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Abstract: With the increasing complexity of the grid meter dial, precise feature extraction is becoming
more and more difficult. Many automatic recognition solutions have been proposed for grid meter
readings. However, traditional inspection methods cannot guarantee detection accuracy in complex
environments. So, deep-learning methods are combined with grid meter recognition. Existing
recognition systems that utilize segmentation models exhibit very high computation. It is challenging
to ensure high real-time performance in edge computing devices. Therefore, an improved meter
recognition model based on YOLOv7 is proposed in this paper. Partial convolution (PConv) is
introduced into YOLOv7 to create a lighter network. Different PConv introduction locations on the
base module have been used in order to find the optimal approach for reducing the parameters and
floating point of operations (FLOPs). Meanwhile, the dynamic head (DyHead) module is utilized to
enhance the attention mechanism for the YOLOv7 model. It can improve the detection accuracy of
striped objects. As a result, this paper achieves mAPval

50 of 97.87% and mAPval
50:90 of 62.4% with only

5.37 M parameters. The improved model’s inference speed can reach 108 frames per second (FPS). It
enables detection accuracy that can reach ±0.1 degrees in the grid meter.

Keywords: yolov7; meter-sensor reading; real-time detection; deep learning

1. Introduction

As grid industrial automation advances, intelligent inspections are repeatedly pro-
pelled into the spotlight. Automating the inspection of various old-fashioned instruments
is challenging in grid meter detection. A single medium-sized substation may be equipped
with as many as 800 to 1000 pointer-type meters. High-frequency manual inspections in-
evitably result in an increased error rate. Therefore, it is imperative to propose an effective
and intelligent solution to alleviate this repetitive and burdensome work.

Currently, there has been much research in automatic grid meter recognition. In
the past, traditional computer vision and digital image processing were commonly used
for reading meter data. Zhang et al. [1] improved the visual saliency of pointer meter
regions by establishing the localized pixel inhomogeneity factor (LPIF) model. And, Hough
transform [2] was utilized to recognize the meter readings. Meng et al. [3] employed
segmentation of pointers through thresholding and the area growth method. They used the
Bresenham algorithm to calculate the deflection angle between the center line of the pointer
and the zero scale. This method incorporates dynamic thresholding and pixel restoration
mechanisms into the recognition process. This can cause it to be robust. However, in some
environments with significant lighting changes, reflections of the meter dial face can affect
the recognition of the pointer features.

Because of the proliferation of deep learning, numerous methods have emerged.
He et al. [4] utilized the Mask R-CNN [5] for grid meter detection. Target detection was
employed to locate the dial, followed by semantic segmentation to delineate the pointer
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region. Principal Component Analysis (PCA) was used to fit the slope of the pointer,
and accurate meter readings were achieved. Advanced deep-learning techniques were
used in this method for accurate detection. However, the high computing overhead of
the semantic segmentation model results in it being difficult to deploy on edge devices,
resulting in a low real-time performance. Fan et al. [6] improved YOLOv5 based on the
Global Context (GC) [7] module. The meter was located through target detection. The
U-net [8] was employed for pointer segmentation and keypoint detection. They also used
PCA to fit the slope of the pointer. This approach can adapt to a certain level of complexity
in the environment. However, it requires two separate model inferences—the YOLOv5
target detection and U-net semantic segmentation. It results in significant computational
overhead and longer processing time. Therefore, a grid pointer recognizer that combines
high accuracy and robustness with real-time performance is still needed.

Regarding the problem mentioned above, an improved model based on YOLOv7 [9]
is implemented that combines Partial Convolution (PConv) [10] and Dynamic Head (Dy-
Head) [11] for grid meter detection. Additionally, an adaptive calibration algorithm has
been incorporated for pointer reading calculation. This paper achieves relatively accurate
readings in complex environments while maintaining a high real-time performance and
lower parameters. Meanwhile, it demonstrates stable recognition when detecting pointers
in dark, blurry, and small target scenarios.

Over 1000 photographs of grid pointer meters were utilized as datasets. These were
collected at a substation, as shown in Figure 1. The datasets comprised images of meters
under various working conditions, including shots taken at different angles and periods
for the same meters. Data augmentation was also performed in varying degrees. These
practices enriched the diversity of the dataset features, enabling the model to learn more
generalized characteristics. It also helped reduce the risk of overfitting and improved
overall model performance.

Figure 1. Overview of images in the dataset with different noise conditions.
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The main contributions of our work are as follows:

(1) In grid meter detection, PConv was introduced into the base module of YOLOv7 and
it obtained a relatively optimal replacement structure through multiple experiments,
reducing the model’s FLOPs and parameters.

(2) An adaptive calibration algorithm was proposed for pointer reading calculation, which
exhibited a relatively high robustness and good detection accuracy.

(3) DyHead was integrated into YOLOv7, incorporating an attention mechanism that
boosted the accuracy when detecting small target features.

The remainder of this paper is organized as follows: Section 2 provides the develop-
ment of the critical technologies. Section 3 discusses the main technical improvements. The
results of the experiments and ablation experiments are presented in Section 4. Finally,
Sections 5 and 6 summarize the paper, offering insights into the approach’s merits and
outlining directions for future work.

2. Related Work
2.1. Real-Time Object Detection

Currently, there are two-stage detectors with a high detection accuracy, such as Fast
R-CNN [12] and Faster R-CNN [13]. There are also high real-time one-stage object detec-
tors, such as SSD [14] and the YOLO [15] series. Similarly, there are excellent semantic
segmentation models like Mask R-CNN [5], which integrates the achievements of deep
learning in computer vision.

The real-time performance becomes increasingly important as deep-learning vision
models are implemented into industrial production. Typically, techniques such as pruning,
quantization, and knowledge distillation [16] can be employed to reduce the model’s
complexity. This can improve the inference speed and enhance the real-time performance.
Additionally, improved convolution modules can also be applied to reduce the model’s
parameters and FLOPs, such as depthwise convolution (DWConv) [17] and PConv. These
modules can reduce the parameters, accelerate the model’s inference performance, and
enhance the real-time capabilities to some extent.

2.2. Pointer Meter Reading

Past researchers have achieved substantial work in the grid meter reading field. Some
researchers have employed traditional visual solutions in their work. They have utilized
feature extraction methods to detect the pointer meter. Others have adopted deep learning,
detecting meters through object detection and using semantic segmentation to delineate the
regions of the pointers. Our team has accumulated a wealth of experience in meter reading.
Past works have attempted to use image classification by detecting meters through sliding
windows. Feature point detection has also been used to calibrate the dial to achieve meter
readings. However, these methods could achieve a better real-time performance.

In this paper, PConv is introduced into the base module of the YOLOv7 backbone,
replacing regular convolutions to reduce the computational load and increase the frames
per second (FPS). Eisting work such as Sun et al. [18] has introduced PConv into the YOLO
series networks. However, this work does not provide details on how the integration is
performed, the number of replacements, and crucial aspects like the replacement positions.
Therefore, our work experiments with various replacement approaches in the base module
of the YOLOv7 backbone and identifies the most effective replacement through experimen-
tation. Moreover, DyHead with an attention mechanism is added to the detection head of
YOLOv7 to enhance the model’s performance in strip object recognition.

3. Methods

The algorithmic process is illustrated in Figure 2. The meter image is initially captured
and fed into the improved YOLOV7tiny object detector to detect relevant elements in the
meter dial. YOLOv7 is used to extract the positions of the short pointers and the regions
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corresponding to the left and right starting points of the instrument’s scale. The area of the
detected pointer is cropped from object detection.

Figure 2. The entire algorithmic process.

The detected pointer region and key point coordinates are input into the adaptive
calibration program for pointer reading. As the linear features of the pointer are very
distinct in the cropped image, the adaptive calibration algorithm is used to estimate the
slope of the pointer relative to the dial center coordinate system.

The meter reading can be calculated through a proportional relationship using the
pointer’s slope (k), dial center coordinate (xc, yc), and dual boundary location (xb1, yb1),
(xb2, yb2).

The direction vector of the pointer is

P⃗ = (1, k) (1)

The vector of the dual boundary location to the center is

V⃗le f t = (xb1 − xc, yb1 − yc)

V⃗right = (xb2 − xc, yb2 − yc)
(2)

So, the angle from the pointer to the nearest boundary of the dial range can be calcu-
lated as

Angle = min(arccos(
P⃗ · V⃗le f t

|P⃗| · |V⃗le f t|
), arccos(

P⃗ · V⃗right

|P⃗| · |V⃗right|
)) (3)

Using this angle, the meter’s reading can be calculated through the proportional relation-
ship.

The entire reading process is typically faster compared with using semantic segmenta-
tion, and it also exhibits a strong adaptability to different environments.
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3.1. Data Augmentation

The pointer dataset for this paper was manually collected by team members at the
substation, including meter images from various shooting angles, different periods, diverse
lighting conditions, and varying pointer angles. Approximately 1000 images were anno-
tated. The meter images were captured at distances ranging from 0.5 m to 2 m, showcasing
a multi-scale characteristics.

Different levels of data augmentation techniques were incorporated into the meter
datasets. Salt-and-pepper noise and random region blur were added to the meter images.
Also, stains and old meters were simulated to enhance the network’s ability to generalize
such patterns. Random region blur is a technique used to increase the variety of a dataset.
It calculates a value by multiplying the shorter side of the image and a specific ratio. This
value is used as the length and width of a square region. The square is randomly applied
to a particular area of the image, and a large-kernel mean filter is employed within this
region, resulting in an image with region blur. The number of squares is generally limited
to three or fewer per image, and the ratio is typically selected from a range of 0.2 to 0.3.
Experiments have shown this data augmentation technique has a specific positive impact
on the detection of striped objects. Different angles and various aspect ratios of pointer
meters were stimulated by applying perspective transformation and random rotation.
Additionally, the diversity of the datasets was enhanced by randomly adjusting the images’
color space, brightness, and saturation within predefined ranges.

3.2. ELAN-PConv

The original YOLOv7 base module was structured according to the ELAN module,
as depicted in Figure 3. The entire backbone underwent hierarchical feature extraction
through four layers of ELAN modules. The number of image channels progressed from 128
to 256, then to 512, and finally to 1024. 1 × 1 and 3 × 3 standard convolutions were utilized
in each ELAN module. So, in each computation step, a large number of convolutional
kernel operations were required. Taking the example of the ELAN module with an output
channel of 256, a single computation between the two 3 × 3 convolutional layers utilized
4096 convolutional kernels. This undoubtedly imposed a significant computational burden,
particularly for the edge devices. This resulted in a substantial computation overhead.

Figure 3. ELAN module structure in YOLOv7.
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Inspired by the PConv proposed in FasterNet [10], Partial Convolution (PConv) rep-
resented a recent improvement in standard convolution. Its primary design goal was to
reduce memory access and computational redundancy. The use of PConv was motivated
by the observation that feature maps exhibited a high similarity across different channels,
indicating a significant redundancy between channels. Therefore, leveraging the redun-
dancy of the feature maps, PConv selectively applied standard convolution on a subset of
channels while keeping the remaining channels unchanged, as shown in Figure 4. This
reduced the computational complexity and contributed to realizing a fast and efficient
neural network.

Figure 4. PConv computation diagram.

PConv was introduced at different positions in this paper to replace the standard
convolutions in the ELAN modules. Validations were conducted to determine the best
approach for introducing PConv in the Experiments Section.

PConv typically selects a certain proportion of channels for standard convolution,
usually with r = 1

4 . When the channel numbers of input and output are the same, the FLOPs
for using PConv are

h × w × k2 × c2
p. (4)

When r = 1
4 , PConv is simply 1

16 of the standard convolution, it requires less memory
accesses. The memory accesses for using PConv are

h × w × 2cp + k2 × c2
p ≈ h × w × 2cp, (5)

where h and w represent the feature map’s width and height, respectively, and k represents
the size of the convolution kernel. cp refers to a subset of the feature channels.

When r = 1
4 , memory access is only 1

4 of the standard convolution.
To integrate the feature information from different channels more effectively, PConv is

typically followed by a Point-Wise Convolution (PWConv) [10] connection.

3.3. Change to DyHead

The IDetect module [9] of YOLOV7 was improved in this paper. IDetect is the pre-
diction head of the YOLOV7 network, and is responsible for classification and regression.
In the experiments of pointer detection in YOLOv7, the pointer scale and aspect ratio in
each meter varied greatly. The performance was suboptimal for some relatively short and
thin pointers. The features learned by the model were scattered, leading to a certain degree
of deviation in the regression prediction boxes. So, DyHead was added before IDetect to
enhance its perception of the scale and space, as shown in Figure 5.
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Figure 5. Dyhead added position in YOLOv7.

Dynamic Head (DyHead) is a dynamic target detection head, as shown in Figure 6.
It unified scale awareness, spatial awareness, and task-aware attention, constructing a
self-attention mechanism. After feature extraction by the backbone network of YOLOV7,
the obtained feature pyramids at three different scales were fed into DyHead. This involved
utilizing a self-attention mechanism for spatial, scale, and task perception. The outputs
were provided to IDetect for the classification and regression. This approach benefited the
network by paying more attention to small objects or objects with significant aspect ratio
differences. It enhanced the detection the performance of pointers.

Figure 6. The internal structure of a single DyHead block.

The heatmap displayed in Figure 7 shows that DyHead’s multi-layer stacking enabled
the feature layers to gradually converge onto the pointers without interference from the
other dial components. Therefore, incorporating an attention mechanism into the model
could enhance its ability to detect pointers with significant variations in spatial scales and
aspect ratios, thereby improving its detection capability in complex environments.

3.4. Adaptive Calibration Pointer

After object detection, the region and key points of the pointer were input into the
adaptive calibration program for meter reading. The detected key points mainly included
the start and end positions on both sides of the meter range. This paper achieved this by
cropping and duplicating a portion of the pointer region and applying Gaussian smoothing
for noise reduction. The maximum interclass variance method (OTSU’s method) [19] was
used to segment the pixels of the pointer. This is an adaptive threshold segmentation
method. As short and thin pointers are typically in small regions on the dial face, the
complexity of the dial face does not significantly impact the accurate segmentation of the
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pointer from the background. Moreover, OTSU’s method performs segmentation based
on interclass variance and it is not influenced by image brightness and contrast. When
obtaining the segmented image, we employed Canny edge detection [20], resulting in two
distinct edges on the pointer. Hough line transform was applied to obtain the equations of
these two lines. The complete process of extracting the pointer is schematized in Figure 8.

Figure 7. Stacking different numbers of DyHead blocks results in the heatmap.

If the two lines are parallel, the program can arbitrarily select one as the fitted slope
for the pointer. In the case of a sharp-tipped pointer, the average of the slopes of these two
lines can be calculated and used as the fitted slope. The meter reading can be determined
through proportional relationships by using the key points on both sides and the slope of
the pointer.

Figure 8. Process of extracting pointer features and fitting the slope.



Sensors 2024, 24, 3549 9 of 14

4. Experiments
4.1. Experimental Setup

Experiments were conducted on Ubuntu 20.04. The software stack was configured
with Python 3.8 and PyTorch 1.13.1. For hardware, training was performed on a Tesla
P100 GPU. In the inference, the RTX 3060 Laptop was used to simulate the computational
capabilities of the edge devices. The training code was based on the YOLOv7 project, which
WongKinYiu opens sources on GitHub.

Regarding the model training parameter settings, Stochastic Gradient Descent (SGD)
is the optimizer with an initial learning rate of 0.01, momentum of 0.937, and weight decay
of 0.0005. The training was conducted on a batch size of 64 for 500 epochs of the dataset.
Additionally, pre-trained weights were not utilized for a fair performance comparison
between the different networks.

Mean Average Precision (mAP) was utilized as the accuracy evaluation metric. It is
computed as the average precision (AP) average across all categories. Specifically, mAPval

50
calculates the average precision when the Intersection over Union (IoU) threshold is 50%.

mAP =
1
C

C

∑
c=1

APc (6)

where C represents the number of categories and c represents the specific category.
Using this evaluation metric helps better reflect the model’s accuracy in recognizing

features.

4.2. Ablation Study
4.2.1. PConv Replacement Position in ELAN

Because of the characteristics of PConv, only a subset of channels underwent convo-
lution, while the rest remained unchanged. Therefore, the position of replacing standard
convolutions with PConv in the ELAN module was bound to affect the network’s perfor-
mance. Figure 9 shows four replaceable convolution positions for the ELAN structure. Five
replacement structures are shown in Table 1.

YOLOv7tiny + PConv-x refers to a different replacement position for PConv in the
YOLOv7 ELAN module. Comparative experiments were conducted on different positions
and quantities of PConv introduction and identified the most effective positional structure.
The PConv module was configured to default to connecting a PWConv for feature fusion
and channel transformation. All of the YOLOv7tiny + PConv-x experiments were conducted
directly on the original YOLOv7tiny model.

Figure 9. Location of the four Conv (standard convolutions) in the ELAN module of YOLOv7tiny.
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Table 1. PConv replacement position (“✓” means this Conv in Figure 9 will be replaced).

Model Conv1 Conv2 Conv3 Conv4

YOLOv7tiny + PConv-1 ✓ ✓ ✓ ✓
YOLOv7tiny + PConv-2 ✓ ✓
YOLOv7tiny + PConv-3 ✓ ✓
YOLOv7tiny + PConv-4 ✓ ✓
YOLOv7tiny + PConv-5 ✓ ✓ ✓

Through experiments, YOLOv7tiny + PConv-1 was found to have fewer parameters
and FLOPs, as shown in Table 2. This is because all the Conv1-4 were replaced standard
convolutions with PConv. This implies that only a subset of channels underwent convolu-
tion, resulting in fewer convolutional kernels. However, as the 3 × 3 convolution in ELAN
was the primary feature extraction layer, replacing it may have led to insufficient feature
extraction in some cases.

Table 2. Comparison of model complexity based on different PConv replacements.

Model Params(Net) Params(Block) FLOPs

YOLOv7tiny 6.02 M 1.31 M 13.2 G
YOLOv7tiny + PConv-1 4.73 M 0.41 M 10.5 G
YOLOv7tiny + PConv-2 6.12 M 1.38 M 13.6 G
YOLOv7tiny + PConv-3 4.83 M 0.33 M 10.1 G
YOLOv7tiny + PConv-4 5.35 M 0.86 M 11.9 G
YOLOv7tiny + PConv-5 4.78 M 0.37 M 10.3 G

From Table 3, it is observed that YOLOv7tiny + PConv-1 had the lowest mAPval
50 ,

demonstrating insufficient feature extraction due to the reduction in the number of convo-
lutional kernels. YOLOv7tiny + PConv-4 exhibited the greatesr down inference time with a
batch size 32, and it achieved a good mAPval

50:95. It was mainly replaced with PConv in the
Conv2 and Conv4 positions.

Table 3. Performance comparison based on different PConv replacements.

Model Infer(b32) FPS mAPval
50 mAPval

50:95

YOLOv7tiny 7.6 ms 104 97.13% 60.33%
YOLOv7tiny + PConv-1 6.2 ms 109 97.09% 59.61%
YOLOv7tiny + PConv-2 5.9 ms 114 98.12% 59.23%
YOLOv7tiny + PConv-3 7.1 ms 104 98.27% 59.05%
YOLOv7tiny + PConv-4 6.5 ms 108 97.75% 60.48%
YOLOv7tiny + PConv-5 6.1 ms 110 97.55% 59.34%

4.2.2. Module Ablation Study

Ablation experiments were conducted on the selected improved modules, as shown in
Table 4. YOLOv7tiny-based PConv-1 had the most minor net parameters, and YOLOv7tiny-
based PConv-4 had the relatively best mAPval

50:95. So, experiments were conducted by adding
Dyhead to the YOLOv7tiny + PConv-1 and YOLOv7tiny + PConv-4 to determine which
structure was more suitable.

From the experimental results, it can be observed that YOLOv7tiny + PConv-4 +
DyHead demonstrated a better performance than the other improved models. Despite the
increase in parameters with the addition of DyHead, there was a reduction in FLOPs. The
mAP also reached a relatively superior level.
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Table 4. Ablation experiments of the network improvement modules.

Model Params FLOPs FPS mAPval
50 mAPval

50:95

YOLOv7tiny 6.02 M 13.2 G 104 97.13% 60.33%
YOLOv7tiny + Dyhead 5.96 M 13.0 G 106 97.83% 62.43%
YOLOv7tiny + Pconv-1 4.73 M 10.5 G 109 97.09% 59.61%
YOLOv7tiny + Pconv-4 5.35 M 11.9 G 108 97.75% 60.48%
YOLOv7tiny + Pconv-1 + Dyhead 4.77 M 10.5 G 110 97.80% 60.96%
YOLOv7tiny + Pconv-4 + Dyhead 5.37 M 11.8 G 108 97.87% 62.67%

4.2.3. Meter Reading Comparison

The meter reading errors using different YOLO models were compared. The pointer
and keypoint features extracted by each YOLO model were fed into the reading program
to calculate the meter value. The error was calculated by comparing the predicted meter
values with the ground truth. This experiment processed all images in the test set to obtain
each model’s average error and inference speed, as shown in Figure 10.

Figure 10. Comparison of meter reading with different models for feature extraction.

The models that were closer to the bottom-left corner were considered better. Com-
pared with the YOLOv8n model, the original YOLOv7-tiny model had a higher accuracy,
while YOLOv8n was faster. However, through field testing, our team concluded that
accuracy was of a higher priority at the same parameter level. Therefore, we chose YOLOv7
as the base model.

5. Discussion

YOLOv7tiny + PConv-4 + DyHead was validated as being more suitable for meter
datasets, providing a relatively optimal improvement structure through multiple experiments.

The improved network achieved a relatively optimal performance in mAP values
compared with the other networks, as shown in Table 5. The mAPval

50 reached 97.87% and
mAPval

50:95 reached 62.67%. Meanwhile, the parameters and FLOPs were maintained at a
low level. This demonstrates the effectiveness of reducing the network volume through
PConv and enhancing the feature perception with DyHead for meter detection.
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Table 5. Comparison of real-time model performances.

Model Params FLOPs mAPval
50 mAPval

50:95

YOLOv7tiny 6.02 M 13.2 G 97.13% 60.33%
YOLOv7tiny + Pconv-1 + Dyhead 4.77 M 10.5 G 97.80% 60.96%
YOLOv7tiny + Pconv-4 + Dyhead 5.37 M 11.8 G 97.87% 62.67%

YOLOv3tiny 12.1 M 19.0 G 95.38% 55.78%

YOLOv5n 1.7 M 4.2 G 96.62% 59.32%
YOLOv5n6 3.1 M 4.3 G 96.72% 58.94%
YOLOv5s 7.2 M 17.0 G 97.18% 59.35%

YOLOv6n 4.2 M 11.9 G 96.77% 59.51%
YOLOv8n 3.0 M 8.2 G 96.51% 59.73%

6. Conclusions

Nowadays, numerous methods in grid meter reading are being used. However, these
methods could be better in terms of both real-time performance and accuracy. This paper
enhanced the speed and accuracy of grid meter detection in the improved YOLOv7 model.
The ELAN module replaced the Standard convolutions with PConv to reduce the network’s
parameters and FLOPs, enhancing the real-time inference on the edge devices. In addition,
an attention mechanism was introduced by incorporating the DyHead Block into the neck
output of YOLOv7 IDetect. It improved the network’s recognition of pointers and enhanced
the meter detection accuracy. The mAPval

50 reached 97.87% and the mAPval
50:95 reached 62.67%

in the improved model. The improved model took 6.4 ms to infer a single image, achieving
a frames-per-second (FPS) rate of 108. It exhibited an excellent performance in terms of
both accuracy and real-time capabilities.

In future work, our team will further explore the challenges in grid meter detection.
Lighter-weight networks will be investigated to expand the applicability of our work. We
will explore how to achieve simple visual detection of meters on microcontrollers such as
STM32H7 or MCX N Series. Our team will continue to advance the construction of indus-
trial intelligence in the future, striving towards comprehensive intelligent manufacturing
and intelligent inspection (Figure 11).

Figure 11. Actual industrial application examples of meter reading in the grid industry.
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