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Abstract: Oscillating Water Column (OWC) systems harness wave energy using a partially submerged
chamber with an underwater opening. The Savonius turbine, a vertical-axis wind turbine, is well-
suited for this purpose due to its efficiency at low speeds and self-starting capability, making it an
ideal power take-off (PTO) mechanism in OWC systems. This study tested an OWC device with
a Savonius turbine in an air duct to evaluate its performance under varying flow directions and
loads. An innovative aspect was assessing the influence of power augmenters (PAs) positioned
upstream and downstream of the turbine. The experimental setup included load cells, Pitot tubes,
differential pressure sensors and rotational speed sensors. Data obtained were used to calculate
pressure differentials across the turbine and torque. The primary goal of using PA is to increase
the CP–λ curve area without modifying the turbine geometry, potentially enabling interventions on
existing turbines without rotor dismantling. Additionally, another novelty is the implementation of a
regression Machine-Learning algorithm based on decision trees to analyze the influence of various
features on predicting pressure differences, thereby broadening the scope for further testing beyond
physical experimentation.

Keywords: OWC; machine learning; Savonius; predictive model

1. Introduction
1.1. Overview

Energy and environmental challenges stand as major issues that humanity faces in the
21st century [1]. The escalating demand for energy, propelled by population growth and
economic development, has led to a surge in greenhouse gas emissions, climate change,
environmental degradation, and the depletion of natural resources.

At the forefront of global challenges lie climate change, resource scarcity—particularly
in terms of energy—and environmental pollution. The former is inextricably linked to the
surge in greenhouse gas emissions, predominantly driven by the widespread utilization of
fossil fuels [2–6], resulting in climate shifts such as rising sea levels, intensified weather
events, and ecosystem disruptions. Moreover, the energy demand, currently heavily re-
liant on oil, coal, and natural gas, has precipitated a gradual depletion of resources [7,8].
Simultaneously, the use of fossil fuels has engendered significant pollution, detrimentally
impacting the environment and human health. Addressing the environmental repercus-
sions of energy consumption necessitates a fundamental shift in the energy landscape
towards renewable energy sources, efficient energy carriers [9–14], and different manufac-
turing processes [15,16]. Optimizing energy use through enhanced energy efficiency in
end-use applications plays a crucial role in mitigating adverse climate impacts. Another
compelling strategy to reduce dependency on traditional energy sources and mitigate
environmental harm is tapping into ocean energy, notably wave energy. Despite its initial
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high installation costs and relatively lower efficiency, wave energy extraction presents a
promising avenue for energy supply.

Among various wave energy conversion technologies, Oscillating Water Column
(OWC) systems have emerged as particularly promising options [17,18]. These systems
comprise a partially submerged chamber with an underwater opening on its front side and
an air turbine. When waves interact with the device, the water column within the chamber
undergoes oscillations, thus earning the system its name. These oscillations act akin to
a piston, causing airflow alternation between exiting and entering the chamber’s upper
section. This cyclic airflow propels the turbine, thereby generating power.

The Savonius turbine can serve as an effective power take-off (PTO) mechanism in
OWC systems for efficient wave energy harnessing at a low cost [19,20]. The Savonius
turbine, a type of vertical-axis wind turbine, has several attributes that make it particularly
well-suited for integration with OWC systems. Firstly, the Savonius turbine operates
effectively at low speeds and is capable of self-starting, which is beneficial given the
variable and often low-speed nature of wave-induced flows in OWC systems. Its design,
which consists of semi-cylindrical blades, allows it to capture energy from both the upward
and downward motion of the water column, making it ideal for the bi-directional flow
conditions typical of OWC systems. Additionally, the Savonius turbine is known for its
simplicity and robustness. It has fewer moving parts compared to other turbine designs,
leading to lower maintenance requirements and increased reliability, which are crucial
factors for offshore energy systems where maintenance can be challenging and costly. This
simplicity also translates to lower manufacturing costs, making the overall system more
cost-effective. Moreover, the Savonius turbine’s ability to handle turbulent and irregular
flows, which are common in wave environments, further enhances its suitability for OWC
systems. Its vertical-axis orientation means it does not need to be reoriented to face the
direction of the flow, unlike horizontal-axis turbines, thus continuously capturing energy
regardless of changes in wave direction [21–23].

1.2. Literary Review

In two previous studies, the authors already investigated the topic of this work. The
first one, [24], analyzes the fluid dynamics of a ducted Savonius wind turbine for OWC
Wave Energy Converters. Using a 2D Computational Fluid Dynamics (CFD) [25–27] model
validated against experimental data, the research demonstrates the turbine’s potential
in OWC systems. Results indicate that the ducted Savonius rotor, with blockage effects
considered, achieves a significantly higher power coefficient than bare Savonius turbines.
The study suggests promising applications in mini and micro-generation systems, empha-
sizing the importance of steady unidirectional flow analysis for design optimization. In
the second one [20], the performance of ducted Savonius turbines with a power booster
in OWC systems was studied. Using converging sections with a Bell–Metha profile, the
design aims to increase the mass flow rate and reduce vortices upstream of the turbine. A
laboratory-scale Savonius turbine was tested with or without the power augmenter (PA) at
a fixed air velocity. The results show that the power booster system enhances power output
at all tip speed ratios, with maximum power at a flow oscillation frequency of 1 Hz. The
increase in power is attributed to higher airflow velocity and improved pressure difference
due to the duct contraction, although this also reduces the turbine’s power coefficient.
Overall, the power augmentation method leads to a 10–20% average power increase, with
peaks over 40%.

The study of Prasad et al. [28] examined the performance of Savonius rotors in OWC
devices under various conditions, including wave characteristics, rotor geometry, water
depth, submergence depth, and rotor/OWC orientation. A double OWC model was also
tested. Key findings indicate that the optimal rotor configuration and water depth enhance
performance, with specific orientations of the rotors yielding better results depending
on the OWC setup. Increasing the blockage ratio did not improve performance, while
the double OWC showed the best-combined rotor performance at certain frequencies.
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These insights help optimize Savonius rotors for efficient use in OWC systems. Dos
Santos et al. [29] developed a computational model to investigate turbulent flows in OWC
devices with a Savonius turbine. Three configurations were tested: a free turbine, an
enclosed domain with constant inlet velocity, and an enclosed domain with sinusoidal inlet
velocity. The model, validated against existing literature, successfully predicted power
coefficients. Results showed increased power coefficients in the enclosed domain and
similar performance between constant and sinusoidal velocities. The study highlights
the importance of geometric configuration in turbine performance and suggests further
research to include more realistic sea conditions and wave interactions.

The work of Prasad et al. [30] discussed the potential of wave energy, emphasizing
the effectiveness of OWC converters. Traditional OWC designs face flow separation issues,
prompting researchers to propose inclining the chamber. Numerical studies show that
a 55◦ inclined OWC outperforms current and conventional designs, achieving a 13%
higher maximum power at mean wave conditions and a peak power of 23.2 kW with
improved efficiency.

Santos et al. described [31] the development of a computational model for simulating
an OWC device with a Savonius turbine inserted in the inlet/outlet duct. The model
couples the simulation of a two-phase, turbulent airflow with the turbine movement.
Validation was conducted for both free stream turbulent flow over a Savonius turbine and
wave flow over a converter without the turbine. The results demonstrated an increased
power coefficient with the inserted turbine, indicating enhanced power takeoff due to the
fairing of the turbine.

In the work of Zullah et al., the performance of Savonius-type turbines in OWC
systems for wave energy conversion were investigated. Using numerical simulations, the
study explored conventional and helical Savonius rotors. The results suggested that the
helical rotor with twisted blades offers smoother operation, higher efficiency, and self-
starting capability compared to conventional designs. The twisted blades increased the net
positive torque, improving performance and indicating the potential for enhanced wave
energy capture in OWC systems.

The paper of Dorrel et al. [32] presented a small segmented OWC with cascaded Savo-
nius rotors and discussed modeling techniques for simulating its performance. Designed
for shoreline locations like harbor walls, where waves are random, it achieves conversion
rates of around 20% with a peak output of 25 W. The paper outlined a full algorithm solved
using the Runge–Kutta–Nystrom method and validated the system’s operation through
experimental tests. The results demonstrated good overall performance for small-scale
applications, suggesting suitability for low-grade wave environments.

The work of Ciappi et al. [33] presented an analytical wave-to-wire model for optimiz-
ing OWC devices in the Mediterranean. The model integrated the chamber, air turbine,
and electric generator. The study examined Wells and axial impulse turbines, finding that
impulse turbines are more efficient and suitable for the location.

The paper of Henriques et al. [34] compared the performance of Wells and biradial
turbines in OWC systems, focusing on the Mutriku wave power plant in Spain. It developed
hydrodynamic and time-domain wave-to-wire models and highlighted the sensitivity of
a Wells turbine performance to control parameters. The biradial turbine exhibited higher
efficiency and can operate closer to maximum efficiency over a broad range of control
parameters, showing a 32% higher annual-averaged efficiency compared to the Wells
turbine at the Mutriku power plant. The study emphasized selecting control laws based on
generator efficiency and suggested statistical analysis for optimal performance.

About the application of ML algorithms for a predictive model, the study of Seo
et al. [35] explored the application of machine learning-based prediction technology, as an
element of digital twin technology, to predict pressure in the OWC of a wave power plant.
By analyzing correlations between wave height data and OWC sensor data, meaningful
parameters for prediction were identified. Feature engineering was employed to extract
relevant features from the dataset, and a high-performing machine-learning model was
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selected after training with various models. The study demonstrated the potential for
improved operational efficiency by predicting OWC pressure, which is critical for wave
energy conversion.

Seo et al. [36] explored the application of ML for improving the efficiency of wave
power plants by predicting the pressure inside the OWC chamber. Using correlations
between wave height and sensor data, a training model based on a digital twin of an OWC
was designed. ML models were employed to predict chamber pressure, with promising
results. Despite data limitations, the study highlighted the potential of ML in enhancing
wave power plant operation efficiency, suggesting future research directions for improved
accuracy and real-time data processing.

The work of Roh and Kim [37] applied deep learning algorithms to predict turbine
generator rotational speed in OWC wave energy converters for improved control. By
preemptively operating valves based on predicted speeds, the energy input can be managed
more effectively. Various deep learning algorithms were compared using operational data
from an OWC wave energy converter off the coast of Jeju, South Korea, with LSTM showing
the most accurate predictions. This research highlighted the potential of deep learning for
enhancing OWC operational efficiency.

The study of Marques-Silva et al. [38] focused on short-term wave forecasting to
enhance the economic viability of OWC, particularly those equipped with biradial turbines.
Using data from the Mutriku wave power plant in Spain, three regression algorithms—LS-
SVM, AR, and ARMA—were developed to predict air chamber pressure. LS-SVM models
with fewer features demonstrated good performance with average errors of 19%, while
AR and ARMA models showed similar performance with average errors of around 18%.
However, LS-SVM models suffered from increased errors when extending the forecasting
horizon due to limited training data. On the other hand, the AR and ARMA models exhib-
ited consistent performance across different forecast horizons. Considering computational
efficiency, ARMA emerged as the preferable option for model predictive control strategies
in real wave power plants.

1.3. Aim of the Work

The main purpose of the study is to test a device that can enhance the performance
characteristics of the Savonius turbine in terms of Cp–λ (these parameters will be discussed
later). The device should be easy to implement so that it can also be applied to Savonius
turbines already in operation. Additionally, thanks to the numerous experimental tests
conducted (1044), the study has enabled the development of a regression ML algorithm
based on a decision tree that can be used to predict the turbine’s behavior beyond the
laboratory-tested boundary conditions. Specifically, experimental tests were made subject-
ing the turbine to a mono-directional or bi-directional airflow with varying load conditions,
and the data were processed using ML to extract the factors influencing turbine perfor-
mance. The utilization of ML techniques allowed for a comprehensive evaluation of various
parameters affecting turbine efficiency. The outcome of this evaluation can be used to set
an optimization process to enhance performance or efficiency as it is already being done in
different engineering fields [24,39–41]. The performance of the turbine can be influenced
by deflectors positioned upwind or downwind of the turbine [24,42–44].

In this research, the Bell–Metha polynomial law was used to design PAs that act
as convergent ducts. These augmenters can be strategically placed both upwind and
downwind of the turbine to enhance its performance. By employing this approach, the
rotational speed of the turbine increases, thereby influencing its overall efficiency.

ML algorithms based on decision trees were subsequently implemented to extract
insights into the parameters exerting the most significant influence on turbine power
production. Furthermore, the utilization of an ML regression model enables the exploration
of diverse configurations of the used parameters without necessitating alterations to the
setup. The advantage of applying this ML algorithm is the ability to predict the value of the
pressure drop (between the upwind and downwind size of the turbine) generated through



Sensors 2024, 24, 3582 5 of 34

new configurations without the use of sensors and to vary the configuration of the real
system. Therefore, what can be defined as a partial digital twin of the system is obtained,
with which it is possible to test different combinations of parameters to achieve the best
performance.

2. Materials and Methods
2.1. Experimental Setup

The experimental tests were conducted in a test tube at the University of Messina
(Figure 1). The upper portion of the test tube is constructed with PVC walls, forming an
internal square cross-section measuring 100 × 100 mm and extending 1000 mm in length.
The turbine is positioned at the midpoint of the upper section. The other parts of the setup
are made of wood and PVC.
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Figure 1. Test tube in the UNIME lab.

The lateral regions comprise two 45◦ bends (a single bend is 160 mm long) connected
by a vertical junction, also with square cross-sections. In the lower section, there is a fan
that generates the airflow and a diverter. The diverter can rotate at a preset frequency f,
enabling the redirection of airflow towards one of the two curves. When f = 0 the flow
is mono-directional; when f > 0 the flow is bi-directional, and the inversion velocity can
be controlled.

The layout of the test tube is presented in Figure 2.
The turbine (Figure 3) was 3D-printed in PLA. The principal characteristics are listed

in Table 1.

Table 1. Turbine characteristics.

Parameter Symbol Value

Diameter [mm] D 90
Height [mm] h 90
Overlap Ratio OR 1/3
Aspect Ratio AR 1
Spacing Ratio SR 0

Axis diameter [mm] AD 10
Axis length [mm] AL 60

Weight [kg] W 0.635
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Figure 3. Dimensions of the Savonius turbine.
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The airflow is generated by a centrifugal fan, the EBM Papst G1G133-DE19-15, pow-
ered by a 24-volt DC voltage. This fan operates at a rotational speed of 2000 r/min and
has an outlet section measuring 59 × 71 mm. In the present study, both mono-directional
and bi-directional tests were conducted. For this purpose, the diverter swings around its
hinge, directing the airflow from the fan towards one of the lateral sections depending on
its position. The diverter is actuated by a stepper motor and is presented in Figure 4. The
bi-directional flow simulates the rising and falling of waves in the sea.
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Figure 4. Mobile diverter.

The operating conditions of the flow and the dimensions of the turbine are constrained
by the limits of the experimental setup related to the test chamber. The input power is
limited by the fan’s power, and the turbine’s dimensions are restricted by the chamber’s
geometry. In order to explore and design the characteristic curve CP–λ, since the rotational
speed of the fan is fixed, the turbine was slowed down adding masses to the free end of a
belt brake. In doing so, even if the airflow speed does not change, λ values vary because
the rotational speed of the turbine is changing (see Equation (14)).

The process from power input to energy production involves three main stages: the
first stage pertains to the power input (in this case, the fan), the second stage involves
converting the primary energy into mechanical energy, and the final stage concerns con-
verting mechanical energy into electrical energy. The power input, as defined during the
test, is constrained by the fan’s power, so this primary energy remains constant for each
configuration tested. Therefore, comparisons among all proposed configurations must be
conducted with the same input power.

Another important aspect is the conversion of the energy produced by the turbine
into electrical energy using an electric generator. In the experimental tests conducted, this
control strategy is not considered because the study’s main goal is to use a device (power
augmenter) to increase the performance of the Savonius turbine under the same boundary
conditions. The stages upstream and downstream of the Savonius turbine are maintained
and considered constant. The primary and tertiary energy conversion stages are considered
not important at this stage because they have the same effects on the turbine with 1, 2, or
without PAs.
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2.1.1. Power Augmenters (PAs)

The aim of the PA is to create a converging nozzle in front of the active blade of the
Savonius turbine, as the converging nozzle helps to increase the velocity. Additionally,
the power augmenter masks the part of the turbine that would generate resistance to
rotation (as shown in Figure 5). The shape of the power augmenter was chosen to be
easily manufactured (with a constant shape along the z-direction) and to comply with
the geometric constraints imposed by the test chamber on the turbine. There are several
shapes that can be used as power augmenters, such as Spline, NURBS, Bezier Curves, and
Polynomial curves. For this phase, a polynomial curve was chosen for the section profile of
the PA. Generally, increasing the degree of a polynomial function allows for more geometric
parameters to be managed. However, this also introduces many unknowns, which could
pose certain limitations from an optimization perspective using numerical methods. A
good compromise is a 5th-degree polynomial, such as the Bell–Metha polynomial. The
Bell–Metha equation allows control over various geometric aspects of the profile, including
not only the maximum height of the profile, constrained by the dimensions of the turbine,
but also the position of the inflection point of the curve. The equation of the polynomial is
provided in (1).

y = aξ5 + bξ4 + cξ3 + dξ2 + eξ + f (1)

y is the height of the PA, x a generic length expressed in millimeters, L the total length
of the PA and ξ the dependent variable defined as x/L (Figure 5).
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Figure 5. Power augmenter dimensions.

The experimental tests conducted help to understand the effects of the presence
of the PA and, in general, help to evaluate the influence of the distance of the power
augmenter. The distance influences the PA’s efficiency because the turbulence behind the
power augmenter can have positive or negative effects depending on its distance from
the active part of the turbine. Depending on the frequency of the diverter, the turbine can
be tested both in mono and bi-directional flow conditions. Different distances between
the turbine and the power augmenters were tried. In mono-directional test cases, only
the upwind power augmenter was placed since the flow has only one clear direction; in
the bi-directional tests, the power augmenters were placed both upwind and downwind.
In Figure 6, the positioning of the power augmenter with a distance of D/8 in a mono-
directional test is represented.
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Figure 6. Example of upwind power augmenter positioning (f = 0 Hz).

2.1.2. Measurement Devices

The measurements are made through two velocity sensors, a load cell, and two
pressure sensors. The analogic board used to process signals from the sensors is the NI
cDAQ 9171 (National Instruments, Austin, Texas, USA). These signals are processed and
managed using the software LabView on the computer.

The diverter is rotated using a stepper motor and it is operated via an Arduino code,
which allows setting the desired rotation frequency.

The connections between all the devices are represented in Figure 7.
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processed and managed using the software LabView on the computer. 
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The connections between all the devices are represented in Figure 7. 
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Torque Measurement

To measure the torque developed by the turbine, a belt brake composed of a pulley, a
nylon wire, a suspended mass, and a load cell was employed (Figure 8).
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Figure 8. Torque measurement system.

The nylon wire is connected at one end to the load cell fixed to the ground, runs along
the pulley, and at the other end, there is a hook with which it is possible to suspend a
mass. Since the pulley is keyed to the turbine shaft, its rotation speed varies depending on
the suspended mass. Figure 8 shows a schematic of the system used and the balance of
dynamic forces.

• F1: weight force;
• Ff : friction force acting on the pulley;
• Fm: force measured by the load cell.

Under static conditions, since Ff = 0:

Fm = F1 (2)

However, under dynamic conditions, the force measured by the cell will be:

Fm = F1 + Ff (3)

The torque T, expressed in N·m, can be therefore calculated:

T = Fm·Dpulley/2 (4)
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Pitot Tubes

To calculate the fluid velocity inside the test tube, two Pitot tubes were placed, each at
100 mm from the two bends of the upper section. These are two tubes immersed in the fluid,
one facing upstream and the other downstream. Both are equipped with a hole at the front
that serves as a total pressure (or stagnation pressure) port. Additionally, longitudinally, at
a certain distance, there are additional holes acting as static pressure ports.

The relationship between pressure and velocity is expressed by Bernoulli equation.

Pst +
1
2

ρV2 = Ptot (5)

V =

√
2(Ptot − Pst)

ρ
=

√
2∆P

ρ
(6)

The data collected from the Pitot tubes and the pressure taps upstream and down-
stream of the rotor (∆P) were processed by a pressure transmitter. Three HD420T (DeltaOhm,
Caselle, Italy) devices were used: two for the Pitot tubes and one to determine the pressure
drop near the turbine.

Rotary Encoder

To measure the turbine rotational speed, a rotary encoder was used. Positioned in
front of a ring with alternating black and white bands, this device produces a voltage
corresponding to the band aligned with the sensor. The resulting signal is a square wave.

Each time the encoder detects a white band, it generates a peak in the signal. The
pulses per second (PPS) can be calculated using Equation (5).

PPS =
PPStot

T
(7)

PPStot are the total pulses recorded during the test and T the recording period
in seconds.

Knowing that there are 8 white bands in the encoder, once the pulses per second are
calculated, the rotational speed in r/min of the turbine can be calculated.

n =
PPS

8
·60 (8)

Data Acquisition

Data collection is divided into two phases: one with the fan turned on and one with
the fan turned off. By comparing the data from these two phases, it is possible to evaluate
the turbine’s torque and effective power since in the second phase, the friction force on the
pulley, Fa is zero.

The software used to record the tests is NI LabVIEW(v. 2018). A recording duration of
20 s was set with a sampling frequency of 0.001 s. The force detected by the load cell, the
pressure drop measured by the Pitot tubes and the encoder signal in volts were acquired.

Furthermore, to ensure accurate analysis, it was necessary to reset the load cell so
that it did not consider the mass of the screw, nylon wire, and hook connected to it, thus
evaluating the torque without taking external elements into account.

Since each acquisition has 20,000 data points, it is necessary to calculate the mean of all
values obtained to determine the mean value of the airflow velocity V0, the mean value of
∆P between upstream and downstream of the turbine, and the mean value of the applied
load L.
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In particular, the airflow velocity and the applied load can be obtained using
Equations (8) and (9).

V0 =

√
2·∆PPitot

ρ
(9)

L =
1

ndata
·
(
∑ LoadON − LoadOFF

)
(10)

with:
ndata: number of registered data;
LoadON : load measured with the fan on;
LoadOFF : load measured with the fan off;
The power W of the turbine and the available power Win are expressed in Watt.

W = 2π· n
60

·T (11)

Win =

(
1
2
·ρ·Aturbine·V3

0

)
+ (∆P·Aturbine·V0) (12)

Once these parameters are obtained, the value of the power coefficient Cp and the tip
speed ratio λ are determined.

Cp =
W

Win
(13)

λ =
2π·n·Dturbine

120·V0
(14)

The measurements were averaged over the acquisition period, so all the considered
performance coefficients are not instantaneous.

2.1.3. Tested Configurations

Different configurations were tested, varying the number and the positioning of the
Power Augmenters (PAs). A complete summary of the conducted tests is presented in
Table 2.

Table 2. Tested configuration.

Configuration Number Number of PAs PA Distance Frequency [Hz]

1 0 0
2 0 0.1
3 0 1
4 1 D/4 0
5 1 D/8 0
6 2 D/4 0
7 2 D/4 0.1
8 2 D/4 1
9 2 D/8 0
10 2 D/8 0.1
11 2 D/8 1

The test on a certain configuration is repeated at least five times, to check and ensure
the repeatability of the measurement.
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2.2. Machine Learning

Machine Learning (ML) [45,46] is a branch of artificial intelligence (AI). It originated
in the 1950s in Hanover [46] and focuses on systems that perform tasks that, to an exter-
nal observer, would appear to be exclusively within the domain of human intelligence.
ML emerged as a subset of AI following various schools of thought that defined an “in-
telligent” system as one capable of learning from experience and improving its perfor-
mance [47]. This distinctive trait sets ML algorithms apart from conventional computer
programming, as they can operate even under conditions for which they have not been
explicitly programmed.

The main objective of testing the physical model with different configurations (fre-
quency, load, number of power augmenters, and power augmenter distance) is to maximize
the power output of the turbine. With the same input power (fan), the aim is to maximize
the output power (generated by the turbine). As mentioned earlier, one of the fluid parame-
ters measured by dedicated sensors during the various tests is the pressure difference (∆P)
created between the upstream and downstream stages of the turbine. The investigation
aimed to identify which parameters, when varied within the different system configura-
tions, had the greatest impact on the generation of ∆P. Understanding which parameters
most significantly influence the value of ∆P would allow for coherent modification of the
setup to maximize the turbine power output. To recap, the parameters varied during the
different tests are applied load, presence/absence of power augmenters, number of power
augmenters, flow feed frequency, and distance between the power augmenters. Among
these parameters, the presence/absence of power augmenters and the number of power
augmenters are categorical variables, unlike all the others which are continuous variables.
Table 3 summarizes the setup variables along with a description and range of variation.

Table 3. Setup variables with description and range of values.

Load [N] No. PA PA (Presence/Absence) Fan Frequency [Hz] Distance PA–Turbine [mm]

0.0138–0.6701
(continuous)

0, 1, 2
(categorical)

1, 0
(categorical)

0–1
(continuous)

0.0117–107

(continuous)

The ∆P is evidently a continuous quantity with a variability range of [−151.9606,
85.0614] Pa. This range of ∆P is determined by computing the pressure difference between
measurements taken downstream and upstream of the turbine. Thus, the negative sign
denotes instances where the downstream pressure surpasses that measured upstream of
the turbine (with consideration for potential variations in fluid flow direction). However,
for power generation considerations, the absolute value of ∆P is paramount, given the
self-aligning property of the Savonius turbine, which rotates unidirectionally regardless
of fluid flow direction. Therefore, ∆P is evaluated in absolute terms, as power production
remains unaffected by fluid flow direction.

With the available dataset, derived from the measurements taken, it was decided to
train a ML algorithm for two main reasons:

• To identify the parameters that most influence ∆P;
• To obtain a model capable of hypothesizing new scenarios without the constraint of

necessarily intervening in the physical system.

As is well known, an ML algorithm is capable of learning a relationship between the
features and the output, even under conditions it has never encountered before, unlike in
traditional programming.

The dataset consists of 5 input variables (referred to as “features”) and one output
variable (∆P), comprising 1044 instances, or observations. This dataset was then split
to obtain three distinct datasets, each for one of the three phases required to develop a
robust ML model: training, validation, and testing. Approximately 10% of the dataset
(100 instances selected randomly) was reserved for the testing phase, while the remaining
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data underwent a 10-fold cross-validation. Table 4 provides an overview of the datasets
and the number of instances they contain.

Table 4. Datasets and number of instances.

Dataset No. Instances

Total 1044
Training/Validation 944

Test 100

This practice is employed to enhance the model’s performance, especially when the
dataset is not extensive. Consequently, the remaining 90% of the dataset is divided into
9 sections. Ten training and validation sessions are conducted, using 9 sections for training
and 1 section for validation during each session.

In each phase, a different section will be used for validation. During validation,
the model’s performance is evaluated and improved. The unique aspect of using cross-
validation is that it not only estimates the performance of the trained model but also
provides a measure of how accurate its predictions are (through evaluation of the stan-
dard deviation) and how reproducible they are. Finally, the test dataset simulates a real
application of the model, aiming to observe its behavior with data it has never seen during
training. The test results provide a measure of the model’s goodness.

The choice of the ML model to implement fell on decision trees, which are a predictive
model based on a tree structure for decision-making. The advantages of this model for the
problem addressed in this work will be discussed later.

A decision tree model is a structure composed of nodes and leaves. Each node
represents a question or condition about a data attribute, and each leaf represents a class or
output value, depending on whether it is a classification or regression problem.

At the beginning of the tree is the root node, which contains the entire training dataset.
From here, the tree branches into child nodes, each of which represents a possible response
to the question or condition posed by the parent node. Each child node is connected
to the parent node by a branch, indicating the hierarchical relationship between them.
When descending along the decision tree, encounters with intermediate nodes occur, which
continue to pose questions or conditions on the data based on previous answers. This
process continues until it reaches the tree’s leaves, where a final decision is made, or a
predictive output is provided. Figure 9 shows a schematization of a decision tree.
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The algorithm underlying the operation of decision trees is called Classification and
Regression Tree (CART). It is used for both classification and regression problems. The
problem addressed in this work falls within the realm of regression. Indeed, the output
variable is a continuous variable (unlike a classification problem where the output is a
class). Therefore, in this case, the model will predict continuous values, and to assess the
model’s performance, the error in estimating these values is measured.

CART constructs a decision tree by splitting the dataset into two subsets of data
according to a feature (k) and a certain threshold (t). The feature is chosen by carefully
evaluating the k-t pairs that minimize a certain function. In the case of regression, the goal
is not to determine a class but to obtain a value. The cost function to be minimized is based
on the Mean Square Error (MSE) and is as follows [48]:

J(k, tk) =
mle f t

m
MSEle f t +

mright

m
MSEright with


MSEnode = ∑

i ∈ node

(
ŷnode − y(i)

)2

ŷnode =
1

mnode
∑

i ∈ node
y(i)

(15)

where:

• MSE is calculated as the average of the squares of the differences between the values
predicted by the tree (ŷnode) and the corresponding actual values in the training data
(y(i)). Minimizing the MSE during tree construction helps find optimal splits that
reduce the overall prediction error;

• m is the total number of instances in the training dataset;
• mnode represents the number of instances contained in the node of interest;
• The number of instances to the right (mright) and left (mle f t) refers to the number

of training samples ending up in the right and left subtree, respectively, during the
tree-splitting process.

This aspect is crucial because during the tree construction phase, the goal is to find
splits that minimize predictive error while simultaneously avoiding overfitting. Therefore,
the splits must be chosen to minimize the MSE and ensure that each subtree has a sufficient
number of instances to make accurate predictions.

Overfitting occurs when a model excessively fits the training data, capturing the noise
present in the data rather than just the relevant patterns. In this way, the decision tree runs
the risk of becoming too complex, with many splits and nodes, to the point of effectively
memorizing the training data instead of being able to generalize correctly to new, unseen
data. As a result, the model may fail to generalize, meaning it cannot properly evaluate
new data, as it has overfit to the training data.

The choice of a decision tree-based ML algorithm to address the problem proposed in
this work is supported by a series of motivations outlined below.

This ML model is capable of working with mixed variables (continuous and categor-
ical) without needing to convert categorical ones into binaries through a process called
one-hot encoding. Moreover, they can achieve good performance even with relatively small
datasets (on the order of thousands of data points as in the case of the dataset used in this
work). The computational burden required for training a decision tree model is very low
since they are quickly implementable and do not require data normalization. The most
important characteristic of decision trees, for the purposes of this work, is that they behave
like white boxes. Unlike many other ML methods such as neural networks, which behave
like black boxes, a decision tree model is highly interpretable. Therefore, it is possible to
understand how the model makes its prediction. This allows for the identification of the
most influential input variables on the output.

To analyze the model’s performance, that is, to obtain a quantitative value of the
trained model’s goodness, various metrics are calculated using the results of the validation
and test. In particular:
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• MSE, as already defined, calculates the average of the squares of the differences
between the model’s predicted values and the actual values in the validation (or test)
dataset. This metric is particularly sensitive to outliers;

• Root Mean Square Error (RMSE) is the square root of the MSE and provides a measure
of the average prediction error in units of the output variable. It corresponds to the
Euclidean norm [48].

RMSE(X, h) =

√
1
m

m

∑
i=1

(
h
(
x(i)

)
− y(i)

)2 (16)

where h
(

x(i)
)

is the predicted value.

• The coefficient R2, also known as the coefficient of determination, provides a measure
of how well the model fits the data. R2 varies between 0 and 1 and represents the
percentage of variation in the output variable explained by the model. A value closer
to 1 indicates a better model fit;

• Mean Absolute Error (MAE) calculates the average of the absolute differences between
the predicted values and the actual values and is less sensitive to outliers compared to
MSE [48].

MAE(X, h) =
1
m

m

∑
i=1

∣∣∣h(x(i)
)
− y(i)

∣∣∣ (17)

The ML model was trained using the “Regression Learner” app of MATLAB (Math-
Works, v. R2023b). The chosen algorithm type is “Optimizable Tree”, which explores
different combinations of hyperparameters to achieve the best performance of the model.

Hyperparameters are configuration settings external to the model and cannot be
directly estimated from data. They are set before the training process and govern the
behavior of the learning algorithm. Unlike parameters, which are learned during training,
hyperparameters are typically chosen based on heuristics, prior knowledge, or through a
process of trial and error [49,50]. In particular, the hyperparameter used are the minimum
leaf size, the maximum number of splits, and the minimum parent size. The minimum leaf
size is the minimum number of observations per tree leaf. Smaller values may lead to more
complex trees, potentially prone to overfitting. The maximum number of splits allowed in
each tree. This parameter can control the complexity of the tree. The minimum number of
observations per tree parent. Smaller values may lead to more splits and potentially more
complex trees.

As regard the interpretation of the results with the aim of understanding the weight
of each feature (or predictor) on the output, a prediction importance was conducted. The
prediction importance is evaluated by looking at how much the risk of a node changes
when a split is made based on that predictor. This change in risk is measured as the
difference between the risk at the parent node and the combined risk at the two child nodes
created by the split. For example, if a tree divides a parent node (like node 1) into two child
nodes (nodes 2 and 3), the importance of the predictor involved in this split is boosted by:

(R1 − R2 − R3) = Nbranch (18)

where Ri represents the node risk of node i, and Nbranch is the total number of branch nodes.
Node risk is determined by multiplying the node probability (Pi) by the related MSE:

Ri = Pi MSEi (19)

In which the node probability (Pi) proportion of observations in the original dataset
that meet the conditions for each node in the tree.
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3. Results and Discussions
3.1. Experimental Results

To characterize the turbine behavior, the CP–λ curves (see Equations (13) and (14))
were extracted from the experimental results. Each point of the curve is the average of five
experimental results for that specific condition.

Since multiple results will be compared, for better clarity and visualization, the results
points for every experimental test were fitted with a quadratic curve. In Figure 10, an
example of fitting for the f = 1 Hz and 0 PA test is shown.

Figure 10. Example of experimental points curve fitting.

The resulting fitted curves were grouped based on the frequency f of the flow gener-
ated by the fan (Figures 11–13).

Figure 11. CP–λ curves for f = 0 Hz.
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Figure 12. Energy extraction performance for 0 Hz configuration.

Figure 13. CP–λ curves for f = 0.1 Hz.

The area under a CP–λ curve provides an estimate of the energy that can be recovered
from the wave motion. This area can be increased either by speeding up the rotation of the
turbine or by improving the power coefficient.

The energy that can be extracted by the turbine working at the maximum CP condition
was considered for each configuration. An Energy Extraction Performance (EEP) index
was introduced:

EEP [%] =
W(CPmax, i)·t

W(CPmax, 0 PA)·t ·100 (20)

W(CPmax,i) is the power generated by the turbine for the generic “i” configuration with
a certain PA number and positioning and with a rotational speed corresponding to the
CPmax point. W(CPmax, 0 PA) is the power referred to in the configuration with no PA. The
EEP index is recalculated for each of the three flow frequency values.



Sensors 2024, 24, 3582 19 of 34

Figure 11 shows that with a mono-directional flow, as expected, the biggest improve-
ment is given by the 1-PA configurations. An interesting effect is that by decreasing the
distance from the blades, the effects in terms of general improvements are reduced. The
2-PA configurations do not give an improvement in terms of power, since the downwind
PA disturbs the wake of the turbine generating turbulence. However, an increase in the tip
speed ratio is registered due to the presence of the upwind PA.

As shown in Figure 12, in the case of the mono-directional flow, the presence of one
power augmenter is very important in terms of energy extracted. It is clear that, for this
particular situation, as mentioned above, the two power augmenters are counterproductive
because there is no advantage in terms of energy recovered. It is fascinating to observe that
the optimal solution occurs at a distance equal to D/4. Placing the PA too close results in a
less significant effect.

Figure 13 shows the case for f = 0.1 Hz. When the flow is not mono-directional, like
in this case and for f = 1 Hz, the condition with only one PA is not considered, since
the flow would find a convergent duct in one direction only. Adding two PAs led to a
sensible increase only in tip speed ratio for a distance of D/4. For a distance of D/8, a
relevant increase in the power coefficient is registered, making this the best condition
performance-wise among the tested ones.

As shown in Figure 14, in the case of the bi-directional flow, it is very important to
manage the distance between the PAs. There is a specific distance within which the effect
of the PAs is positive; beyond this distance, the presence of the PAs has no effect.

Figure 14. Energy extraction performance for 0.1 Hz configuration.

Figure 15 refers to the cases with f = 1 Hz. For this condition, as for f = 0.1 Hz, the best
condition performance-wise is with two PAs at D/8 from the turbine. The increase in terms
of power coefficient and tip speed ratio when referring to the case with no PA, however, is
not as big as in the f = 0.1 Hz condition.
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Figure 15. CP–λ curves for f = 0.1 Hz.

As shown in Figure 16, in the case of the bi-directional flow with a higher frequency,
the effect of the distance is different and in this case, the D/4 configuration is negative with
respect to the 0-PA configuration. The graph highlights the importance of the frequency in
this kind of configuration.

Figure 16. Energy extraction performance for 1 Hz configuration.

The integral function of the areas under the CP–λ curves for all tested configurations
were plotted in Figure 17. Every curve has an inflection point in correspondence with
the maximum value of the tip speed ratio; therefore, after that point, the value of the
area remains stable. The final value of the area is proportional to the energy that can be
harvested with a certain configuration.
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Figure 17. Comparison of area values between different configurations.

The great advantage of the presence of the power augmenter is explained thanks to
the streamlined example shown in the following pictures. Thanks to the power augmenter
the streamlined areas are concentrated along the active part of the turbine. In addition, the
PA generates a vortex zone (depressurized part) in the passive part of the turbine, which, if
properly utilized, can function as a suction system that creates a positive effect in terms of
rotation. However, if used incorrectly, it can generate disturbance. Therefore, it is crucial to
act by considering the appropriate distance relative to this effect. A comparison between
Figures 18 and 19 shows that at the chamber’s rear, the PA can have different effects. The
streamlined areas in the first case can interact directly with the turbine blade producing a
great disturbance; in the case of D/4, in the chamber, there is space for vortex formation
and thus for the creation of a low-pressure area.
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3.2. ML Results

The ML model based on decision trees, described in the previous section, underwent
the phases of training, validation (using 10-fold cross-validation), and testing. The results
are presented in Table 5 showing the values of MSE, RMSE, R2, and MAE obtained both
during the validation and testing phases.

Table 5. Performance (validation and testing) of the trained ML model.

MSE RMSE R2 MAE

Validation 2.3773 1.5419 0.99767 1.0226
Test 1.9539 1.3978 0.99801 0.93791

As previously mentioned, the metric to minimize is the MSE. From Figure 21, it can be
seen that, during the 30 iterations conducted while varying the hyperparameters (during
training and validation), the MSE was evaluated, reaching its minimum value at iteration
number 15.
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Figure 21. Minimum MSE values during the iterations and best point hyperparameters.

In this case, the minimum MSE coincides with the best combination of hyperparam-
eters. Therefore, the model was constructed using this combination of hyperparameters,
which are summarized in Table 6.

Table 6. Best combination of the hyperparameters selected.

Hyperparameter Value

Minimum Leaf Size 8
Maximum No. Split 943

Minimum Parent Size 16

Figure 22 displays the plot correlating the 944 actual ∆P values for each instance
(X-axis) with those predicted during the validation phase (Response).

Figure 22. Comparison between true and predicted responses for each instance.
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They are depicted by blue dots (true) and yellow dots (predicted), respectively. Addi-
tionally, prediction errors are shown with red lines. Since cross-validation was performed,
validation was conducted on all 944 instances.

It is also possible to have a graphical representation similar to the previous one but
evaluated for each single feature. Figures 23 and 24 show a comparison between the true
and the predicted instances.

Figure 23. Comparison between true and predicted responses for each load value.

In the previous figures, therefore, the model’s responses in terms of ∆P are compared
to the true ones. It is possible to observe a sufficient level of closeness, ensuring the
goodness of the model as already indicated by the evaluation metrics shown earlier. In
the ideal case (R2 = 1, perfect predictions), the box plot of the true responses and that of
the predicted ones should be exactly the same. The values being compared are those of
∆P. Therefore, for example in Figure 22 the red line indicating the error depicts exactly the
difference between the predicted values and the actual values. As regards the box plot, the
central mark denotes the median, while the lower and upper edges of the box represent
the 25th and 75th percentiles, respectively. Vertical lines extend from the boxes to the most
extreme data points that are not considered outliers. Outliers are individually plotted using
the o′′ symbol.

Figure 25a displays the correlation between the actual ∆P values (X-axis) and the
predicted ones (Y-axis) in the validation phase. The plot is summarized by the R2 coefficient,
which, as shown in Table 5, is sufficiently high.

In the ideal case, the predicted ∆P values coincide with the actual ones. In this scenario,
all points lie on the line, resulting in an R2 coefficient equal to 1.

Figure 25b displays the residual plot for the 944 observations (the difference between
the predicted and the true values of ∆P). It exhibits a certain symmetry around axis 0,
except for some outliers in the negative part of the plot, and no pattern could be observed.
This indicates good performance during the validation phase.

Below, some graphs obtained as a result of the test phase are shown. Figure 26a
displays the correlation plot between the predicted and the actual values of ∆P.
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Figure 24. Comparison between true and predicted responses for each No. PA (a) and PA (yes/no)
(b) categories and for each frequency (c) and PA distance (d) values.
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Figure 25. Prediction accuracy (R2 = 0.99767) (a) and residual plot (b) of the validation phase.
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(a) (b) 

Figure 26. Prediction accuracy (R2 = 0.99801) (a) and residual plot (b) of the test phase.

In the test phase, there are 100 instances, and from the distribution, it is noticeable
how the observations approximate the line of perfect predictions better. This is also evident
from the fact that the test R2 is closer to 1 compared to that of validation. This can be
interpreted as a good performance of the model, as it has managed to achieve a prediction
level comparable to that of validation. This means that the model has generalized well
enough to predict new instances with the same level of accuracy. Therefore, hyperparameter
optimization has, as expected, reduced the occurrence of overfitting.

Figure 26b displays the residual plot of the test data. Again, apart from an outlier
value, the plot exhibits values distributed around zero.

Now, the graphs of partial dependencies of individual features on the response (∆P)
are shown.

The partial dependence plot illustrates the marginal effect that one or two features
have on the prediction of a machine-learning model [50]. A partial dependence plot can
show whether the relationship between the output and a feature is linear, monotonic, or
more complex.

In the partial dependence plot of the load (Figure 27), it can be observed that as the
load applied to the turbine increases, the ∆P decreases in a quadratic manner. This can be
justified by the fact that as the braking load increases, the turbine generates a progressively
lower ∆P.

The partial dependence plot of frequency (Figure 28) shows that for a frequency
equal to zero (continuous flow), the ∆P has a high value, while when the flow becomes
alternating, there is a rapid decrease in ∆P, which increases as it moves from lower to
higher frequencies. However, the highest ∆P value during bi-directional flow remains
significantly below the ∆P value at a continuous flow (0 Hz).

From the following graph (Figure 29), it is evident that increasing the PA distance and
the turbine results in a significant decrease in ∆P from small to large distances (distance
values of 106 denote, in practice, the absence of PA).

In the case of categorical features, partial dependence is obtained by forcing all data
instances to belong to the same category. Therefore, a value will be obtained for each class.
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Figure 27. Partial dependence plot of the load.

Figure 28. Partial dependence plot of the frequency.

Figure 30 displays the partial dependence plot concerning the presence/absence of PAs.
As can be seen, neither of the two categories prevails over the other in terms of influence on
∆P. Consequently, this feature appears to be irrelevant in determining ∆P. This was partly
predictable since, for example, in the previous graph (Figure 29), the PA distance = 107

had already been appropriately chosen to represent the absence of a PA. Additionally, the
feature No. PA encompasses both the absence and presence of PAs, providing additional
information. However, it was decided to verify this hypothesis. Discarding this feature
will not affect the obtained result. It is clarified that what has just been said does not imply
that the presence or absence of PAs does not influence ∆P (as evidenced by Figures 29
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and 30), but only that it does not make sense to use this type of predictor in the model, as it
is correlated with two other predictors.

Figure 29. Partial dependence plot of the PA distance.

Figure 30. Partial dependence plot of the PA (yes/no).

From the partial dependence plot regarding the No. PAs present (Figure 31), it can
be observed that the presence of even one PA has a positive impact on ∆P. With two PAs
present, ∆P increases significantly compared to the previous case. It is therefore inferred
that the presence of PAs, especially two PAs, leads to a higher ∆P.
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Figure 31. Partial dependence plot on the No. PAs.

Furthermore, it is possible to extract the importance of the selected features (predictors)
in determining the ∆P (as shown in Equation (18)). Figure 32 displays, in descending order,
the predictors’ importance.
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Figure 32. Predictor importance bar plot.

The most important features observed during model training are the number of PAs
and frequency, which are of comparable importance. A lower weight is associated with
the PA distance and the applied load. The feature regarding the presence/absence of PAs
appears to have no weight. This is consistent with the previous consideration of Figure 30.
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The greater importance of the “No. PA” feature is dictated by the operating mode of
the PAs. In fact, the presence of the PAs ensures that the flow is appropriately directed
toward the driving blade, creating a converging duct that increases the flow velocity. In
particular, the unidirectional configuration benefits from the positive effect on ∆P of the
presence of a single PA. In the bi-directional flow configuration, however, a PA placed
downstream of the turbine creates a negative effect on ∆P as its vertical wall obstructs
the flow. Nevertheless, a positive effect prevails over the negative one. This can also
be observed by comparing the CP–λ curves at 0 Hz (Figure 11 with those at non-zero
frequencies (Figures 10 and 13), looking at the maximum CP values obtained (higher in the
case of bi-directional flow).

As for frequency, it is natural that ∆P is strongly dependent on the flow frequency
since it is the forcing wave of the system.

The influence of the PA distance is justified by the fact that it must assume precise
values to have a globally positive effect on ∆P. Indeed, too large distances nullify the effect
of directing the flow onto the driving blade, while distances that are too small create fluid
dynamic conditions that worsen performance (as already shown in Figures 18–20).

Figure 33 shows the counts of the features used to generate the tree.
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Figure 33 shows a complementary graph of Figure 32. The high counts of splits for
the load [N] denote a great difficulty for the algorithm to minimize the cost function (MSE)
with this feature, while with the other ones, the algorithm needs a very low split count to
minimize the MSE. As expected, the binary predictor PA (yes/no) was never utilized to
create a split within the tree. An inverse trend between the frequency of a feature’s use and
its importance is observable (Figure 32. This confirms the general understanding that the
most frequently used feature does not always have the greatest influence on determining
the output (∆P).

4. Conclusions

The main objective of the paper was to understand how a specially designed device
(PA) can be employed to enhance the efficiency of a Savonius turbine while maintaining the
same available power input. In this phase, comparative results among different solutions
on the same turbine were presented to begin understanding the effects of these devices.
The primary goal of the device is to increase the area of the CP–λ curve without needing
to modify the geometry of the turbine. This could potentially allow for interventions on
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already installed Savonius turbines without needing to dismantle the rotor, but by acting
upstream and downstream of the turbines. Another important result was leveraging a large
number of tests (1044) to train a decision tree, providing a tool that can immediately offer
responses regarding the CP–λ curves if one of the input parameters used by AI is varied. In
particular, the experimental part of this study aimed to characterize turbine behavior by
extracting CP–λ curves from experimental results. These curves represent the relationship
between the power coefficient (CP) and the tip speed ratio (λ). The area under a CP–λ curve
gives an estimate of the energy recoverable from wave motion. This area can be increased
by either accelerating turbine rotation or improving the power coefficient.

For a flow frequency of 0 Hz, the results show that with a unidirectional flow, the
greatest improvement occurs with 1-PA configurations, particularly as the proximity of the
PA to the turbine increases. However, 2-PA configurations do not improve power due to
downwind PA disturbance, though they do increase the tip speed ratio.

For a frequency of 0.1 Hz, adding 2 PAs significantly increases the power coefficient at
a distance of D/8, making it the optimal configuration among those tested.

Similarly to the 0.1 Hz condition, when f = 1 Hz, the best performance is achieved
with 2 PAs at D/8 from the turbine, though the improvements in power coefficient and tip
speed ratio compared to the no-PA case are not as substantial.

Regarding the development of the predictive model, it was observed that among the
features used, the greatest importance in determining ∆P is attributable to the No. PAs.
Another feature of comparable importance is the fluid flow frequency. It was also noted that
one of the selected features, the presence of PAs (yes/no), has no impact on determining
the output as it is inherently correlated with two other features (PA distance and No. PAs).
Therefore, it does not affect the model training and can be excluded. Obtaining a predictive
model opens up the possibility of conducting further tests without the need to resort to the
physical system, allowing for the evaluation of different scenarios. As future developments,
training the model under additional conditions could be considered, always subject to
obtaining experimental data, such as at different speeds. The PA can serve as a valuable
asset in enhancing the efficiency of such turbines without necessitating a revolutionary
overhaul, particularly for those already in operation. It can be integrated both upstream
and downstream of the existing turbines. This research opens up avenues for various
future developments. For instance, the experimental data could be utilized to calibrate a
CFD model, enabling the optimization of the PA’s shape or the assessment of alternative
profiles beyond the Bell–Metha design. Additionally, detailed studies, again employing
CFD, can explore the optimal positioning of the devices and strategies for managing the
vortices exiting these PAs. The study underscores the potential for enhancing these turbines
through purpose-built, easily manufacturable devices.
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