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Abstract: Advancements in machining technology demand higher speeds and precision, necessitating
improved control systems in equipment like CNC machine tools. Due to lead errors, structural
vibrations, and thermal deformation, commercial CNC controllers commonly use rotary encoders in
the motor side to close the position loop, aiming to prevent insufficient stability and premature wear
and damage of components. This paper introduces a multivariable iterative learning control (MILC)
method tailored for flexible feed drive systems, focusing on enhancing dynamic positioning accuracy.
The MILC employs error data from both the motor and table sides, enhancing precision by injecting
compensation commands into both the reference trajectory and control command through a norm-
optimization process. This method effectively mitigates conflicts between feedback control (FBC) and
traditional iterative learning control (ILC) in flexible structures, achieving smaller tracking errors in
the table side. The performance and efficacy of the MILC system are experimentally validated on
an industrial biaxial CNC machine tool, demonstrating its potential for precision control in modern
machining equipment.

Keywords: iterative learning control; flexible feed drives; multivariable control; norm-optimal

1. Introduction

In advanced manufacturing equipment such as manipulators [1], CNC machine
tools [2], 3D printers [3], and lithography machines [4], the throughput and accuracy
of workpieces are significantly affected by the dynamic positioning accuracy of their feed
drive systems. In industrial applications, electromechanical systems are inevitably affected
by the structural dynamics of the feed drives and uncertain disturbance, significantly
limiting the achievable accuracy of motion control systems. For precision motion systems,
the ultimate goal is to use high-performance control algorithms to suppress various distur-
bances in diverse operational environments. Disturbances affecting control accuracy are
typically divided into two main categories: internal and external disturbances.

For CNC machine tool motion systems, cutting forces between the workpiece and
the tool are common forms of external disturbances. High-gain feedback controllers
are typically utilized to mitigate these disturbances induced by the process. To further
enhance performance, more advanced motion controllers have been considered. These
include pole placement [5], loop shaping [6], and H∞ synthesis strategies [7]. Additionally,
feedback control (FBC), using nonlinear control techniques like sliding mode control [8]
and model predictive control [9], was adopted to enhance the dynamic positioning accuracy
of motion systems.

On the other hand, the presence of internal disturbances, such as lead errors, thermal
errors, and weight deformation errors in ball screws, also limits commercial CNC machines
to closing the position loop using rotary encoder feedback. These disturbances can lead
to premature wear and damage to mechanical components when a linear encoder is
used to close the position loop [10]. Recent studies have illustrated that finite element
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modeling (FEM) methods can adeptly mitigate these inaccuracies [11]. However, the pre-
calibration process is notably time-consuming and requires substantial prior knowledge,
obstructing its widespread adoption in engineering applications. Additionally, due to the
inherent flexibility of the feed drive system, the accuracy at the motor side does not directly
correspond to the required precision at the table side, which is of primary interest. In light
of this, the present study proposes a strategy that iteratively refines the reference trajectory
commands based on the observed results from the linear encoder on the table side.

Residual vibrations pose another significant challenge to the dynamic accuracy of
precision motion stages, primarily stemming from the structural dynamics like resonance
damping in flexible feed drive components. These vibrations are induced by inertial forces
generated during high-speed and high-acceleration trajectories. However, FBC systems,
despite incorporating advanced algorithms, inherently experience delays and transient
responses to changes in reference inputs and disturbances. Conversely, a feedforward
control signal can be designed to preemptively target future reference commands and
disturbances, utilizing an understanding of the system’s dynamics and the information at
hand. Techniques like notch filtering [12] and input shaping [13] are employed to modify
the spectral energy around the resonance frequency in trajectory commands, aiming to
reduce vibrations induced by the trajectory. Yet, these approaches may introduce addi-
tional delays and can distort trajectory commands, which can compromise the accuracy
of contour tracking in multi-axis motion. Furthermore, plant inversion methods such as
Zero Phase Error Tracking Control (ZPETC) [14], Zero Magnitude Error Tracking Control
(ZMETC), or Nonminimum-Phase Zero Ignore (NPZ-Ignore) [15] can also be used for
pre-filtering trajectory commands to prevent vibrations and improve trajectory tracking
accuracy. Nonetheless, the effectiveness of these feedforward filtering techniques is depen-
dent on the precise inversion of the model, necessitating an accurate identification of the
system’s dynamic model.

Iterative Learning Control (ILC) is a feedforward control strategy designed to enhance
the performance of systems carrying out repetitive tasks [9,16,17]. This method utilizes
error information collected from previous tasks to enhance the performance of current
tasks, effectively suppressing the repetitive disturbances mentioned above. The underlying
assumptions of ILC is that the reference signal is repetitive. Each repetition is referred to as
an iteration, and the initial conditions (ICs) for each iteration are identical.

Notice that these assumptions are not restrictive, because repetitive machining is
very common in batch manufacturing. ILC can be effectively used to synthesize error
compensation strategies for such scenarios. It is usually integrated into an existing FBC
system since ILC itself is incapable of stabilizing an unstable system or compensating for
non-repetitive disturbances.

In the literature, there are several mainstream frameworks for designing ILC systems,
including model-based ILC, data-driven ILC, and adaptive ILC. Model-based ILC generates
control compensation using a known system model and previous error data. This strategy is
recognized for its simplicity and ease of implementation, featuring methods like frequency-
domain inversion-based and time-domain norm-optimal methods [17]. This technique
is widely used in manufacturing systems with linear models, such as CNC machines
and wafer stages. However, there is still room for improvement, including the study
of flexible structures in this paper. Data-driven ILC [18–21] parameterizes the learning
feedforward by introducing basis functions and iteratively obtaining optimal parameters
related to the model. This ensures performance under varying reference, but it has limited
ability to counter disturbances. Adaptive ILC [22–24] employs Lyapunov-like methods
to design learning rules and a parametric updating law to estimate system uncertainties.
This addresses uncertainties and disturbances in nonlinear systems. Over the past few
years, the ILC field has witnessed significant advancement. For instance, Zhang et al. [25]
proposed a data-driven ILC combined with predictive control to address the multivariable
tracking problem with actuator constraints. This approach transforms the problem into an
iteration-varying quadratic programming problem using only the system’s I/O data. Chi
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et al. [26] developed a data-driven indirect ILC method for repetitive nonlinear systems.
They introduced an adaptive iterative learning rule to update the gains of the indirect
iterative learning law for set-points. Li et al. [27] presented an iterative learning-based
predictive control method for asynchronous switching of multiphase batch processes with
complex characteristics. This method was implemented within the framework of a two-
dimensional system.

However, these ILCs are designed for minimizing a single variable, and thus, the
majority of existing ILC structures are only suitable for rigid body systems, where the
motor position and the table position are identical. A straightforward approach to mitigate
table-side errors while minimizing changes to the current rotary encoder feedback control
structure is to integrate an additional ILC based on linear encoder measurements. However,
conflicts between FBC and ILC might arise due to inconsistency between the motor side
and table side errors. Therefore, appropriate modifications to traditional ILC architectures
become necessary. Despite this, to the best of the authors’ knowledge, only a handful of
studies concentrated on ILC design for flexible structures.

Chen et al. [28] proposed a dual-stage ILC for robots with joint elasticity to address
model mismatch, but tuning the dual gains could be tedious, and the learning process must
be reset whenever the gains are adjusted. Wang et al. [29] introduced a robust H∞ synthesis
ILC, which integrated torque and motor reference learning to improve error convergence
and overcome the limitations of [28]. However, these approaches require more intricate
models, making the design process more complex. J. Wallen et al. [30] designed an observer-
based ILC, where table side displacements were inferred from real-time measurements of
the motor side displacements, and the standard ILC directly updated the compensation
command. Nonetheless, J. Bolder et al. [31] pointed out that this method could result
in internal instability if the ILC acted directly on performance variables (i.e., the table
side error) while the feedback controller acted on measurement variables (i.e., the motor
side error). Dumanli et al. [32] developed multiple prefilters based on flexible dynamic
systems to iteratively correct reference inputs and control compensation signals, ultimately
reducing errors at both the motor and table side. This approach involves designing each
filter separately, leading to a substantial design workload. Overall, these works highlight
the importance of well-coordinated learning in feedforward and FBC to achieve high-
precision motion.

It has been observed that prefiltering trajectory commands for FBC could overcome
the contradictions between FBC and ILC [31]. However, this requires an accurate model,
and robustness to disturbances is compromised. Motivated by the concept of prefiltering
trajectory commands, this paper introduces a multivariable ILC (MILC) method. This
aims to reconcile the conflicts between FBC and ILC, achieving precise table side trajectory
tracking in flexible drive systems. MILC constructs an error matrix to correct the trajectory
command and the control inputs, allowing for simultaneous suppression of errors in both
FBC and ILC. Then we carry out experiments to verify the effectiveness of MILC in a biaxial
motion stage.

The primary contribution of this paper is the development of a multivariable ILC
(MILC) framework that combines a two-degrees-of-freedom (DOF) architecture with refer-
ence shaping and feedforward compensation. This framework aims to enable simultaneous
suppression of errors in both the motor side and the table side for systems with flexible
feed drives. The specific contributions of this paper are outlined as follows:

C1: A thorough analysis of prevalent ILCs in controlling flexible structures, highlight-
ing the importance of reference shaping for enhancing ILC performance.

C2: The development of a two-DOF-based MILC framework that effectively reduces
feedback errors while boosting ILC performance.

C3: Experimental validation of the MILC approach on a motion system, demonstrating
its effectiveness.

This research underlines the need for careful consideration of the balance between
ILC and FBC objectives when applying ILC to motion systems with flexible feed drives.
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The remainder of this paper is organized as follows. Section 2 introduces the notation and
foundational concepts of model-based ILC. The problem under consideration is formulated
in Section 3. Section 4 details a combined reference shaping and control feedforward
MILC architecture designed for flexible structure control, including stability analysis and
considerations for implementation. Section 5 validates the effectiveness of the proposed
method by experiments. Lastly, conclusions are drawn in Section 6.

The following conventions of notations are adopted in this paper. A discrete-time
single-input, single-output (SISO) linear time-invariant (LTI) system P is expressed as
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where z denotes the complex variable of the z-transform for a discrete-time system, and A,
B, C, and D are matrices of the state space.

Let ∥x∥M := xT Mx, where x ∈ Rn and M ∈ Rn×n is positive definite (M ≻ 0), i.e.,
xT Mx > 0, ∀x ̸= 0. It is positive semi-definite (M ≽ 0) if and only if xT Mx ≥ 0, ∀x.

In this paper, the design of ILC is approached through the lifted form, which depicts
the input and output of a SISO and LTI system P in the following manner:
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where h is the impulse response of P, h[k] = CAk−1B, k = 1, 2, . . ., and N is the length of
each iteration. The underline denotes the respective lifted matrix form.

2. ILC Preliminaries

The MILC is a method that evolves from the model-based ILC. This section analyzes
the principles of the model-based ILC and the implementation methods of norm-optimal
calculations.

The standard ILC setup can be depicted in Figure 1. In this configuration, rd represents
the desired reference input; ym

j denotes the system trajectory output of the j-th iteration,
with the subscript j indicating the iteration number and the superscript m indicating
the motor side; ej represents the motion error of the j-th iteration; and uj signifies the
ILC compensation signal for the same iteration. PM stands for the motor side control
plant, which includes actuators, mechanics, and sensors, while CP is a feedback controller.
Additionally, a subscript of 0 indicates that the signal originates from the initial iteration
prior to the execution of ILC.
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The feedback error for the j-th iteration can be expressed as follows:

ej = rd − ym
j = Srd − Huj (3)

where S = (1 + CPPM)−1 represents the sensitivity function, and H = SPM is the learning
model that maps uj (the learning input) to ym

j (the desired output). When ILC feedforward is
not applied, as in the initial trial, where j = 0 and u0 = 0, the feedback error is expressed as
e0 = Srd. This error can be minimized by reducing the sensitivity function S at frequencies
where the power spectrum of rd and disturbances is significant, while also maintaining
the stability of the closed-loop system. To achieve this, the paper utilizes a traditional
proportional-integral-derivative (PID) type feedback controller.

The ILC compensation signal is calculated as follows:

uj+1 = Luuj + Leej (4)

where Lu and Le denote the learning functions [17,33], which are determined by minimizing
the criterion J presented in Definition 1.

Definition 1. (Performance criterion). A commonly used performance criterion for norm-optimal
ILC (NOILC) is defined as follows [14]:

J
(

uj+1, ej+1

)
=

∥∥∥ej+1

∥∥∥2

Wq
+

∥∥∥uj+1 − uj

∥∥∥2

Wr
+

∥∥∥uj+1

∥∥∥2

Ws
(5)

with (Wq, Wr, Ws) semi-positive definite weighting matrices, which are employed to impose
penalties on ej+1, uj+1 − uj, and uj+1, respectively. A smaller Wr results in a larger uj+1 − uj,
indicating increased sensitivity of the ILC output to the error information from the previous iteration.
As a result, the ILC becomes more vulnerable to non-repetitive disturbances. Conversely, to enhance
robust monotonic convergence, a common strategy is to increase Ws, which, however, slows down
the error convergence [34,35]. Thus, the selection of these weighting matrices involves balancing
robustness with performance.

Since ej+1 is affine with respect to uj+1, and J
(

uj+1, ej+1

)
is a convex quadratic function

of uj+1, the optimal feedforward control compensation uj+1 can be analytically derived by setting
the derivative of the cost function to zero:

dJ
(

uj+1, ej+1

)
duj+1

= 0 (6)

thereby identifying the optimal compensation u∗
j+1 for the next iteration, as described in [17] and

specified by Theorem 1.

Theorem 1. (Minimizer of the Performance Criterion in Definition 1) With the model H and data
from the previous iteration, including uj, ej, and rd, the optimal uj+1 that minimizes the NOILC
performance criterion in Definition 1 is:

Lu =
(

HTWqH + Ws + Wr

)−1(
HTWq H + Wr

)
(7)

Le =
(

HTWqH + Ws + Wr

)−1
HTWq (8)

Proof of Theorem 1. By rearranging ej and ej+1 in (3), and subsequently eliminating rd, we
can derive the error dynamics in the iteration domain as follows:

ej+1= ej + H(uj − uj+1) (9)
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Substitute (9) into (5) and solve (6) to obtain (7) and (8). □

From Theorem 1, it is evident that NOILC is capable of handling both multivariable
scenarios and noncausal computation, the latter of which enables it to effectively deal
with non-minimum phase systems. However, calculation of the N × N matrix inversion
in Equations (7) and (8) is computationally demanding. Consequently, J. van Zundert
introduced a more efficient NOILC algorithm [36] that solves Riccati equations to decrease
the computational load. For details on this algorithm, please see Appendix A.

3. Flexible Feed Drive and Problem Formulation

This section begins by introducing the fundamental two-mass model for flexible ball
screw feed drives, which aids in understanding our control objectives. It then proceeds
to outline the limitations associated with the direct application of standard ILC to motion
systems with flexible drives and feedback from the table side position, which is referred to
as Direct ILC (DILC) in this paper.

3.1. Dynamics of Flexible Ball Screw Drive

Presently, ball screw (BS) feed drives are the predominant choice in most industrial feed
drive systems. A typical ball screw feed drive in CNC machine tools and its corresponding
two-mass model are illustrated in Figure 2a,b [25]. Due to the flexible coupling and the
long shaft between the motor and the table, this mechanism can be modeled as a flexible
two-mass system [37]. The achievable motion accuracy of this system is constrained by
structural vibrations. In the diagram, mM and mT represent the mass on the motor side and
the table side, respectively. The control input is denoted as u, while cs and ks represent the
viscous damping and the finite stiffness coefficients between the two masses. cM and cT
signify the viscous friction arising from the guideway and bearing system.
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The aforementioned equations can be translated into the Laplace(s) domain as follows:

PM(s) =
mTs2 + (cs + cT)s + ks

q1s4 + q2s3 + q3s2 + q4s
(11)

PZ(s) =
PT(s)

/
PM(s)

=
css + ks

mTs2 + (cT + cM)s + ks
(12)

where PM(s) and PT(s) represent the transfer functions (TF) from the control input u to
the motor side and table side position, ym and yt, respectively. Then Pz(s) defined in (12)
is the TF from the motor side position to the table side position. In addition, q1 = mMmT ,
q2 = (mT + mM)cs + mMcT + mTcM, q3 = (mT + mM)ks + cMcT + (cM + cT)cs, and q4 =
(cM + cT)ks.

In the case of collocated control, where the sensor and the actuator are located in
close proximity, FBC is designed based on PM(s). This setup leads to an antiresonance
vibration mode at ωAR =

√
ks/mT , as shown in Figure 2d. On the other hand, in the non-

collocated control strategy, where the feedback signal is taken from the table side (PT(s)),
the system exhibits the natural resonance vibration mode at ωR =

√
ks(mT + mM)/mMmT ,

as illustrated in Figure 2e.
Both the resonance and anti-resonance vibration modes can cause relative motion

between the motor and the table side, and adversely affect the positioning accuracy of the
table. This fact highlights that it is necessary to control both the motor side and the table
side simultaneously. A majority of industrial servo closed-loop control systems primarily
employ the collocated control approach to guarantee larger stability margins [38]. Addi-
tionally, mechanical manufacturing errors such as lead errors, and thermal deformation
of the BS, can cause premature wear and damage if a non-collocated control strategy is
directly utilized.

Therefore, building upon the arguments presented in Section 1, we propose an MILC
method based on collocated control in Section 4. This approach involves iterative tuning to
both the control compensation and the reference input, aiming to simultaneously suppress
position errors on both the motor side and the table side. To demonstrate the effectiveness
of MILC, the following subsection presents the theoretical analysis and proof of traditional
ILC directly applied to flexible structures.

3.2. Applying Standard ILC to the Flexible Structure

As illustrated in Figure 3 [30], the traditional ILC, when directly applied to flexible
structures, is referred to as DILC in this paper. Within the DILC framework, the feedback
controller regulates the motor side error, i.e., ec1

j = rd − ym
j , while the ILC is designed to

control the table side error, i.e., ez1
j = rd − yt

j.
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time horizon, is also widely utilized in ILC systems [17], where the repetitive signals
have finite lengths. Employing a frequency domain approach sheds light on the system’s
performance across different frequencies, making the interaction between FBC and DILC
more comprehensible.

Define the total control input to the plant as vj = uj + uc
j = uj + CP

(
rd − PMvj

)
; then

vj = Suj + SCPrd (13)

The error on the table side is expressed as:

ez1
j = rd − yt

j = rd − PZPMvj = (1 − PZPMSCP)rd − PZPMSuj

= (1 − PZ(1 − S))rd − PZPMSuj
(14)

By comparing (3) and (14), it is observed that the learning model for DILC is repre-
sented by HD = SPMPZ. On the assumption that the ILC stability condition, as detailed
in [17], is satisfied, we proceed in our analysis to the steady-state behavior (i.e., j → ∞ ) of
DILC. The steady state signals of uj, uc

j , ez1
j , and ec1

j are henceforth denoted as u∞, uc
∞, ez1

∞ ,

and ec1
∞ , respectively. Employing Equation (4) as a basis, we derive the following equation:

u∞ = (1 − Lu)
−1Leez1

∞ (15)

By substituting (15) into (14), we obtain

ez1
∞ = (1 − PZ(1 − S))rd − PZPMSu∞

= (1 − Lu)(1 − Lu + PZPMSLe)
−1(1 − PZ(1 − S))rd

(16)

Consequently, the steady-state output of DILC is given by

u∞ = Le(1 − Lu + PZPMSLe)
−1(1 − PZ(1 − S))rd (17)

On the other hand, as derived from (13), the error at the motor side is formulated as

ec1
j = rd − ym

j = rd − PMvj = Srd − PMSuj (18)

Based on these expressions for the steady-state errors, we put forward the following
proposition. This proposition underscores the equilibrium between errors and control
inputs, not only on the table side but also on the motor side.

Proposition 1. Assume that the DILC system in Figure 3 is stable. Then

1. ∥(1 − PZ)rd∥2 ≤
∥∥∥ez1

j

∥∥∥
2
+ ∥Pz∥2

∥∥∥ec1
j

∥∥∥
2
, where ∥P∥2 denotes the 2-norm of P;

2. uc
∞ = (1 − Lu + PZPMSLe)

−1[CP(1 − Lu) + Le]Srd − u∞.

Proof of Proposition 1. (a) According to (14),

ez1
j = (1 − PZ(1 − S))rd − PZPMSuj

= Pz
(
Srd − PMSuj

)
+ (1 − Pz)rd

= PZec1
j + (1 − PZ)rd

(19)

Then the result follows from the triangular inequality.
(b) From Figure 4 and (17), the steady-state control input from the feedback controller is
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uc
∞ = CPSrd − CPPMSu∞ = CPSrd − (1 − S)u∞

=
[
CPS − (1 − S)Le(1 − Lu + PZPMSLe)

−1(1 − PZ(1 − S))
]
rd

= (1 − Lu + PZPMSLe)
−1[CPS(1 − Lu) + (1 − S)PZSLe − (1 − S)Le(1 − PZ(1 − S))]rd

= (1 − Lu + PZPMSLe)
−1[CP(1 − Lu) + Lu]Srd − u∞

(20)

□
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Proposition 1a posits that both ez1
j and ec1

j are restricted by a lower bound, which is
∥(1 − PZ)rd∥2. This suggests that for a specified rd, they cannot simultaneously diminish to
zero. Proposition 1b, on the other hand, illustrates inherent conflict between the feedback
controller and DILC. To be specific, uc

∞ cancels out u∞, signifying that they counteract each
other in the steady state.

This observation can be understood by examining the resonance modes illustrated
in Figure 2. Structural vibrations, induced by large accelerations within the trajectory
reference, cause relative motion between the motor and table sides. Concentrating solely on
mitigating errors on one side inevitably leads to an amplification of errors on the opposite
side, given the interconnected nature of these components. Consequently, the positioning
accuracy attained is suboptimal.

In addition, we explore an extreme scenario where ws = 0 in (5). According to
(7), Lu = 1, and based on (16), ez1

∞ = 0. By employing Equations (17) and (20), it is
determined that

u∞ = (PZPMS)−1(1 − PZ(1 − S))rd (21)

and
uc

∞ = (PZPM)−1rd − u∞ (22)

For systems with rigid connections, that is, PZ = 1, Equation (22) indicates that uc
∞ = 0,

implying that only DILC contributes to the control input in the steady state. However, when
PZ ̸= 1, there occurs a cancellation effect between uc

∞ and u∞. Moreover, in a well-designed
FBC system, |S(ω)| ≪ 1 for the frequencies within the control bandwidth. Consequently,
according to (22), both u∞ and uc

∞ could become exceedingly large, potentially leading
to the saturation of the hardware devices or introducing numerical complexities in the
implementation of the control algorithm.

4. Proposed Approach and Analysis

As previously mentioned, direct application of DILC to flexible feed drive systems
results in a conflict between the objectives of FBC and ILC. To mitigate this issue, this section
aims to suppress both motor side errors and table side errors. This objective is achieved by
refining the control compensation and reference inputs, leading to the development of a
multivariable ILC (MILC) architecture. This strategy forms contribution C2 of this study. In
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addition, comprehensive insights into the stability analysis and the specific implementation
of this architecture are thoroughly discussed.

4.1. Multivariable ILC Design

The structure of the MILC is depicted in Figure 4, where rj and uj represent the
reference update and the control compensation update, respectively. It is important to note
that during the initial trial, r0 = Cyrd with the prefilter Cy = P−1

Z , and u0 = 0. Within this
MILC framework, the calculations of ym

j and yt
j are as follows:

ym
j = CPPMSrj + PMSuj (23)

yt
j = CPPMPZSrj + PMPzSuj (24)

In this context, ec2
j signifies the motor side error utilized for the feedback controller

within the MILC framework. This is expressed as

ec2
j = rj − ym

j (25)

Furthermore, ez2
j representing the table side error, is the ultimate interest for control,

and expressed as follows:
ez2

j = rd − yt
j (26)

The Equations (23)–(26) can be reorganized into matrix form as follows:[
ec2

j
ez2

j

]
=

[
0
rd

]
−

[
ym

j − rj

yt
j

]
=

[
0
rd

]
−

[
PMS −S
PMPZS CPPMPZS

][
uj
rj

] (27)

Define the learning model of MILC as HM =

[
PMS −S

PMPZS CPPMPZS

]
; then

[
ec2

j
ez2

j

]
=

[
0
rd

]
− HM

[
uj
rj

]
(28)

The MILC update rule in lifted system format is as follows:[
uj+1
rj+1

]
= Lu

[
uj
rj

]
+ Le

[
ec2

j
ez2

j

]
(29)

The purpose of this design is to effectively suppress both motor side FBC error ec2
j

and table side performance error ez2
j , while avoiding the issues associated with DILC,

as highlighted in Proposition 1. Equation (29) implies that the MILC strategy is a two-
DOF approach.

This paper uses the following algorithm steps to demonstrate the algorithm process:

Step 1: Set rj =
1
Pz

rd, uj = 0. Perform the tracking control task in real time with FBC only.
Step 2: For j ≥ 0, collect errors ec2

j and ez2
j , and use Formula (9) to offline calculate the

compensation for the next iteration, rj+1 and uj+1.
Step 3: Perform the tracking control task in real time with reference rj+1, and ILC compen-
sation uj+1.
Step 4: Return to Step 2 and repeat until the desired number of iterations is achieved.
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4.2. Implementation Aspects

Fundamentally, MILC functions as a multiple-input, multiple-output (MIMO) system,
whose learning rule can be realized through the model-based NOILC detailed in Section 2
and Appendix A. Furthermore, the stability of MILC is guaranteed if the weighting matrices
in (5) are chosen appropriately, as shown in Section 4.3. The precondition for efficient
implementation of the NOILC method is to possess a state-space model that maps ILC
learning inputs to the desired output, as outlined in Appendix A. To obtain this model, the
blocks in Figure 4 are expressed in state-space representation, as follows:
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connection as outlined in (27), (30), (31), and (32), we arrive at the aforementioned repre-
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4.3. Stability and Convergence Analysis of MILC 
In this subsection, monotonic convergence conditions of MILC are explored for the 

nominal plant model.  

Theorem 2. (Monotonic convergence condition of MILC) In the NOLILC algorithm, where 𝑊 ≽0, 𝑊௦ ≽ 0, and  𝑊 ≽ 0 as defined in Definition 1, monotonic convergence for MILC is guaranteed 
for MILC learning laws (29) if 𝑊 and 𝑊௦ are symmetric, 𝑊௦ ≻ 0, and 𝑊 = 𝑤𝐼ே, where 𝑤 >0 and 𝐼ே denotes an 𝑁 × 𝑁 identity matrix. 

Proof of Theorem 2. According to (28) and (29), the trial dynamics of MILC can be ex-
pressed as ቂ𝑢ାଵ𝑟ାଵ ቃ = ቀ𝐿௨ − 𝐿𝐻ெቁ ቂ𝑢𝑟 ቃ + 𝐿  0𝑟ௗ൨ (34)

Monotonic convergence [33] of the MILC output requires that ቛ𝐿௨ − 𝐿𝐻ெቛଶ < 1 (35)

where ‖(•)‖ଶ denotes the induced 2-norm a of matrix (•). For the NOILC design learn-
ing in (7) and (8), we can derive ቛ𝐿௨ − 𝐿𝐻ெቛଶ = ฯቀ𝐻ெ்𝑊𝐻ெ + 𝑊௦ + 𝑊ቁିଵ 𝑊ฯଶ < 1 (36)

Given the conditions that 𝑊 ≽ 0 , 𝑊௦ ≻ 0  and they are symmetric, we have 𝑋 =𝐻ெ்𝑊𝐻ெ + 𝑊௦ is symmetric and positive definite. In addition, ቀ𝐻ெ்𝑊𝐻ெ + 𝑊௦ + 𝑊ቁିଵ 𝑊 = (𝑤ି ଵ𝑋 + 𝐼ே)ିଵ (37)

(32)

and they are assumed to be minimal realizations.

Lemma 1. The state space representation of HM as depicted in Equation (28), specifically the
transfer matrix from

(
uj, rj

)
to

(
−ec2

j , yt
j

)
, is given by:
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Monotonic convergence [33] of the MILC output requires that ቛ𝐿௨ − 𝐿𝐻ெቛଶ < 1 (35)

where ‖(•)‖ଶ denotes the induced 2-norm a of matrix (•). For the NOILC design learn-
ing in (7) and (8), we can derive ቛ𝐿௨ − 𝐿𝐻ெቛଶ = ฯቀ𝐻ெ்𝑊𝐻ெ + 𝑊௦ + 𝑊ቁିଵ 𝑊ฯଶ < 1 (36)
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(33)

with

A =

 Ac
BmCc

0

−BcCm
Am − BmDcCm

BzCm

0
0

Az

, B =

 0
Bm
0

Bc
BmDc

0

, C =

[
0 Cm 0
0 0 Cz

]
, and D =

[
0 −1
0 0

]
.

where boldface 0 denotes the zero matrix with appropriate dimension.

Proof of Lemma 1. By systematically substituting the state updates and the output in-
terconnection as outlined in (27), (30), (31), and (32), we arrive at the aforementioned
representation. □

4.3. Stability and Convergence Analysis of MILC

In this subsection, monotonic convergence conditions of MILC are explored for the
nominal plant model.

Theorem 2. (Monotonic convergence condition of MILC) In the NOLILC algorithm, where
Wq ≽ 0, Ws ≽ 0, and Wr ≽ 0 as defined in Definition 1, monotonic convergence for MILC is
guaranteed for MILC learning laws (29) if Wq and Ws are symmetric, Ws ≻ 0, and Wr = wr IN ,
where wr > 0 and IN denotes an N × N identity matrix.

Proof of Theorem 2. According to (28) and (29), the trial dynamics of MILC can be
expressed as [

uj+1
rj+1

]
=

(
Lu − LeHM

)[uj
rj

]
+ Le

[
0
rd

]
(34)
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Monotonic convergence [33] of the MILC output requires that∥∥Lu − LeHM
∥∥

i2 < 1 (35)

where ∥(•)∥i2 denotes the induced 2-norm a of matrix (•). For the NOILC design learning
in (7) and (8), we can derive

∥∥Lu − Le HM
∥∥

i2 =

∥∥∥∥(HM
TWqHM + Ws + Wr

)−1
Wr

∥∥∥∥
i2
< 1 (36)

Given the conditions that Wq ≽ 0, Ws ≻ 0 and they are symmetric, we have X =

HM
TWq HM + Ws is symmetric and positive definite. In addition,(

HM
TWqHM + Ws + Wr

)−1
Wr =

(
w−1

r X + IN

)−1
(37)

Let λi(•) denote the i-th eigenvalue of (•). Since w−1
r X ≻ 0 and is symmetric, we

have λi
(
w−1

r X + IN
)
= λi

(
w−1

r X
)
+ 1 > 1 for i = 1, · · · , N. Therefore, the following result

is obtained:
max

i
λi

(
w−1

r X + IN

)−1
< 1 (38)

Moreover, w−1
r X + IN is symmetric. Thus∥∥∥∥(w−1

r X + IN

)−1
∥∥∥∥

i2
= max

i
λi

(
w−1

r X + IN

)−1
< 1 (39)

Therefore, inequality (36) holds and monotonic convergence of MILC is guaranteed. □

Remark 1. Typically, the weighting matrices are chosen as
(
Wq, Wr, Ws

)
≜

(
wq IN , wr IN , ws IN

)
,

and the parameters wq, ws, and wr are commonly set as wq > 0, ws > 0, and wr > 0.

Remark 2. The sufficient condition for MC outlined in Theorem 2 is a general condition that is also
applicable to the NOILC design of DILC.

As stated in Proposition 1a, in DILC, ec1
j and ez1

j cannot be zero simultaneously. In
contrast, MILC operates differently. Assuming that Theorem 2 holds, the conditions under
which ec2

j and ez2
j can simultaneously be zero are outlined in the following remark. This

demonstrates that MILC can effectively resolve the conflict between FBC and ILC.

Remark 3. Given that ez2
j = 0, it follows that yt

j = rd. Consequently, ym
j = 1

Pz
rd, and, since

em2
j = 0, we deduce r∗j = 1

Pz
rd. Therefore, u∗

j = 1
PzPm

rd.

5. Experimental Results
5.1. Experimental Setup

As shown in Figure 5, a biaxial motion stage, manufactured by Tongtai Machine &
Tool Co., Ltd., Kaohsiung, Taiwan, is employed to assess the tracking performance of MILC.
This stage is driven by two servo motors from Shihlin Electric & Engineering Co., Taipei,
Taiwan. Each motor is equipped with a rotary encoder for a semi-closed position loop,
providing a resolution of 52 µrad per pulse. The ball screw pitch lengths are 10 mm and
12 mm for the X and Z axes, respectively. Additionally, every axis is equipped with a linear
encoder to measure the table position, offering a resolution of 0.25 µm per pulse. The
actuators of both motors are controlled by a National Instruments cRIO 9035 embedded
system with 4 kHz sampling frequency, and it offers a 16-bit resolution of analog output.
The National Instruments cRIO 9035, made in Austin, TX, USA, ensures precise control and
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measurement. Since the two axes are independent, we apply the control laws to the X axis
for experimental verification.
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Figure 5. CNC machine tool motion system.

The servo motor for each axis employs the commonly used three-loop control architec-
ture, as depicted in Figure 6. This control structure comprises an outer position loop, an
intermediate velocity loop, and an innermost current loop.
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Figure 6. Servo motor cascaded three-loop structure.

In this study, the closed current control loop, as delineated by the dashed box in
Figure 6, is regarded as the plant. Within this setup, the torque command serves as the
input and the velocity as the output. Enveloping the plant is the velocity control loop and
subsequently the position control loop, both operating at a sampling rate of f = 4 kHz.

The discrete-time TF from the torque command to the velocity of the X-axis is repre-
sented by Px(z), while the TF from the motor position to the table side position is denoted
as Pz(z). Both TFs have been identified through the analysis of experimental data. The
magnitude responses of the TFs Px(z) and Pz(z) are depicted in Figure 7.
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In this framework, CP(z) denotes the position loop feedback controller, Cv(z) denotes
the velocity feedback controller, and Ci(z) encapsulates the combination of the current loop
controller and its corresponding filter [2]. The position loop controller is configured as a
proportional (P) controller, and the velocity controller is designed as a proportional-integral
(PI) controller. These controllers are tuned by using the PID tuning toolbox in MATLAB
and digitally executed within the CRIO 9035 embedded system. The expressions for Cp(z),
Cv(z), and a backward type integrator Gi(z) are as follows:

CP(z) = Kpp (40)

Cv(z) = Kvp + Kvi
Tsz

z − 1
, Gi(z) =

Tsz
z − 1

(41)

where Kvp = 0.216, Kvi = 8.18, Kpp = 180, Ts = 1/ f .

PM(z) =
Cv(z)Px(z)

1 + Cv(z)Px(z)
Gi(z) (42)

By applying the controllers (38) and (39), the position closed loop possesses a band-
width (−3 dB) of 50 Hz.

To demonstrate the significant performance improvement of MILC, DILC is also
implemented by the norm-optimal approach for comparison purposes. The state-space
representation for DILC implementations is provided in Appendix B.

5.2. Experimental Results

The effectiveness of the proposed MILC is evaluated in comparison with DILC through
experiments on the motion stage. The desired trajectory rd (illustrated in Figure 8) consists
of a sequence of smoothed step references, and every step reference is designed using an
S-curve velocity profile. This trajectory, encompassing a wide range of accelerations, is apt
for evaluating the characteristics of a dynamic system in high-throughput manufacturing
scenarios. Due to practical considerations of model mismatch [34], the performance weights
in (5) are set as wq = 2 × 106, wr = 10−4, and ws = 0.2 × 102 for both MILC and DILC
schemes. Furthermore, feedforward friction compensation is effectively implemented by a
look-up table, which is based on the result gathered from preliminary friction identified
experiments. To prevent instantaneous fluctuations in friction compensation due to mea-
surement noise in low-speed regions, the reference velocity is utilized as the input for the
look-up table.



Sensors 2024, 24, 3536 15 of 20

Sensors 2024, 24, x FOR PEER REVIEW 15 of 20 
 

 

compensation due to measurement noise in low-speed regions, the reference velocity is 
utilized as the input for the look-up table. 

 
Figure 8. Desired trajectory is a forward and backward movement. 

The experimental results are depicted in Figures 9 and 10. The performance is evalu-
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After repeated iterations, the relationship between iteration index and RMS of the tracking 
error is shown in Figure 9. With DILC, once the motor side error decreases to a certain 
level, further reductions are not observed despite an increase in iterations. In contrast, the 
proposed MILC successfully reduces errors at both the motor and table sides to a much 
smaller range. It should be noted that the proposed scheme is different from DILC because 
it iteratively corrects the reference input and control compensation, aligning the objectives 
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Figure 8. Desired trajectory is a forward and backward movement.

The experimental results are depicted in Figures 9 and 10. The performance is evalu-
ated using the root mean squared (RMS) and maximum (MAX) errors in every iteration.
After repeated iterations, the relationship between iteration index and RMS of the tracking
error is shown in Figure 9. With DILC, once the motor side error decreases to a certain
level, further reductions are not observed despite an increase in iterations. In contrast, the
proposed MILC successfully reduces errors at both the motor and table sides to a much
smaller range. It should be noted that the proposed scheme is different from DILC because
it iteratively corrects the reference input and control compensation, aligning the objectives
of FBC and ILC for more rapid and effective convergence of table side errors.
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Additionally, a comparison of the two approaches is made using the table side tracking
error (ezi

j , i = 1, 2) in the 10-th iteration, as shown in Figure 10 and summarized in Table 1.
In sections with high acceleration, such as near 0.57 s, 0.59 s, and 0.61 s as highlighted in
the magnified view, the tracking performance of DILC significantly worsens, but MILC
demonstrates a notable performance improvement. For the proposed MILC scheme, errors
at both the motor side and table side can be simultaneously suppressed, and outstanding
compensation performance can be achieved., i.e., MILC achieves a MAX error of 2.06 µm,
which is approximately a 42% improvement compared to DILC. As inferred from Figures 2
and 7, due to the presence of large accelerations, resonance modes of Px and PZ, are
triggered, resulting in relative motion between the motor side and the table side. Controlling
both sides is necessary to achieve high-speed and high-precision motion control.
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Additionally, a comparison of the two approaches is made using the table side track-
ing error ( 𝑒௭, 𝑖 = 1,2) in the 10-th iteration, as shown in Figure 10 and summarized in 
Table 1. In sections with high acceleration, such as near 0.57 s, 0.59 s, and 0.61 s as high-
lighted in the magnified view, the tracking performance of DILC significantly worsens, 
but MILC demonstrates a notable performance improvement. For the proposed MILC 
scheme, errors at both the motor side and table side can be simultaneously suppressed, 
and outstanding compensation performance can be achieved., i.e., MILC achieves a MAX 
error of 2.06 µm, which is approximately a 42% improvement compared to DILC. As in-
ferred from Figures 2 and 7, due to the presence of large accelerations, resonance modes 
of 𝑃௫  and  𝑃, are triggered, resulting in relative motion between the motor side and the 
table side. Controlling both sides is necessary to achieve high-speed and high-precision 
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Table 1. Performance in different approaches (μm, [The symbol “*” indicates the best result 
under the current metrics]). 

Method 
RMS 
( 0

zie ) 
RMS 
( 0

cie ) 
RMS 
( 10

zie ) 
RMS 
( 10

cie ) 
MAX 
( 10

zie ) 
DILCi=1 201.00 204.21 0.55 5.39 3.57 
MILCi=2 196.46 * 199.81 * 0.46 * 0.40 * 2.06 * 

Figure 11 displays the control input from the feedback controller in the 10th trial for 
DILC and MILC. Due to the cancellation between 𝑢  and 𝑢, DILC exhibits a substantial 
control input from the feedback controller. Conversely, MILC, by simultaneously tunning 
the reference input and the control compensation, maintains a small control input from 
the feedback controller in the steady state. This result is attributed to the consistent objec-
tives between FBC and MILC to jointly suppress errors at both the motor and table sides, 
while there are conflicts in control objectives between FBC and DILC as illustrated in Prop-
osition 1b. 

Figure 10. Comparison of ezi
j in 10-th trial (j = 10) for different ILCs.

Table 1. Performance in different approaches (µm, [The symbol “*” indicates the best result under
the current metrics]).

Method RMS
(ezi

0 )
RMS
(eci

0 )
RMS
(ezi

10)
RMS
(eci

10)
MAX
(ezi

10)

DILCi=1 201.00 204.21 0.55 5.39 3.57
MILCi=2 196.46 * 199.81 * 0.46 * 0.40 * 2.06 *

Figure 11 displays the control input from the feedback controller in the 10th trial for
DILC and MILC. Due to the cancellation between uc

j and uj, DILC exhibits a substantial
control input from the feedback controller. Conversely, MILC, by simultaneously tunning
the reference input and the control compensation, maintains a small control input from
the feedback controller in the steady state. This result is attributed to the consistent
objectives between FBC and MILC to jointly suppress errors at both the motor and table
sides, while there are conflicts in control objectives between FBC and DILC as illustrated in
Proposition 1b.
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6. Conclusions

This paper presents a novel multivariable ILC strategy designed to improve the
dynamic positioning accuracy of flexible feed drive motion systems by simultaneously
reducing errors at both the motor and table sides. The approach utilizes a two-DOF control
framework, combining iterative reference shaping with control compensation updates,
effectively balancing the objectives of FBC and ILC. This development is driven by the
need to address relative movements caused by the flexible couplings between the motor
and table sides. These movements are prompted by various disturbances, including closed-
loop dynamics, lead error, structural vibrations, and thermal error. The proposed method
has been validated on an industrial CNC machine tool, demonstrating improvements in
dynamic tracking errors of up to 42% (as seen in Figure 10 and Table 1). Overall, this
MILC can be implemented without the need for altering the servo controller. It provides
a convenient approach by modifying the reference trajectory and control compensation.
However, injecting the control compensation into the internal controller may encounter
some difficulties in certain closed commercial controllers. The study in this paper shows
that MILC has appreciable application prospects for precision/ultra-precision systems
with flexible feed drives to meet extreme motion accuracy requirements. Future research
could further explore the real-time implementation of these advanced control schemes on
standard industrial controllers.
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authors have read and agreed to the published version of the manuscript.
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Appendix A

Theorem A1. (Efficient norm-optimal ILC) In the context of the performance criterion outlined in
Definition 1 and the linear time-invariant (LTI) model presented in Section 1 (from uj[k] to yj[k]),
consider the model in state-space form as follows:
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(A1)

The optimal uj+1[k] in (5) can be determined through the following steps [36]:

Step 1.

Solve the discrete Riccati equation backward:

P[k] = (A T − CTwqDφ−1BT)P[k + 1]× (I − B(φ + BT P[k + 1]B)−1BT P[k + 1])×
(A − Bφ−1DTwqC)− CTwqDφ−1DTwqC + CTwqC

(A2)

with P[N] = 0, and

L[k] = (φ + BT P[k + 1]B)−1(DTwqC + B
T

P[k + 1]A) (A3)

Lu[k] = (φ + BT P[k + 1]B)−1wr (A4)

Le[k] = (φ + BT P[k + 1]B)−1DTwq (A5)



Sensors 2024, 24, 3536 18 of 20

Lg[k] = (φ + BT P[k + 1]B)−1BT (A6)

φ = DTwqD + wr + ws (A7)

Step 2.

Solve the vector difference backward:

gj+1[k] = (AT − Kg[k]BT)gj+1[k + 1] + Cwqej[k] + Kg[k]wsuj[k] (A8)

with gj+1[N] = 0, and

Kg[k] = (A T − CTwqDφ−1BT)P[k + 1](I + Bφ−1BT P[k + 1])−1Bφ−1 (A9)

Step 3.

Solve the optimal state as follows:

∆x*[k + 1] = (Bφ−1BT P[k + 1] + I)−1(A∆x*[k] + BBT g[k + 1]− Bφ−1wruj[k]) (A10)

Step 4.

Obtain the optimal ILC updates:

u*
j+1[k] = ∆u*

j+1[k] + uj[k]
= −L[k]∆x*[k] + Lg[k]g[k + 1] + (I − L f [k])uj[k]

(A11)

Proof of Theorem A1. Omitted here, see [36]. □

Appendix B

Lemma A1. The state space equation from uj to yt
j in Figure 3 is given as follows:
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(A12)

with

A =

 Ac
BmCc

0

−BcCm
Am − BmDcCm

BzCm

0
0

Az

, B =

 0
Bm
0

, C =
[
0 0 Cz

]

Proof of Lemma A1. By systematically substituting the state updates and the output
interconnection as outlined in (14), (30), (31), and (32) yields the representation. □
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