta-learning-based ensembles presents a challenge when dealing
with large datasets or real-time applications, as the computational resources required for



Sensors 2024, 24, 3519 3 of 18

training and inference can be substantial, impacting the model’s efficiency and practi-
cality [39,40]. Furthermore, the generalization of meta-learning-based ensembles across
diverse datasets and domains poses a challenge, as the performance of the ensemble may
vary significantly depending on the characteristics of the data and the task at hand [41,42].
The robustness of meta-ensemble models to adversarial attacks and noisy data is another
critical challenge, as the model’s decision-making process may be vulnerable to perturba-
tions or misleading inputs, leading to compromised performance and reliability [43,44].
Additionally, the lack of standardized evaluation metrics and benchmark datasets for
meta-learning-based ensembles hinders the comparison of different approaches and the
reproducibility of results, posing challenges in assessing the model’s performance and
generalizability [45,46]. Addressing these challenges is crucial to advancing the field of
meta-learning-based ensembles and unlocking their full potential in various applications
and domains.

Architectural diversity and decision aggregation in ensemble deep learning intrusion
detection system (IDS) models for the IoMT present several challenges and considerations.
Ensemble deep learning models combine multiple base models to enhance predictive accu-
racy and reliability through decision fusion strategies [47]. These models encompass vari-
ous ensemble techniques like bagging, boosting, stacking, and negative correlation-based
models, each with unique characteristics [48]. The aggregation of diverse architectures
in ensemble models, including homogeneous/heterogeneous ensembles, requires careful
consideration to leverage the strengths of each model effectively [49]. In the context of IDS,
ensemble learning plays a crucial role in improving detection accuracy by combining the
outputs of multiple classifiers [50]. However, the interpretability of individual ensemble
members may be lost during the aggregation process, highlighting a trade-off between
accuracy and explainability [51]. Moreover, the selection of appropriate ensemble learn-
ing models is essential to address the specific requirements of IDS, considering factors
such as feature selection and model performance [52]. Decision aggregation in ensem-
ble deep learning IDS models involves combining decisions from multiple submodels to
enhance prediction accuracy and overall performance [53]. This process requires careful
consideration of how decisions are fused to ensure optimal results. Additionally, the use
of ensemble learning in IDS frameworks, such as the all predict wisest decides (APWD)
model, demonstrates the importance of selecting the most appropriate model for each
class to improve intrusion detection capabilities [54]. In conclusion, addressing the issues
related to architectural diversity and decision aggregation in ensemble deep learning IDS
models requires a comprehensive understanding of ensemble techniques, careful selection
of models, and thoughtful decision fusion strategies. By leveraging the strengths of diverse
architectures and optimizing the aggregation process, the accuracy and reliability of IDS
systems can be improved.

To address the architectural diversity in ensemble deep learning IDS models, we
implement a meta-learning approach. Meta-learning involves training a meta-model that
learns how to best combine the outputs of diverse base models based on the characteristics
of each model and the specific task at hand. By utilizing meta-learning, the ensemble
system can adaptively adjust the decision aggregation process to optimize performance,
considering the strengths and weaknesses of each individual model. Meta-learning has
been successfully applied in various domains to improve the performance of ensemble
models by dynamically adjusting the combination of base models based on the input data
and the current task requirements. In the context of IDS for the IoMT, meta-learning can help
in effectively leveraging the architectural diversity present in ensemble models by learning
the optimal way to aggregate decisions from different models for intrusion detection tasks.
By incorporating a meta-learning component into the ensemble deep learning IDS model,
we can enhance the adaptability and performance of the system, addressing the challenges
posed by architectural diversity. This solution allows the ensemble system to dynamically
adjust its decision aggregation strategy based on the input data and the characteristics
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of the base models, leading to improved detection accuracy and reliability in intrusion
detection systems for the IoMT.

To this end, the contribution of this paper is three-fold as follows:

i. A performance-driven weighted meta-learning technique was developed to dynami-
cally assign voting weights to each classifier in the ensemble based on accuracy, loss,
and level of confidence of prediction.

ii. A meta-learning-based ensemble model was developed to detect intrusion attacks on
the IoMT by incorporating the technique into (i) the ensemble IDS model.

iii. An extensive experimental evaluation was conducted by investigating the performance
of the mode over various sizes of input features and comparing the performance with
existing models.

The rest of the paper is organized as follows: In Section 2, related works were explored.
Section 3 describes the methodology and proposed techniques. Section 4 presents and
discusses the experimental results and comparison with related models. The paper ends
with a conclusion section.

2. Related Works

Meta-learning has been recognized as a powerful technique for enhancing the perfor-
mance of ensemble models in various domains. By training a meta-model to effectively
combine outputs from different base models, meta-learning allows the ensemble system
to dynamically adjust its decision aggregation process based on individual model char-
acteristics and specific task requirements [55]. Research in drug discovery and sentiment
analysis has illustrated the efficacy of meta-ensemble deep learning methods in improv-
ing predictive accuracy by leveraging the interpretability of meta-learning to combine
individual models efficiently [36]. Moreover, meta-learning-based ensemble models have
demonstrated superior performance in tasks such as barrier layer thickness estimation and
microRNA prediction, surpassing individual models in terms of accuracy and spatial distri-
bution [56]. The application of meta-learning in ensemble models for tasks like time series
forecasting, energy consumption prediction, and network traffic classification has shown
promising outcomes in enhancing model generalizability and robustness [57]. The stack-
ing ensemble approach, which consolidates predictions from multiple machine learning
models into a single meta-learner model, has proven particularly effective in accelerating
predictions and enhancing overall performance [58]. By utilizing meta-learning techniques
in ensemble models, researchers can achieve improved performance by amalgamating
predictions from multiple models, ultimately leading to more robust and accurate outcomes
across a wide array of applications [59].

The utilization of meta-learning in ensemble models for intrusion detection systems
(IDS) offers a promising approach to enhance the accuracy and efficiency of anomaly
detection. By training a meta-model to dynamically adjust the decision aggregation process
based on the characteristics of individual base models and specific intrusion detection
tasks, meta-learning enables the ensemble system to optimize performance by effectively
combining diverse architectural models [60]. Research in the field of IDS has shown that
meta-learning-based ensemble models can adaptively adjust their decision fusion strategies,
leading to improved detection capabilities and robustness against network attacks [61].
Furthermore, a systematic literature review conducted on intrusion detection systems using
ensemble learning approaches highlights the effectiveness of meta-learning in protecting
network infrastructures from intruders and suspicious activities, showcasing a significant
improvement over traditional methods [33]. The application of meta-learning in ensemble
IDS models not only enhances detection accuracy but also contributes to the interpretability
and adaptability of the system. By leveraging meta-ensemble approaches, researchers can
address the challenges posed by architectural diversity in IDS models, leading to more
reliable and efficient intrusion detection mechanisms [60]. The integration of meta-learning
techniques in ensemble models for IDS can facilitate the identification of complex network
intrusions and improve the overall security posture of systems by dynamically adjusting
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decision aggregation strategies based on evolving threats and attack patterns [61]. Overall,
the use of meta-learning in ensemble IDS models represents a cutting-edge approach that
holds great potential for advancing the field of intrusion detection and cybersecurity.

Meta-learning in ensemble models involves various methods to optimize the combina-
tion of diverse base models for improved predictive accuracy and robustness. Techniques
such as bagging, boosting, and stacking are commonly employed in ensemble learning to
enhance model performance by leveraging the strengths of individual models and miti-
gating their weaknesses [62]. Meta-ensemble methods, which involve combining multiple
ensemble techniques, offer a comprehensive approach to adaptively adjust decision fusion
strategies based on the characteristics of each base model, leading to superior predictive
capabilities in tasks such as sentiment analysis and disease detection [36,63]. Additionally,
the use of feature importance permutation methods and hyperparameter optimization in
meta-learning on ensemble models allows for the evaluation of predictor contributions and
the fine-tuning of model parameters to achieve optimal performance [43,63]. Furthermore,
meta-learning techniques in ensemble models facilitate the development of sophisticated
approaches like stacking, where predictions from multiple base models are combined into
a meta-learner model to improve overall accuracy and generalizability [57]. By explor-
ing different ensemble methods such as bagging, boosting, and stacking, researchers can
effectively address the challenges of architectural diversity and decision aggregation in
ensemble deep learning IDS models, leading to more reliable and efficient intrusion detec-
tion systems [64]. The integration of meta-learning in ensemble models not only enhances
model interpretability and adaptability but also contributes to the advancement of various
domains, including healthcare, finance, and environmental science, by providing robust
and accurate predictive models [65–67].

3. The Methodology

In the evolving landscape of the Internet of Medical Things (IoMT), safeguarding
against cyber threats necessitates sophisticated intrusion detection systems (IDS). Our
research introduces an innovative ensemble architecture that leverages a suite of advanced
deep learning classifiers, including convolutional neural networks (CNNs), recurrent neu-
ral networks (RNNs), and autoencoders, each trained on a dataset rich in IoMT-specific
intrusion scenarios. This architecture is not only designed to identify the complex pat-
terns characteristic of IoMT data but also to adapt and respond to emergent cyber threats
dynamically. Central to our approach is the development of a meta-learner, a strategic
component engineered to intelligently orchestrate the various classifiers within the en-
semble. By continuously evaluating and optimizing the ensemble’s structure through
real-time performance metrics, the meta-learner enhances the IDS by selectively activating
and weighting the most effective models. This allows our system to focus its computational
prowess where it is most needed, ensuring high adaptability, accuracy, and efficiency in
threat detection within IoMT environments. Figure 1 shows the structure of the proposed
ensemble meta-learning IDS model. It consists of three main components: the data compo-
nent, where the original dataset is split into n of subsets using the bagging approach; the
ensemble’s base classifiers’ component, where each classifier makes an individual decision;
and the meta-learner component that receives the individual decisions and reweight them
before making the final decision based on voting.

3.1. A Performance-Driven Meta-Learner Weighting Technique

Our ensemble architecture integrates a selection of deep learning classifiers (Dj, where
j = 1, 2, . . . , m), including convolutional neural networks (CNNs), recurrent neural net-
works (RNNs), and autoencoders. These classifiers are trained on a dataset encompassing a
diverse range of intrusions pertinent to the IoMT, enabling them to capture and learn from
the complex patterns inherent in such data.

The development of a meta-learner for orchestrating deep learning classifiers within
an ensemble framework represents a pivotal component of our methodology, designed to
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bolster the IDS for the IoMT. This meta-learner is engineered to intelligently navigate the
complexities of IoMT data, leveraging the nuanced capabilities of deep learning models
to detect and respond to cyber threats. At its core, the meta-learner dynamically assesses
and optimizes the composition and configuration of the ensemble. It extracts and analyzes
meta-features from the outputs of each deep learning classifier based on classification
accuracy (Aj), loss metrics (Lj), and prediction confidence levels (Cj). These meta-features
serve as a basis for understanding the current efficacy and relevance of each classifier.

The meta-learner applies a strategic optimization process to determine the optimal
selection

(
S
(

Dj
))

and weighting
(
W

(
Dj

))
of deep learning classifiers within the ensemble.

The selection function (S) identifies which classifiers are most suited to address the current
threat dynamics, ensuring that only the most effective models are active at any given time.
Concurrently, the weighting function (W) allocates relative importance to each selected
classifier, adjusting their influence on the ensemble’s overall decision-making process based
on real-time performance metrics. This dual-function approach enables the ensemble to
adaptively recalibrate its strategy, focusing computational resources on classifiers that offer
the greatest contribution to detecting and mitigating intrusions. The meta-learner’s ability
to continuously refine the ensemble’s composition and weights in response to emerging
threats and changing IoMT environments underscores its innovative role in enhancing the
IDS’s adaptability, accuracy, and efficiency.
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3.1.1. Meta-Feature Extraction

Let Dj be a deep learning classifier within the ensemble, where j = 1, 2, ..., m. Each
classifier Dj is associated with a set of meta-features Fj = {Aj, Lj, Cj}, where

• Aj is the accuracy of classifier Dj,
• Lj is the loss metric for classifier Dj,
• Cj is the confidence level of the predictions made by Dj.

These meta-features are extracted from the outputs of each classifier and serve as the
inputs to the meta-learner.

3.1.2. Meta-Learner Optimization Functions

The meta-learner employs two primary functions: the selection function S
(

Dj
)

and
the weighting function W

(
Dj

)
.

Selection Function (S): This function determines whether a classifier Dj should be
included in the ensemble. It can be represented as a binary decision function where
S
(

Dj
)
∈ {0, 1}, with 1 indicating inclusion and 0 indicating exclusion. The decision is

based on a threshold mechanism or criteria defined on the meta-features Fj.
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Weighting Function (W): This function assigns a weight to each selected classifier,
indicating its relative importance within the ensemble. The weights are normalized to
ensure that.

∑m
j=1 W

(
Dj

)
= 1 (1)

where W
(

Dj
)
> 0 for all selected classifiers. The weighting function optimizes the en-

semble’s overall performance metric, which could be a combination of accuracy, precision,
recall, or any other relevant metric to the IDS objectives.

3.1.3. Ensemble Performance Optimization

The overall performance of the ensemble, Pensemble, is a function of the weighted
contributions of all selected classifiers. It can be represented as the following:

Pensemble = ∑m
j=1 W

(
Dj

)
.P
(

Dj
)

(2)

where P
(

Dj
)

is the performance metric of classifier Dj, which could be Aj, or a composite
metric derived from the meta-features Fj.

3.1.4. Objective Function

The meta-learner’s goal is to maximize Pensemble subject to computational constraints
and the dynamic nature of the IoMT threat landscape. This can be formulated as an
optimization problem:

max
sw

Pensemble (3)

subject to
∑m

j=1 Ωj
(

Dj
)
≤ Ωm (4)

where Ωj
(

Dj
)

represents the computational cost of including classifier Dj in the ensemble,
and Ωm is the maximum allowable computational budget for the ensemble.

This mathematical framework underpins the adaptive, real-time decision-making
capabilities of the meta-learner, enabling the dynamic selection and weighting of deep
learning classifiers to optimize the IDS’s performance in the face of evolving IoMT security
challenges. Algorithm 1 shows the pseudocode for the proposed meta-learner optimization
approach. (The Pseudocode for PMWT Technique. Note: The aggregation of predictions
in Evaluate_Ensemble could use techniques like weighted voting or averaging, where the
weight of each classifier’s vote or prediction is proportional to its updated weight Wi).

3.2. Training of Dynamic Ensemble-Based IDS for IoMT

In the development of our ensemble-based intrusion detection system (IDS) for the
Internet of Medical Things (IoMT), a pivotal step involves the training of the ensemble
model, which is composed of seven deep learning classifiers. To effectively harness the
collective strength of these classifiers, we employ the bagging technique—a bootstrap ag-
gregating method that introduces diversity and robustness into the model training process.
Specifically, the original training dataset, which is meticulously curated to encompass a
broad spectrum of IoMT-specific intrusion scenarios and benign activities, is randomly
split into seven smaller subsets using bagging. Each subset is then used to train one of the
seven classifiers independently. For the autoencoder’s training, an unsupervised approach
was used based on a subset of data that contains only one type of data (either normal or
attack). We used two autoencoders (one model for each type). The other five classifiers were
trained using the supervised approach, where both normal and attack data were included
in the training subsets. Out of the remaining five classifiers, CNN was used to train two
LSTM to train two classifiers. This approach not only enhances the generalization ability of
individual classifiers by exposing them to varied slices of the data but also mitigates the risk
of overfitting, as each classifier learns from a slightly different perspective of the data. The
bagging technique, by design, is particularly well-suited for the IoMT environment, where
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the data can be highly imbalanced and diverse due to the myriad devices and interaction
patterns present.

Algorithm 1. Meta-Learner_Optimization

Input: Ensemble of deep learning classifiers {C1, C2,. . ., C7}, Training data D
Output: Optimized weights for each classifier in the ensemble
1: Initialize weights Wi for each classifier Ci in the ensemble, i = 1 to 7, such that sum (Wi) = 1
2: For each training epoch or until performance converges do
3: For each classifier Ci in the ensemble do
4: Extract meta-features: Accuracy Ai, Loss Li, Confidence Level ConfLi from Ci using D
5: Calculate performance score PSi for Ci using Ai, Li, ConfLi
6: Update weight Wi for Ci based on PSi
7: End For
8: Evaluate ensemble performance on validation set using updated weights
9: If ensemble performance has converged or improved minimally then
10: Break from the loop
11: End If
12: End For

Procedure Calculate_Performance_Score(Accuracy Ai, Loss Li, Confidence Level ConfLi)
1: Define a performance function F that considers Ai, Li, ConfLi
2: Return performance score PSi = F(Ai, Li, ConfLi)

Procedure Update_Weight(Performance Score PSi)
1: Define a weighting strategy that adjusts Wi based on PSi
2: Update Wi according to the defined strategy
3: Normalize all weights Wi so that sum(Wi) = 1

Procedure Evaluate_Ensemble(Validation Data V)
1: For each data point in V do
2: Aggregate predictions from all classifiers using their weights Wi
3: End For
4: Calculate and return the overall performance of the ensemble on V

Upon training, each of the seven classifiers develops unique expertise in detecting
specific types of intrusions or anomalies within the IoMT network, contributing to a
comprehensive coverage of the threat landscape. The ensemble model then aggregates
the predictions of these classifiers to make a final decision, leveraging their collective
intelligence. The aggregation is overseen by the meta-learner, which dynamically adjusts
the weight assigned to each classifier’s vote based on its performance and relevance to
the current data stream, ensuring that the most competent classifiers have a proportional
influence on the ensemble’s outcome. This adaptive weighting mechanism is crucial for
maintaining the ensemble’s effectiveness over time, allowing it to respond adeptly to
evolving threats and to the introduction of new IoMT devices and technologies. Through
this sophisticated training and aggregation process, the ensemble model achieves a high
degree of accuracy and robustness in intrusion detection, embodying a potent defense
mechanism against the complex and dynamic cyber threats faced by the IoMT ecosystem.

Although the proposed model can identify cyber threats in IoMT environments, it is
important to consider the potential risk of overfitting. Overfitting arises when a model
acquires the ability to achieve outstanding performance on the training data, yet it struggles
to apply this knowledge to unfamiliar data. This problem holds significant importance in
IDS for the IoMT, considering the varied and ever-changing characteristics of cyber threats.
The model may develop a high level of specialization in detecting familiar attack patterns
found in the training data, which can make it challenging to identify novel or slightly
altered attacks. Furthermore, the dynamic weighting mechanism employed in our meta-
learning approach has the potential to excessively optimize the model for specific profiles
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encountered during training, thereby diminishing its capacity to generalize to unfamiliar
data distributions. The intricate nature of employing multiple deep learning classifiers
amplifies the likelihood of substantial variability, thereby diminishing the stability of the
model when confronted with novel data. Particular vulnerabilities encompass zero-day
attacks, adversarial attacks, and ever-changing attack strategies. In order to address the
issue of overfitting, we employ regularization methods such as dropout, L2 regularization,
and cross-validation as part of the training procedure. These techniques aid in preventing
the model from becoming excessively intricate and reliant on particular data points. In ad-
dition, the model utilizes continuous learning mechanisms and diverse data augmentation
techniques to ensure it can adapt to new attack patterns and maintain strong performance.
The proposed ensemble IDS model aims to ensure effective intrusion detection in the
dynamic IoMT environment by addressing risks and implementing strategies that maintain
high performance and adaptability.

3.3. Description of the Dataset

In our research, we utilized the WUSTL-EHMS-2020 dataset, which includes both
parameters of network flow and biometric data of patients. This dataset originates from a
testbed for an enhanced healthcare monitoring system (EHMS), which operates in real time.
The testbed’s architecture is composed of four key components: medical monitoring sensors,
a gateway for data transmission, network infrastructure, and a visualization and control
unit. Data collection begins with medical sensors attached to patients, progresses through
the gateway, and culminates at a server designated for data visualization, employing
routing and switching mechanisms for data transfer. The EHMS testbed aims to gather
both network flow metrics and patient biometric data within a system built on six essential
elements: a multisensor board, a central control hub or gateway, a data server, an IDS, a
simulated attacker, and a specialized network.

The PM4100 Six Pe Multi-Sensor Board, sourced from Medical Expo, features four
sensors that track vital patient indicators such as ECG, SpO2, body temperature, and blood
pressure. These sensors send data to a gateway laptop via USB, which then displays
the information through a GUI and forwards it to a server for further processing. The
server, running on Ubuntu, collects and analyzes the data to support medical decision-
making. The network includes an Ethernet switch connecting the server, IDS, and an attack-
simulating computer, with a router managing dynamic IP allocation. The IDS employs
Argus-v3.0.8.2 software to collect data on network flow and biometrics, analyzing traffic
packets for security. A computer running Kali Linux simulates attacks like data spoofing
or altering patient data in transit, representing potential security threats in healthcare
monitoring systems.

This setup reflects a realistic IoMT environment, where sensors on patients gather
essential health metrics and transmit this data to a gateway. The gateway acts as an interme-
diary, processing and sending sensor data to the server through the network infrastructure
efficiently. The system’s network design features various devices such as switches, routers,
and firewalls to facilitate data transmission from the gateway to the server. The server,
which handles control and visualization, presents the data in a format that healthcare
professionals can easily access and interpret, enabling them to monitor patient health in
real time and make well-informed medical decisions based on the visualized data.

The development and evaluation of the suggested model were carried out using a
range of software and utilities, including Python-v3.12.2, Skfeature-v1.1.2, TensorFlow-
v 2.15, Keras-v2, Scikit Learn-v1.3, and NumPy-v1.26.0. Furthermore, the arrangement
of data instances, the implementation of algorithms, and the analysis of findings were
conducted on a machine powered by an Intel(R) Core(TM) i7-4790 CPU @ 3.60 GHZ with
16 GB of RAM. This research gauged the efficacy of the proposed model using accuracy as
the primary metric for performance. Additional measures of the IDS model’s estimation



Sensors 2024, 24, 3519 10 of 18

errors were determined by examining its false positive rate (FPR), detection rate (DR), and
f-score (F1), as illustrated in the equations that follow:

ACC =
TP + TN

TP + TN + FP + FN
(5)

FPR =
FP

TN + FP
(6)

DR =
TP

TP + FN
(7)

F1 =
TP

TP + 0.5 ∗ (FP + FN)
(8)

where TP, TN, FP, and FN denote true positive, true negative, false positive, and false
negative, respectively.

4. Results and Discussion

In this study, the WUSTL-EHMS-2020 dataset was employed. It comprises network
flow parameters and patients’ biometric data of. The dataset is derived from a testbed
for an EHMS that functions in real time. The architecture of the testbed consists of four
essential components: medical monitoring sensors, a data transmission gateway, network
infrastructure, and a visualization and control unit. The dataset is carefully selected to
include a wide range of intrusion scenarios specific to the IoMT and normal activities.
The dataset includes many records, which guarantees a varied and representative sample
for both training and testing. More precisely, the dataset is partitioned into two subsets:
a training subset and a testing subset, with a ratio of 80:20. The training set is utilized
for model development, while the testing set is exclusively reserved for performance
evaluation. To enhance the reliability and reduce the risk of overfitting, we utilized cross-
validation as part of the training procedure. The initial training dataset was divided into
multiple subsets using the bagging technique, leading to the creation of several smaller
datasets. These smaller datasets were then utilized to train individual classifiers within the
ensemble. This technique enhanced the generalization ability of the classifiers by exposing
them to diverse slices of the data during the model training process, thereby introducing
diversity and robustness.

Figure 2 shows a comparative analysis of accuracy across four different intrusion
detection system models with a varying number of features. The proposed model, ME-IDS,
exhibits higher accuracy in most instances as the number of features increases, peaking
at an accuracy of 0.980 with 25 and 35 features. This model demonstrates a consistent
outperformance compared to the other models, particularly noticeable at the 20-feature
mark, where it surpasses the nearest competitor, DIS-IoT [68], by 0.005 and exhibits a more
significant lead over Stack-IDS [69] and EDL-IDS [70], which stand at 0.953. Notably, ME-
IDS maintains a robust accuracy level as the feature count increases, showing only a slight
decrease when the number of features is raised from 35 to 45. In contrast, Stack-IDS shows
a marked decrease in performance as the number of features grows, with a noticeable dip
to 0.939 at the 45-feature mark. DIS-IoT and EDL-IDS show less fluctuation in accuracy as
the number of features varies, but neither matches the peak accuracy of ME-IDS. Overall,
the proposed ME-IDS model demonstrates a strong performance, particularly in scenarios
with an intermediate number of features (20 to 35), suggesting an optimal balance between
feature set complexity and model accuracy.

The comparison of accuracy in Figure 2 indicates that the ME-IDS model, enhanced
by the integration of a meta-learner for model selection and weighting, along with a
self-optimizing ensemble architecture, consistently outperforms the other models across
various feature set sizes. The peak accuracy of 0.980 at both 25 and 35 features underscores
the efficacy of the meta-learner in dynamically tuning the ensemble. It suggests that
the meta-learner is adept at selecting and weighting the most predictive features, thus
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optimizing the model’s performance. The slight decline in accuracy observed when the
feature set expands beyond 35 could imply that there’s an optimal range within which the
meta-learner efficiently manages the feature space complexity before it begins to encounter
diminishing returns. This effect illustrates the self-optimizing characteristic of the ensemble
architecture, which adapts to the changing effectiveness of its constituent models as the
feature space evolves. The contrast with other models, such as Stack-IDS, DIS-IoT, and
EDL-IDS, which either show more significant performance drops or less pronounced peaks,
further highlights the contribution of the meta-learner’s intelligent feature management
and the robust adaptability of the ensemble framework. This adaptability is crucial in the
IoMT domain, where the landscape of network patterns and potential threats is continually
shifting, necessitating an IDS that can learn and optimize in real time.
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Figure 2. The comparison between the accuracy obtained by the proposed model and the related models.

The detection rate shown in Figure 3 presents a comprehensive overview of how the
proposed ME-IDS model fares against other established IDS models, such as Stack-IDS,
DIS-IoT, and EDL-IDS, across various feature set sizes. Notably, the ME-IDS model exhibits
a strong detection rate, especially at the 20-feature mark, achieving a peak rate of 0.970,
which significantly surpasses the corresponding rates of Stack-IDS, DIS-IoT, and EDL-IDS
at 0.934, 0.938, and 0.920, respectively. This highlights the model’s ability to effectively
identify intrusions when provided with a rich yet not overly complex feature set. Such a
performance could be attributed to the sophisticated integration of a meta-learner within the
ME-IDS model, which smartly selects and assigns weights to various classifiers, enhancing
the overall detection capabilities. Additionally, the self-optimizing ensemble architecture
likely contributes to maintaining high detection rates even as the number of features varies,
adapting to the model’s needs and the nature of the data it processes. Although there is a
slight decrease in detection rates for the ME-IDS model, with the number of features at 35
and then an increase at 40, it remains competitive, signifying the robustness of the model.
In contrast, Stack-IDS shows an increase in detection rates with the number of features,
peaking at 35 and 40, which suggests that Stack-IDS might require a larger feature set to
perform optimally. The other two models, DIS-IoT and EDL-IDS, exhibit less variability in
detection rates as the feature set size changes, but they do not reach the detection rates of
ME-IDS at its peak. The data underscores the potential effectiveness of the meta-learner in
optimizing detection rates within an ensemble model, especially in the context of IoMT,
where the accurate and timely detection of intrusions is critical for ensuring the security
and integrity of healthcare services.
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Figure 3. The comparison between the detection rate obtained by the proposed model and the re-
lated models.

The detection rate comparison in Figure 3 highlights the significant role of the meta-
learner in the proposed ME-IDS model’s ability to outperform related works over a range
of feature sets. The ME-IDS model’s exemplary peak detection rate at 20 features and its
consistent performance with larger feature sets are indicative of the meta-learner’s effective
model selection and weighting strategy. This strategy adeptly handles the complexity
introduced with more features, optimizing the trade-off between detection sensitivity and
the risk of overfitting. Furthermore, the self-optimizing ensemble architecture, which
likely underpins the ME-IDS model, demonstrates its ability to adapt to the intrinsic data
variability in IoMT environments. It achieves this by calibrating the ensemble in response
to the feedback from real-world deployment, thereby sustaining high detection rates. The
slight fluctuations in detection rates at higher feature counts hint at the ensemble’s dynamic
adjustment capabilities, showcasing the system’s resilience in adapting to a broader feature
space while maintaining competitive detection rates. This adaptability is crucial for IoMT
security, where the threat landscape is constantly evolving, and the IDS must be capable of
swift recalibration to maintain optimal performance.

The F1 measure comparison shown in Figure 4 between the proposed ME-IDS model
and existing IDS models reveals the ME-IDS model’s superior precision and recall balance,
particularly as the number of features increases. With an F1 score peaking at 0.996 for
30 features, the proposed model demonstrates an exceptional ability to maintain a high true
positive rate while minimizing false positives and negatives, which is pivotal in the IoMT
context, where the stakes for accurate detection are high. At 25 features, the ME-IDS model
begins to notably outdistance its counterparts, achieving an F1 score of 0.985 compared to
Stack-IDS, DIS-IoT, and EDL-IDS, which score 0.953, 0.965, and 0.953, respectively. This
significant margin suggests that the ME-IDS model is particularly effective at integrating
and utilizing a rich feature set to deliver a highly accurate intrusion detection performance.
The ME-IDS’s consistently high F1 scores across the feature set spectrum showcase the
nuanced capabilities of the meta-learner, which adeptly navigates the trade-off between
precision and recall. In an ensemble architecture, such a meta-learner ensures that the
most predictive models are given precedence, effectively synthesizing their predictions to
maximize the F1 measure. This is especially evident in the performance plateau observed
with higher feature counts (35 and 45), where the model maintains high F1 scores of
0.983 and 0.980, respectively, indicating the meta-learner’s proficient management of
complex feature interactions. The self-optimizing nature of the ensemble likely contributes
to these results, dynamically adjusting to the evolving data patterns and attack vectors
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characteristic of the IoMT environment. Such results underscore the effectiveness of the
proposed model in delivering robust intrusion detection performance, which is crucial for
the secure operation of IoMT systems.
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Figure 4. The comparison between the F1 score obtained by the proposed model and the related models.

The F1 measure comparison across the proposed ME-IDS model and other IDS mod-
els, as shown in Figure 4, provides insight into the effectiveness of the meta-learner in
optimizing the ensemble architecture for the complex task of intrusion detection in the
IoMT. The ME-IDS’s consistently high F1 scores, particularly the notable peak at 0.996 for
30 features, underscore the adeptness of the meta-learner in not only selecting the most
appropriate features but also in weighting the individual classifiers within the ensemble
to maximize both precision and recall. The meta-learner’s ability to achieve such high
F1 scores indicates a sophisticated understanding of the nuanced interplay between differ-
ent types of errors and their impact on the overall model performance. This balancing act is
crucial in IoMT environments where false positives can be as detrimental as false negatives.
Furthermore, the self-optimizing nature of the ensemble architecture, as evidenced by the
sustained high F1 scores even at larger feature counts, reflects its capacity to adapt to the
changing nature of the data and potential threats. The architecture’s ability to maintain
performance, adapting through the meta-learner’s ongoing adjustments, suggests that it is
not static but rather a dynamic system capable of evolving with the threat landscape. This
is particularly pertinent in the IoMT context, where the threat vectors can change rapidly
and unpredictably, necessitating an IDS that is both reactive and proactive in its learning
approach. The high F1 measure achieved by the ME-IDS model thus signifies the successful
application of meta-learning in conjunction with a self-optimizing ensemble architecture to
produce a robust and reliable intrusion detection system for the IoMT.

The comparison of the false positive rate (FPR) in Figure 5 measures the relationship
between the proposed ME-IDS model and the related IDS works, revealing the proposed
model’s proficiency in minimizing erroneous intrusion alerts. Notably, the ME-IDS model
demonstrates a superior capability to reduce false alarms, which is crucial in IoMT envi-
ronments where false positives can lead to unnecessary interventions or desensitization to
alerts. The model showcases its lowest FPR at 25 features with a rate of 0.101, indicating
a high level of specificity in identifying true threats. This outperforms the comparative
models: Stack-IDS with an FPR of 0.110, DIS-IoT at 0.104, and EDL-IDS at 0.115, illustrating
the ME-IDS model’s effective discrimination between normal and anomalous behaviors.
This low FPR can be attributed to the fine-tuning capabilities of the meta-learner within
the ME-IDS architecture, which intricately balances sensitivity and specificity. The meta-
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learner’s model selection and weighting functions are tailored to prioritize classifiers that
not only detect intrusions with high accuracy but also with minimal false alarms. The slight
increase in FPR across all models, including ME-IDS, as the number of features grows to
45 suggests a complexity threshold beyond which the specificity of the model may slightly
diminish. However, the ME-IDS model’s FPR remains competitive, even at higher feature
counts, indicating the self-optimizing architecture’s ability to adjust and maintain a low
rate of false positives amidst an increasingly complex feature space. This emphasizes the
model’s reliability and the potential to provide a trusted layer of security in the IoMT
infrastructure.
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The false positive rate (FPR) comparison in Figure 5 sheds light on the intricate role of
the meta-learner within the ME-IDS model, especially when juxtaposed with related works.
The ME-IDS model’s capacity to sustain lower FPRs across varying numbers of features
is a testament to the meta-learner’s adept selection and weighting of classifiers. This is
evident in the notably lower FPR at 25 features, where the proposed model achieves a rate
of 0.101, significantly outperforming other models. Such an achievement suggests that the
meta-learner is effectively distinguishing between noise and true signal, a capability that is
particularly beneficial in the IoMT context, where false alarms can be costly and disruptive.
Moreover, the meta-learner’s strategy, which likely involves a nuanced understanding of
the IoMT data patterns, enables the model to maintain a competitive FPR even as the feature
space becomes more complex, as indicated by the FPRs observed with 40 and 45 features.
The self-optimizing architecture of the ensemble further enhances this performance, adjust-
ing to new data and potential threats dynamically. It implies an underlying mechanism
that can recalibrate the ensemble’s decision threshold in response to real-time feedback,
thus preserving a low FPR. This adaptability is crucial, as the IoMT environment is not only
diverse but also evolves rapidly, with new device types and usage patterns continually
emerging. The consistently low FPR of the ME-IDS model underlines the successful inte-
gration of the meta-learner with the self-optimizing ensemble architecture, culminating in
a robust IDS that minimizes the rate of false positives without compromising the detection
capabilities, thereby upholding the integrity and trustworthiness of IoMT security systems.

With respect to resource consumption, Table 1 shows that the proposed ME-IDS model
exhibits better resource utilization compared to other models due to its efficient design. The
model demonstrates decreased CPU utilization (ranging from 41% to 57% during training
and 20% to 30% during inference) and memory consumption (occupying 45% to 49% of
RAM). Additionally, it exhibits a notable reduction in inference time, processing each input
batch in 0.02 to 0.05 s. The enhancements can be attributed to various design elements like
dynamic weighting and meta-learning, which optimize the distribution of computational
resources and prioritize the most efficient classifiers. Likewise, regularization techniques
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such as dropout and L2 regularization prevent overfitting and efficiently manage memory
usage. Similarly, model pruning simplifies the ensemble by eliminating less effective
classifiers. By incorporating these techniques, the proposed ME-IDS model not only
enhances the precision and flexibility of detection but also guarantees better resource
utilization, rendering it suitable for resource-constrained environments like IoMT.

Table 1. Comparison of resource consumption between the proposed and related works.

Performance Measure ME-IDS (Proposed) Stack-IDS DIS-IoT EDL-IDS

CPU Usage
41–57% during peak

training; 20–30%
during inference

44–61% during peak
training; 35–42%
during inference

43–55% during peak
training; 37–48%
during inference

50–72% during peak
training; 45–62%
during inference

Memory Usage 45–49% of RAM 47–51% of RAM 49–55% of RAM 49–65% of RAM

Inference Time 0.02–0.05 s per input batch 0.11–0.14 s per input batch 0.17–0.2 s per input batch 0.14–0.23 s per input batch

Although the proposed system shows enhanced performance in various aspects, it
is crucial to consider and tackle the possibility of unexplored threat vectors or attack
types. The heterogeneous composition of the ensemble IDS is a crucial determinant in
the detection of novel and unrecognized security risks. The system utilizes a combination
of multiple detection techniques in the ensemble, which allows it to capitalize on the
advantages of different classifiers, thereby improving its capability to identify new attacks.
Every classifier within the ensemble could focus on specific aspects of threat detection,
guaranteeing thorough coverage and minimizing the chances of overlooking novel attack
patterns. The ensemble’s integration of anomaly detection techniques in conjunction with
signature-based detection is highly effective in identifying atypical behavior that may
indicate novel or unfamiliar attacks. This dual methodology guarantees that the system
can identify both known and unknown threats.

The integration of the IDS into existing IoMT environments poses significant chal-
lenges, especially in terms of compatibility with legacy systems and technologies. To tackle
these problems, we suggest implementing a modular structure that permits adaptable inte-
gration with different components of current IoMT frameworks. This will enable a gradual
implementation process to minimize any disruptions. Following common interoperability
standards like HL7, DICOM, and IEEE 11073 guarantees smooth communication with older
systems and a variety of medical devices. The integration layer of the IDS can be tailored
to meet the specific needs of various IoMT environments. It manages tasks such as data
transformation, protocol conversion, and other necessary modifications. By implementing
the IDS in phases, it is possible to gradually adapt to its use. This approach minimizes
the risk of compatibility issues by first deploying the system in a controlled environment
and then gradually expanding its scope. Thorough testing and validation, which includes
rigorous compatibility testing with different older technologies and conducting pilot stud-
ies, are performed to guarantee that the IDS functions smoothly with current systems. By
implementing these tactics, the proposed IDS can be seamlessly incorporated into cur-
rent IoMT frameworks, guaranteeing harmonious coexistence with outdated systems and
technologies while simultaneously bolstering the overall security and functionality of the
IoMT ecosystem.

5. Conclusions

The study explores the integration of ensemble learning techniques, specifically meta-
learning, for improving intrusion detection systems (IDS) in the Internet of Medical Things
(IoMT) environment. The research demonstrates that an ensemble-based IDS, optimized
with meta-learning strategies, can significantly improve the detection of cyber threats in
IoMT networks. The proposed performance-driven weighted meta-learning technique
dynamically assigns voting weights to classifiers based on their accuracy, loss metrics,
and confidence levels. The experimental evaluation reveals the model’s superiority in
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accurately detecting intrusions and demonstrates remarkable adaptability and efficiency
in handling complex IoMT data streams. The research emphasizes the importance of
advanced security measures to safeguard sensitive medical data and ensure healthcare
system reliability amid the proliferation of connected devices. Future research should
focus on refining meta-learning algorithms and exploring their applicability in real-world
IoMT scenarios. The integration of meta-learning in ensemble-based IDS holds significant
promise for advancing cybersecurity measures and ensuring the integrity, confidentiality,
and availability of critical healthcare data in connected environments.
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