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Abstract: The Rich spatial and angular information in light field images enables accurate depth
estimation, which is a crucial aspect of environmental perception. However, the abundance of light
field information also leads to high computational costs and memory pressure. Typically, selectively
pruning some light field information can significantly improve computational efficiency but at the
expense of reduced depth estimation accuracy in the pruned model, especially in low-texture regions
and occluded areas where angular diversity is reduced. In this study, we propose a lightweight
disparity estimation model that balances speed and accuracy and enhances depth estimation accuracy
in textureless regions. We combined cost matching methods based on absolute difference and
correlation to construct cost volumes, improving both accuracy and robustness. Additionally, we
developed a multi-scale disparity cost fusion architecture, employing 3D convolutions and a UNet-
like structure to handle matching costs at different depth scales. This method effectively integrates
information across scales, utilizing the UNet structure for efficient fusion and completion of cost
volumes, thus yielding more precise depth maps. Extensive testing shows that our method achieves
computational efficiency on par with the most efficient existing methods, yet with double the accuracy.
Moreover, our approach achieves comparable accuracy to the current highest-accuracy methods but
with an order of magnitude improvement in computational performance.

Keywords: depth estimation; light field; convolution neural network

1. Introduction

Light field imaging can serve as a significant potential tool for constructing 3D environ-
ments. Unlike traditional imaging, light field imaging captures a richer array of information,
describing the distribution of light rays in three-dimensional space. Furthermore, it has ap-
plications in virtual reality [1,2], view synthesis [3], 3D reconstruction [4], and autonomous
driving [5,6]. Depth estimation is a fundamental and critical step in these important re-
search areas. However, these applications require not only high accuracy but also rapid
generation speeds, thus necessitating that depth estimation processes simultaneously meet
the demands for both estimation accuracy and computational efficiency.

In recent years, deep learning-based methods [6–11] have achieved significant ad-
vancements and demonstrated considerable potential in the realm of light field depth
estimation. These approaches typically utilize all available light field image information,
effectively improving the accuracy of depth estimation. However, the presence of abundant
light field information in light fields leads to a substantial increase in network memory
consumption and computational load. Therefore, many researchers have tried to improve
computational speed by pruning redundant light field images, which indeed achieves
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good results. However, reducing the input information inevitably lowers accuracy and
the perception of occlusion and texture regions. To address this issue, state-of-the-art
methods [10] have utilized full correlation to construct matching cost volumes, replacing
3D convolution operations with 2D convolutions to further reduce computational load
while incorporating multi-scale aggregation to boost accuracy. Nonetheless, full correlation
tends to lose critical depth features and performs poorly in textureless areas. There are
also many in-depth studies on the perception of textureless regions [12–14]. In summary,
although 2D convolutions reduce data volume, they lose significant spatial depth infor-
mation compared with 3D convolutions, rendering the network less effective in handling
complex spatial scenes.

To overcome these limitations, we propose a more effective method for cost volume
construction and a cost aggregation architecture. Firstly, we replace full correlation with
grouped correlation to enhance feature matching information. Secondly, we introduce
feature dissimilarity operations to compensate for the shortcomings of feature correlation
in textureless areas. Lastly, we present an architecture integrating Hourglass modules with
3D convolutions for multi-scale disparity fusion. This network structure more effectively
captures multi-scale spatial features, and the use of 4D feature vectors further enhances the
model’s ability to detect texture details, thereby improving both performance and accuracy
in depth estimation. Our performance is shown in Figure 1.

Figure 1. Comparison of efficiency and computation performance of light field disparity estima-
tion algorithms.

2. Related Work

In this section, we review the main works in the direction of light field depth estimation
based on traditional and deep learning methods.

2.1. Traditional Methods

Previous work on light field depth estimation has leveraged various light field at-
tributes to obtain scene depth information. Traditional depth estimation methods gen-
erally fall into three categories: methods based on epipolar-plane images (EPIs) [15–19],
methods based on multi-view stereo matching (MVS) [20–23], and methods based on
refocusing [7,24–27].

The concept of EPIs was first introduced by Bolles et al., employing light field (LF)
epipolar geometry to calculate line slopes for depth prediction. Wanner et al. [28] then incor-
porated it into light field depth estimation, using only horizontal- and vertical-direction EPIs
of light field images, optimizing the results with a global consistency labeling algorithm.
The EPI method significantly accelerated disparity estimation speed. Zhang et al. [29]
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further proposed the spinning parallelogram operator (SPO) to compute line slopes in EPIs,
enhancing the accuracy of disparity estimation. Sheng et al. [30] used multi-directional EPIs
to optimize slope estimation accuracy, achieving results surpassing the SPO. Heber et al. [21]
developed a principal component analysis matching item for multi-view stereo reconstruc-
tion, combined with the projection of sub-aperture images (SAIs) for depth estimation.
Jeon et al. [22] introduced a Fourier transform-based phase-shift theory to address small
disparities between SAIs. In the refocusing approach, Tao et al. [24] combined defocus cues
with consistency cues in light field images for depth map estimation, though performing
poorly in occluded areas. Tao et al. [26] proposed a shadow-based refinement method to
enhance the robustness of depth map estimation.

While these traditional methods have continuously progressed in accuracy and com-
putational efficiency in light field disparity estimation, they are limited by nonlinear
optimization and manually designed features. These features demand extensive compu-
tational resources and perform poorly in occluded and weakly textured areas, leaving
substantial room for improvement in both accuracy and computational performance in
disparity estimation.

2.2. Deep Learning Methods

In recent years, the use of deep convolutional neural networks (CNNs) for light field
depth estimation has achieved impressive results. Focusing on disparity estimation accu-
racy, Tsai et al. [31] introduced an attention-based visual selection module that integrates the
importance of each view with depth estimation, significantly enhancing robustness against
noise interference. Building on this, Chen et al. [8] combined attention mechanisms with
multi-level fusion networks, using fusion between different angular branches to further
enhance disparity estimation accuracy. Most recently, Yang et al. [32] integrated local and
global features within view feature cost volumes to address the challenges of occlusions
and textureless regions, further improving disparity estimation accuracy. However, these
methods, due to the use of redundant information and extensive 3D convolution operations,
tend to be slower in generating disparity maps.

In another direction, Heber et al. [33] proposed a U-shaped artificial neural network
to extract geometric information from light fields for depth estimation, initially utilizing
EPIs. Subsequently, Shin et al. [34] used CNNs to extract geometric disparities from EPIs
and proposed a fully convolutional end-to-end network. Further, Huang [10] designed a
disparity estimation model that replaced 3D convolutions with 2D convolutions, signifi-
cantly reducing the learning parameters and enhancing computational performance. These
methods, which generate disparity maps using a lower proportion of light field images
as input, have good computational performance but are limited in disparity estimation
accuracy and robustness against real-world noise, especially compared with methods that
use inputs from all views.

Finally, previous research has already shown the advantages of deep neural networks
in light field depth estimation. However, there has been insufficient focus on balancing
accuracy and computational performance, often leading to a trade-off when generating
disparity images. In this paper, we propose a lightweight convolutional neural network that
employs multi-disparity cost aggregation. This network extracts richer depth information
from fewer input data and achieves a balance between computational load and depth
estimation accuracy.

3. Method

In this paper, we introduce a novel method that balances efficiency and accuracy in
light field depth estimation. The overall architecture of the network is depicted in Figure 2.
Initially, acknowledging the redundancy in light field images, we only use sub-aperture
images (SAIs) from the horizontal and vertical directions as inputs to reduce computational
costs as much as possible. A shared feature extraction module is then employed to extract
SAI features (Section 3.1). Following this, we construct cost volumes based on the features
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of surrounding pixels after pixel shifting and central features. In this process, we propose a
hybrid cost volume network to enhance detail perception (Section 3.2). Finally, a multi-scale
disparity cost aggregation module is used to synthesize mixed cost depth information,
which is then processed by a disparity regression module to predict the disparity map
(Section 3.3).
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Figure 2. An overview of our network. The term “MCAM” denotes the multi-view cost volume
aggregation module, and its specific structure is detailed in Figure 3.

3.1. Feature Extraction

The extraction of effective features is crucial to estimating the disparity map, particu-
larly due to the small disparity range in light fields, which complicates accurate estimation
in low-texture and occluded areas. To address this, we use multiple basic residual blocks for
preliminary feature extraction, applying stride-2 convolutions for downsampling. The fea-
ture maps are downsampled at two different scales and subsequently restored to their
original scale through bilinear interpolation. These features at different levels are con-
catenated and fused via convolution, and an SENet [35] module is added to enhance the
weighting of key feature channels. The resultant feature map serves as the input to our
hybrid cost volume network.

3.2. Texture-Aware Cost Volume

After extracting features of SAIs, a 4D cost volume is constructed to predict the
disparity map by establishing a correspondence between shifted surrounding view features



Sensors 2024, 24, 3583 5 of 14

and the central view feature. We use parallel plane parameterization to represent the
four-dimensional light field, L(x, u), where x and u are the spatial and angular coordinates,
respectively. Ic(x, uc) is the central view. The disparity of the light field is denoted by
d(x, uc), and uc denotes the center view position. According to LF geometry, given a
surrounding SAI Is(x, u), the reconstructed central view, Ĩc(x, u), can be expressed as

Ĩc(x, u → uc) = Is(x + (u − uc) · d(x, uc), u) (1)

By using this equation, we can reconstruct the central view, Ĩc(x, u), from the sur-
rounding views, Is(x, u), where x + (u − uc) · d(x, uc) calculates the displacement caused
by the disparity.

Typically, the full correlation cost volume is obtained by using correlation operations [10,36]
between the distorted features of surrounding views and the central view to regress the disparity
map. However, relying solely on full correlation can result in the loss of significant information.
To further reduce the computational load, we group features to compress the matching cost
volume. The number of channels of a univariate feature is denoted by Nc, and the channels are
uniformly divided into Ng groups along the channel dimension. Therefore, each group feature
has Nc/Ng channels. Correlation is then computed for each group. The correlation between the
surrounding view features, Fg

s , and the central view features, Fg
c , is represented as follows:

Cgc(d, x, g) =
Ng

Nc

〈
Fg

c (x, uc), Fg
s (x + (u − uc) · d, u)

〉
(2)

where ⟨·, ·⟩ represents the inner product of two features and Cgc is the correlation cost
volume for feature group g and disparity d.

However, due to the low values of features in textureless areas, the multiplication
operation in the correlation process results in a small variance between the feature costs at
the correct and incorrect depths. This can easily lead to interference by noise and incorrect
depth estimation. To address this issue, we introduce a new set of cost volumes. We
construct cost volumes by using the sum of absolute differences between feature views,
effectively increasing the variance range of depth-related feature costs and enhancing the
network’s perception of the correct depth in textureless areas. The differentiation cost
volume between feature view pixels is represented as follows:

Cgd(d, x, g) =
Nc/Ng

∑
i=1

∣∣∣Fg
c (x, uc)− Fg

s (x + (u − uc) · d, u)
∣∣∣ (3)

Furthermore, the cost volumes are stacked in the depth direction as a 4D array (G ×
D × H × W) and then concatenated to connect volumes with the same disparity scale,
forming the initial cost volume (4G × D × H × W). Here, G represents the number of
groups, D the number of disparity layers, and H and W the dimensions of the input image.
It is important to note that the relationship of disparity scales at different distance angles is
proportional to the distance (d). Here, we define the maximum disparity for the innermost
view as dmax, and considering that disparity estimation requires multiple downsampling
operations, we set the total number of disparity layers to be even, with a disparity range
of [−dmax, 1 + dmax] and disparity levels set to 2 + 2dmax. Similarly, the disparity for
the outermost view is set to [−4dmax, 1 + 4dmax], with disparity levels set to 2 + 4dmax.
The disparity level refers to the number of discrete disparities within the interval from the
minimum to the maximum disparity.

Finally, through the network we propose, the correlation cost volume and the differ-
entiation cost volume are fused, as illustrated in the CVCM module shown in the lower
right corner of Figure 2. The correlation cost volume and the differentiation cost volume
are processed separately through 3D convolution and a 3D channel attention mechanism to
extract matching information. They are then combined to form the final cost volume.
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During the construction of the cost volume matching process, we employed a grouping
method to compress the most memory-intensive part, reducing computational load and
memory consumption. Additionally, we proposed a correlation and dissimilarity fusion
structure to enhance perception and accuracy in textureless regions.

3.3. Multi-View Cost Volume Aggregation and Disparity Regression

To fuse cost volumes of different scales for disparity estimation and enhance the
model’s performance in occluded areas, we propose a multi-level fusion strategy. Given that
spatially occluded areas in the central view are visible from other directional viewpoints,
we employ a structure similar to U-Net, featuring upsampling and downsampling, along
with Hourglass modules, to extract useful features from unoccluded areas. Furthermore,
to achieve better accuracy in depth estimation, we designed a multi-level scale disparity
fusion structure to enhance feature robustness. As shown in Figure 3, the first layer input is
the maximum disparity cost volume, capturing the broadest spatial information to provide
a comprehensive initial perspective for depth estimation. Information from different
disparity scales is integrated from largest to smallest, offering a multi-level feature fusion
strategy that transitions from local to global and back to local. Finally, each layer’s disparity
is upsampled to the same size and fused by using three-dimensional convolution.
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Figure 3. Multi-View Cost Aggregation Module architecture. Note that the feature size annotations
in our diagram omit the dimensions (H × W) of the input light field images.

Furthermore, to more effectively capture global and local texture features at the current
scale of each layer, we have embedded Hourglass modules [37,38] at every level. These
modules not only recognize large-scale structures within the feature cost volumes but also
process fine textures and edge details. The specific details of this process are illustrated in
Figure 4. This approach ensures a more nuanced and comprehensive analysis of the light
field data, significantly enhancing depth estimation accuracy and detail.

After obtaining the final cost volume, each pixel is represented by a vector of length
Dmax, containing the probabilities of all disparity levels. We use the softmax activation
function introduced in [39] to generate a continuous distribution of disparity predictions.
The predicted disparity value, d̂, is defined as

d̂ =
Dmax

∑
d=Dmin

di × softmax(−C f ) (4)
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where d̂ represents the predicted disparity by the pixel; Dmin and Dmax denote the minimum
and maximum disparities of the outermost view, respectively; and C f is the predicted cost
at disparity di.

3D Conv

3D Conv, Stride 2

3D Deconv

Shortcut 3D conv, kernel 1

Hourglass Module

Figure 4. Hourglass module structure.

4. Experiments

In this section, we will introduce the details and results of our implementation. Finally,
we will compare our method with several state-of-the-art light field depth estimation methods.

4.1. Dataset and Implementation Details

The 4D light field dataset [40] is widely regarded as a benchmark for evaluating light
field image disparity estimation methods. This dataset, rendered by using Blender, includes
28 densely arranged synthetic light field scenes and their corresponding ground-truth
disparity maps divided into four subsets: “Stratified”, “Test”, “Training”, and “Additional”.
These scenes incorporate a mix of various materials, lighting conditions, and complex
spatial occlusions. All light field data possess a 9 × 9 angular resolution and a 512 × 512
image resolution.

We utilized the “Additional” category of the dataset for training our model. Dur-
ing training, we randomly cropped the SAIs into 48 × 48 grayscale patches and applied
various image augmentation techniques, including random rotation, brightness and con-
trast adjustments, and noise injection. Inspired by Zhao [41], we adopted a joint L1 and
SSIM [42] loss function for our training network, denoted by loss term L, and optimized it
by using the Adam method [43]. The loss function is formulated as follows:

L =
1
M ∑

i,j
(α

1 − SSIM(di,j, d̃i,j)

2
+ (1 − α)

∥∥di,j − d̃i,j
∥∥) (5)

where d̃ represents the predicted disparity map, d is the true disparity map, and M denotes
the number of pixels, with α being set to 0.9. We tested weights α ranging from 0.1 to
0.9 and found that as the weight increases, accuracy in depth estimation also improves.
The proposed method was implemented with PyTorch platform [44] and optimized by
using the Adam [43] (β1 = 0.9, β2 = 0.999) optimizer. The batch size was set to 16, and
the initial learning rate was 10−3, decaying by 0.8 every 100 epochs. The total training
comprised 1000 iterations. Our model was trained on a PC equipped with an Nvidia
6000× GPU, requiring approximately three days.

4.2. Comparison to State-of-the-Art Methods

We compared our approach to various state-of-the-art methods, including traditional
methods [25,29,45], unsupervised deep learning methods [46,47], and supervised deep
learning methods [10,31,34,48].

To demonstrate the accuracy of our method, we compared its performance with other
state-of-the-art methods on the “Stratified” and “Training” categories of 4D LF data in
terms of bad pixel rate (BadPix) (0.07) and Mean Squared Error (MSE). The comparative
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results are reported in Table 1, showing that our method achieved good results overall
compared with the other methods.

Table 1. Quantitative comparison with other state-of-the-art methods in terms of BadPix (0.07) and
MSE on 4D light field benchmark dataset [40]. Lower scores represent better performance.

Methods
CAE [25] SPO [29] LFAtt [31] Fast [10] Distrib [46] EPI-m [34] Ours

BP07 MSE BP07 MSE BP07 MSE BP07 MSE BP07 MSE BP07 MSE BP07 MSE

Backgammon 2.967 5.170 2.608 3.607 3.126 3.648 3.323 1.818 19.22 13.68 2.229 2.579 2.342 1.830
Boxes 19.86 10.01 15.98 12.19 11.04 3.996 18.28 4.532 28.7 15.92 12.34 5.968 10.50 3.786
Cotton 3.562 1.844 2.343 2.009 0.272 0.209 0.984 0.341 21.22 12.74 0.55 0.287 0.537 0.265
Dino 5.752 0.407 2.469 0.407 0.848 0.093 3.122 0.208 13.41 8.775 1.207 0.157 1.245 0.125
Dots 15.50 8.127 35.29 16.68 1.432 1.425 16.36 3.524 35.70 6.663 2.490 1.475 3.939 2.322

Pyramids 1.822 0.053 0.271 0.02 0.195 0.004 0.407 0.017 8.992 2.029 0.159 0.008 0.382 0.008
Sideboard 11.05 0.876 7.670 1.027 2.870 0.530 7.472 0.823 19.81 11.31 4.462 0.798 3.865 0.584

Stripes 8.534 3.268 11.59 6.276 2.933 0.892 4.125 0.192 30.17 2.91 2.457 0.932 2.812 0.350

Bad pixel ratio of 0.07 (BP07) and MSE (multiplied with 100) are the metrics for accuracy evaluation, where lower
scores represent better performance. The best result is shown in deep blue and the second best in orange.

For performance comparison, to ensure fairness, we executed these methods on the
same platform and compared the average running time for these scenes. The results,
as shown in Table 2, indicate that our method outperforms the other methods, except for
the Fast method. Additionally, while our method’s accuracy is second only to LFAtt [31],
it computes faster. The traditional methods CAE [25] and SPO [29] were run on a CPU
platform configured with an Intel i7-10850H.

Table 2. Quantitative comparison of the average performance and efficiency with state-of-the-art
methods on the 4D LF Benchmark.

Method Average
BadPix (0.07)

Average Running
Time/s

CAE [25] 8.530 481.0
SPO [29] 9.770 21.21

LFAtt [31] 2.836 5.913
Fast [10] 6.792 0.601

Distrib [46] 22.15 4.830
EPI-m [34] 3.383 10.65

SOA-Net [48] 7.170 74.30
LF_OCC [45] 4.021 21.00

UnsuperNet [47] 10.19 1.079
Ours 3.203 0.693

The data for methods SOA-Net [48] and UnsuperNet [47] are cited from reference [49]. The best result is shown in
deep blue and the second best in orange.

In addition, we also subjectively compared the performance of our method with other
methods in textureless and occluded areas. Figure 5 displays visual comparison results across
four scenarios: “Dish”, “Dots”, “Rosemary”, and “Origami”. The depth estimation results
and errors for the first three scenes show that our method performs well in spatial areas
with occluded edges, comparable to the best methods available [31]. Additionally, in the
“Origami” scene, as indicated, our method achieves better accuracy in the marked textureless
areas. Overall, the results demonstrate that our method exhibits superior performance and
robustness in handling the challenge of textureless and occluded areas.
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Dishes
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Origami
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1.8

−2.2

1.4

−2.0

1.7

Figure 5. Quantitative comparison of the performance of different methods on the HCI light field
benchmark. (a–g) show the results for CAE [25], SPO [29], LFAtt [31], Fast [10], Distrib [46],
EPI-m [34], and our method, respectively. The first row in each scene represents the estimated
disparity corresponding to the original image, and the second row displays the distribution of bad
pixels, with red indicating areas where the bad pixel rate exceeds 0.07.

To comprehensively evaluate the performance of our method, we also used real-
world datasets for testing and comparison with state-of-the-art methods. As illustrated
in Figure 6, the depth maps generated by our method are more consistent and exhibit
less noise. This indicates that our approach can be effectively generalized to real LF
depth estimation. The scenes “Bench” and “Leaf” were captured by using our Lytro Illum
camera, and “Knights” was captured by using the gantry setup from the Stanford Light
Field Archive.
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Knights

Bench

Leaf Ours (a) (b) (c) (d)

−3.2

3.4

−1.2

2.8

−1.0

1.2

Figure 6. Qualitative results of real-world light field images. (a–d) represent depth maps generated
by deep learning-based methods Fast [10], Distrib [46], EPI-m [34], and LFAtt [31], respectively.

4.3. Ablation Study

We conducted extensive ablation experiments to analyze the effectiveness of our
method. Our ablation study includes the trade-off between performance and efficiency,
the choice of disparity cost operations, and the combination of loss functions.

4.3.1. Disparity Cost Calculation

The disparity cost has a significant impact on accuracy in depth estimation, so it is
crucial to choose the appropriate cost generation operations. We conducted separate tests
with and without the feature dissimilarity operation on the HCI 4D LF benchmark. When
we removed the feature dissimilarity operation, the network’s performance in terms of both
MSE and BadPix (0.07) deteriorated. Figure 7 illustrates the influence of feature dissimilarity
on depth estimation within the aggregated cost volume. It indicates that adding feature
dissimilarity effectively improves the network’s performance in weak-texture regions and
enhances its robustness.

Rosemary

Wall

Non-Diff Cost With-Diff Cost

Figure 7. Disparity maps in synthetic and real scenes. “Wall” represents a light field image captured
by us, and “Rosemary” is the synthetic light field image.
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4.3.2. Computational Cost

To validate the impact of the light field input distribution and the number of grouped
aggregation channels on the computational performance and effectiveness of our network,
we used three different combinations of horizontal, vertical, and diagonal distributions as
input variables for the network, as well as varying numbers of cost aggregation groups as
intermediate variables. The results are shown in Table 3.

Table 3. Quantitative comparison of results with different inputs and varying numbers of aggregation
group channels.

Input Number
within Group

Average
MSE (×100)

Average
BidPix (0.07) Time (s)Horizontal Vertical Diagonals

✓ 4 2.552 8.540 0.410
✓ 4 4.445 10.132 0.673

✓ ✓ ✓ 4 1.205 3.102 1.612
✓ ✓ 4 1.159 3.203 0.693
✓ ✓ 8 1.275 3.560 0.740
✓ ✓ 1 2.148 4.169 0.613

Horizontal, Vertical, and Diagonals represent inputs at 0◦, 90◦, and two diagonal directions through the central
subspace image in the light field array, respectively.

The number of image inputs has a significant impact on network performance. In-
creasing the data based on the distribution of horizontal and vertical directions results in
a small gain in accuracy but a significant performance drop. As indicated in the fourth
column of the table, the optimal number of grouped aggregation channels is four, and the
number of groups has little impact on network performance. Overall, our method achieves
optimal performance in the network with the choice of input data distribution and the
number of groups.

4.3.3. Effectiveness of Cost Aggregation Network

To verify the role of the cost aggregation network within the overall architecture, we
constructed a cost aggregation network by using the Resnet structure [50], as depicted
in Figure 4, as a benchmark module for comparison. Considering memory limitations,
the input cost volumes were uniformly resampled to the same dimensions B × 12 × 2D ×
H × W before aggregation, followed by two 3D convolutions and eight 3D convolutions
within the Resnet structure, and then depth regression. We trained for a total of 500 epochs.
The results on the HCI light field benchmark dataset are shown in Table 4.

Table 4. Depth estimation results of cost aggregation module and resnet benchmark module on
HCI dataset.

Average MSE Average BP (0.07)

ResNet-based 3.201 7.422
Ours 1.456 4.232

The depth estimation accuracy achieved by our cost aggregation network structure is
higher than that of the comparison experiment, indicating that our proposed multi-scale
cost aggregation module plays a significant role in improving accuracy.

Overall, our ablation study validates the approach we proposed, demonstrating that
each modular component of our model makes a valuable contribution to the final results.

5. Discussions and Conclusions

Despite achieving commendable results in both disparity estimation accuracy and
computational performance, our method still has certain limitations. First, our approach
heavily relies on high-quality light field data, and its robustness to distortion and noise
in light field images is weak, especially when the number of input data is limited. Conse-
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quently, the performance of our method might decrease when applied to real-world light
field data. In the future, we could explore integrating specially designed network modules
to mitigate the impact of distortion.

Secondly, our ablation studies reveal that the total number of input data significantly
impacts computational performance. While optimizing the cost aggregation can reduce the
number of parameters and thus computation time, it does not substantially affect overall
performance. Simultaneously, the quality of cost volume construction directly influences
accuracy in depth estimation in challenging areas. Future work could, therefore, focus on
exploring better input structures and cost construction methods to balance computational
performance and accuracy.

In this paper, we propose an end-to-end network architecture that trades off com-
putational performance and depth estimation accuracy. Our feature dissimilarity cost
construction method effectively compensates for the shortcomings of feature correlation,
enhancing network accuracy in textureless areas. Moreover, our multi-scale cost aggre-
gation architecture significantly improves depth estimation accuracy while maintaining
good computational performance. Overall, compared with state-of-the-art methods, our
approach achieves the best trade-off between computational performance and accuracy,
as demonstrated on a broad HCI benchmark set and on a real-world light field dataset.

Author Contributions: Conceptualization, B.X. and S.P.; X.G. also contributed. Methodology, B.X.;
H.H. provided assistance. Software, B.X., assisted by X.G. Validation, B.X. and S.P.; assisted by H.H.
Formal analysis, B.X., with support from X.G. Investigation, B.X., assisted by H.H. Resources, X.G.
Data curation, H.H. Writing—original draft, B.X., with contributions from X.G. Writing—review and
editing, S.P.; X.G. and H.H. provided feedback. Visualization, B.X., assisted by H.H. Supervision,
S.P. Project administration, S.P., with assistance from X.G. All authors have read and agreed to the
published version of the manuscript.

Funding: The support provided by China Scholarship Council (CSC) during a visit of Bo Xiao
to University of Technology Sydney is acknowledged. This research by authors Xiujing Gao and
Hongwu Huang was supported by Fujian Provincial Department of Science and Technology Major
Special Projects (2023HZ025003), Key Scientific and Technological Innovation Projects of Fujian
Province (2022G02008), Education and Scientific Research Project of Fujian Provincial Department of
Finance (GY-Z220233), and Fujian University of Technology (GY-Z23027).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author. The data are not publicly available due to the protection of intellectual property.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Overbeck, R.S.; Erickson, D.; Evangelakos, D.; Pharr, M.; Debevec, P. A system for acquiring, processing, and rendering panoramic

light field stills for virtual reality. ACM Trans. Graph. 2018, 37, 197:1–197:15. [CrossRef]
2. Yu, J. A Light-Field Journey to Virtual Reality. IEEE MultiMedia 2017, 24, 104–112. [CrossRef]
3. Guo, M.; Jin, J.; Liu, H.; Hou, J. Learning Dynamic Interpolation for Extremely Sparse Light Fields with Wide Baselines. In

Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 11–17 October 2021;
pp. 2450–2459.

4. Meng, N.; Ge, Z.; Zeng, T.; Lam, E.Y. LightGAN: A Deep Generative Model for Light Field Reconstruction. IEEE Access 2020,
8, 116052–116063. [CrossRef]

5. Levinson, J.; Askeland, J.; Becker, J.; Dolson, J.; Held, D.; Kammel, S.; Kolter, J.Z.; Langer, D.; Pink, O.; Pratt, V.; et al. Towards
fully autonomous driving: Systems and algorithms. In Proceedings of the 2011 IEEE Intelligent Vehicles Symposium (IV),
Baden-Baden, Germany, 5–9 June 2011; pp. 163–168. [CrossRef]

6. Wang, Z.; Chen, W.; Acuna, D.; Kautz, J.; Fidler, S. Neural Light Field Estimation for Street Scenes with Differentiable Virtual
Object Insertion. In Proceedings of the Computer Vision—ECCV 2022; Lecture Notes in Computer Science; Avidan, S., Brostow, G.,
Cissé, M., Farinella, G.M., Hassner, T., Eds.; Springer: Cham, Switzerland, 2022; pp. 380–397. [CrossRef]

http://doi.org/10.1145/3272127.3275031
http://dx.doi.org/10.1109/MMUL.2017.24
http://dx.doi.org/10.1109/ACCESS.2020.3004477
http://dx.doi.org/10.1109/IVS.2011.5940562
http://dx.doi.org/10.1007/978-3-031-20086-1_22


Sensors 2024, 24, 3583 13 of 14

7. Wang, Y.; Wang, L.; Liang, Z.; Yang, J.; An, W.; Guo, Y. Occlusion-Aware Cost Constructor for Light Field Depth Estimation. In
Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA,
18–24 June 2022; pp. 19777–19786. [CrossRef]

8. Chen, J.; Zhang, S.; Lin, Y. Attention-based Multi-Level Fusion Network for Light Field Depth Estimation. Proc. AAAI Conf. Artif.
Intell. 2021, 35, 1009–1017. [CrossRef]

9. Wang, Y.; Wang, L.; Wu, G.; Yang, J.; An, W.; Yu, J.; Guo, Y. Disentangling Light Fields for Super-Resolution and Disparity
Estimation. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 425–443. [CrossRef] [PubMed]

10. Huang, Z.; Hu, X.; Xue, Z.; Xu, W.; Yue, T. Fast Light-field Disparity Estimation with Multi-disparity-scale Cost Aggregation. In
Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October
2021; pp. 6300–6309. [CrossRef]

11. Zhang, S.; Meng, N.; Lam, E.Y. Unsupervised Light Field Depth Estimation via Multi-view Feature Matching with Occlusion
Prediction. IEEE Trans. Circuits Syst. Video Technol. 2023, 34, 2261–2273. [CrossRef]

12. Woodham, R.J. Photometric Method For Determining Surface Orientation From Multiple Images. Opt. Eng. 1980, 19, 191139.
[CrossRef]

13. Shi, B.; Wu, Z.; Mo, Z.; Duan, D.; Yeung, S.K.; Tan, P. A Benchmark Dataset and Evaluation for Non-Lambertian and Uncalibrated
Photometric Stereo. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV,
USA, 27–30 June 2016.

14. Ju, Y.; Lam, K.M.; Xie, W.; Zhou, H.; Dong, J.; Shi, B. Deep Learning Methods for Calibrated Photometric Stereo and Beyond.
IEEE Trans. Pattern Anal. Mach. Intell. 2024, 1–19. [CrossRef] [PubMed]

15. Diebold, M.; Jähne, B.; Gatto, A. Heterogeneous Light Fields. In Proceedings of the 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1745–1753. [CrossRef]

16. Kim, C.; Zimmer, H.; Pritch, Y.; Sorkine-Hornung, A.; Gross, M. Scene Reconstruction from High Spatio-Angular Resolution
Light Fields. ACM Trans. Graph. 2013, 32, 1–12. [CrossRef]

17. Schilling, H.; Diebold, M.; Rother, C.; Jähne, B. Trust Your Model: Light Field Depth Estimation with Inline Occlusion Handling.
In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA,
18–23 June 2018; pp. 4530–4538.

18. Li, J.; Lu, M.; Li, Z.N. Continuous Depth Map Reconstruction From Light Fields. IEEE Trans. Image Process. 2015, 24, 3257–3265.
[CrossRef]

19. Hou, G.; Li, J.; Wang, G.; Yang, H.; Huang, B.; Pan, Z. A novel dark channel prior guided variational framework for underwater
image restoration. J. Vis. Commun. Image Represent. 2020, 66, 102732. [CrossRef]

20. Chen, C.; Lin, H.; Yu, Z.; Bing Kang, S.; Yu, J. Light Field Stereo Matching Using Bilateral Statistics of Surface Cameras. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014.

21. Heber, S.; Pock, T. Shape from Light Field Meets Robust PCA. In Proceedings of the Computer Vision—ECCV 2014; Lecture Notes in
Computer Science; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer: Cham, Switzerland, 2014; pp. 751–767. [CrossRef]

22. Jeon, H.G.; Park, J.; Choe, G.; Park, J.; Bok, Y.; Tai, Y.W.; So Kweon, I. Accurate Depth Map Estimation from a Lenslet Light Field
Camera. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA,
7–12 June 2015; pp. 1547–1555.

23. Yu, Z.; Guo, X.; Ling, H.; Lumsdaine, A.; Yu, J. Line Assisted Light Field Triangulation and Stereo Matching. In Proceedings of
the 2013 IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 2792–2799. [CrossRef]

24. Tao, M.W.; Hadap, S.; Malik, J.; Ramamoorthi, R. Depth from Combining Defocus and Correspondence Using Light-Field
Cameras. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Sydney, Australia, 1–8 December
2013.

25. Williem.; Park, I.K.; Lee, K.M. Robust Light Field Depth Estimation Using Occlusion-Noise Aware Data Costs. IEEE Trans. Pattern
Anal. Mach. Intell. 2018, 40, 2484–2497. [CrossRef] [PubMed]

26. Tao, M.W.; Srinivasan, P.P.; Malik, J.; Rusinkiewicz, S.; Ramamoorthi, R. Depth from shading, defocus, and correspondence using
light-field angular coherence. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Boston, MA, USA, 7–12 June 2015; pp. 1940–1948. [CrossRef]

27. Williem, W.; Park, I.K. Robust Light Field Depth Estimation for Noisy Scene with Occlusion. In Proceedings of the 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016 ; pp. 4396–4404.
[CrossRef]

28. Wanner, S.; Goldluecke, B. Variational Light Field Analysis for Disparity Estimation and Super-Resolution. IEEE Trans. Pattern
Anal. Mach. Intell. 2014, 36, 606–619. [CrossRef]

29. Zhang, S.; Sheng, H.; Li, C.; Zhang, J.; Xiong, Z. Robust depth estimation for light field via spinning parallelogram operator.
Comput. Vis. Image Underst. 2016, 145, 148–159. [CrossRef]

30. Sheng, H.; Zhao, P.; Zhang, S.; Zhang, J.; Yang, D. Occlusion-aware depth estimation for light field using multi-orientation EPIs.
Pattern Recognit. 2018, 74, 587–599. [CrossRef]

31. Tsai, Y.J.; Liu, Y.L.; Ouhyoung, M.; Chuang, Y.Y. Attention-Based View Selection Networks for Light-Field Disparity Estimation.
Proc. AAAI Conf. Artif. Intell. 2020, 34, 12095–12103, Number: 07. [CrossRef]

http://dx.doi.org/10.1109/CVPR52688.2022.01919
http://dx.doi.org/10.1609/aaai.v35i2.16185
http://dx.doi.org/10.1109/TPAMI.2022.3152488
http://www.ncbi.nlm.nih.gov/pubmed/35180076
http://dx.doi.org/10.1109/ICCV48922.2021.00626
http://dx.doi.org/10.1109/tcsvt.2023.3305978
http://dx.doi.org/10.1117/12.7972479
http://dx.doi.org/10.1109/TPAMI.2024.3388150
http://www.ncbi.nlm.nih.gov/pubmed/38607717
http://dx.doi.org/10.1109/CVPR.2016.193
http://dx.doi.org/10.1145/2461912.2461926
http://dx.doi.org/10.1109/TIP.2015.2440760
http://dx.doi.org/10.1016/j.jvcir.2019.102732
http://dx.doi.org/10.1007/978-3-319-10599-4_48
http://dx.doi.org/10.1109/ICCV.2013.347
http://dx.doi.org/10.1109/TPAMI.2017.2746858
http://www.ncbi.nlm.nih.gov/pubmed/28866482
http://dx.doi.org/10.1109/CVPR.2015.7298804
http://dx.doi.org/10.1109/CVPR.2016.476
http://dx.doi.org/10.1109/TPAMI.2013.147
http://dx.doi.org/10.1016/j.cviu.2015.12.007
http://dx.doi.org/10.1016/j.patcog.2017.09.010
http://dx.doi.org/10.1609/aaai.v34i07.6888


Sensors 2024, 24, 3583 14 of 14

32. Yang, X.; Deng, J.; Chen, R.; Cong, R.; Ke, W.; Sheng, H. Disentangling Local and Global Information for Light Field Depth
Estimation. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
Vancouver, BC, Canada, 17–24 June 2023; pp. 3419–3427. [CrossRef]

33. Heber, S.; Pock, T. Convolutional Networks for Shape from Light Field. In Proceedings of the 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 3746–3754. [CrossRef]

34. Shin, C.; Jeon, H.G.; Yoon, Y.; Kweon, I.S.; Kim, S.J. EPINET: A Fully-Convolutional Neural Network Using Epipolar Geometry
for Depth From Light Field Images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Salt Lake City, UT, USA, 18–23 June 2018.

35. Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018.

36. Mayer, N.; Ilg, E.; Hausser, P.; Fischer, P.; Cremers, D.; Dosovitskiy, A.; Brox, T. A Large Dataset to Train Convolutional Networks
for Disparity, Optical Flow, and Scene Flow Estimation. In Proceedings of the 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 4040–4048.

37. Guo, X.; Yang, K.; Yang, W.; Wang, X.; Li, H. Group-Wise Correlation Stereo Network. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2019.

38. Chang, J.R.; Chen, Y.S. Pyramid Stereo Matching Network. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018.

39. Kendall, A.; Martirosyan, H.; Dasgupta, S.; Henry, P.; Kennedy, R.; Bachrach, A.; Bry, A. End-to-End Learning of Geometry and
Context for Deep Stereo Regression. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV),
Venice, Italy, 22–29 October 2017; pp. 66–75. [CrossRef]

40. Honauer, K.; Johannsen, O.; Kondermann, D.; Goldluecke, B. A Dataset and Evaluation Methodology for Depth Estimation on
4D Light Fields. In Proceedings of the Computer Vision—ACCV 2016; Lecture Notes in Computer Science; Lai, S.H., Lepetit, V.,
Nishino, K., Sato, Y., Eds.; Springer: Cham, Switzerland, 2017; pp. 19–34. [CrossRef]

41. Zhao, H.; Gallo, O.; Frosio, I.; Kautz, J. Loss Functions for Neural Networks for Image Processing. arXiv 2018, arXiv:1511.08861.
42. Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image quality assessment: From error visibility to structural similarity. IEEE Trans.

Image Process. 2004, 13, 600–612. [CrossRef] [PubMed]
43. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980.
44. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:

An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems; Curran
Associates, Inc.: New York, NY, USA, 2019; Volume 32.

45. Wang, T.C.; Efros, A.A.; Ramamoorthi, R. Occlusion-Aware Depth Estimation Using Light-Field Cameras. In Proceedings of the
2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 3487–3495. [CrossRef]

46. Iwatsuki, T.; Takahashi, K.; Fujii, T. Unsupervised disparity estimation from light field using plug-and-play weighted warping
loss. Signal Process. Image Commun. 2022, 107, 116764. [CrossRef]

47. Zhou, W.; Zhou, E.; Liu, G.; Lin, L.; Lumsdaine, A. Unsupervised Monocular Depth Estimation From Light Field Image. IEEE
Trans. Image Process. 2020, 29, 1606–1617. [CrossRef] [PubMed]

48. Zhou, W.; Liang, L.; Zhang, H.; Lumsdaine, A.; Lin, L. Scale and Orientation Aware EPI-Patch Learning for Light Field Depth
Estimation. In Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, China, 20–24 August
2018; pp. 2362–2367. [CrossRef]

49. Lin, L.; Li, Q.; Gao, B.; Yan, Y.; Zhou, W.; Kuruoglu, E.E. Unsupervised learning of light field depth estimation with spatial and
angular consistencies. Neurocomputing 2022, 501, 113–122. [CrossRef]

50. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/CVPRW59228.2023.00344
http://dx.doi.org/10.1109/CVPR.2016.407
http://dx.doi.org/10.1109/ICCV.2017.17
http://dx.doi.org/10.1007/978-3-319-54187-7_2
http://dx.doi.org/10.1109/TIP.2003.819861
http://www.ncbi.nlm.nih.gov/pubmed/15376593
http://dx.doi.org/10.1109/ICCV.2015.398
http://dx.doi.org/10.1016/j.image.2022.116764
http://dx.doi.org/10.1109/TIP.2019.2944343
http://www.ncbi.nlm.nih.gov/pubmed/31603783
http://dx.doi.org/10.1109/ICPR.2018.8545490
http://dx.doi.org/10.1016/j.neucom.2022.06.011

	Introduction
	Related Work
	Traditional Methods
	Deep Learning Methods

	Method
	Feature Extraction
	Texture-Aware Cost Volume
	Multi-View Cost Volume Aggregation and Disparity Regression

	Experiments
	Dataset and Implementation Details
	Comparison to State-of-the-Art Methods
	Ablation Study
	Disparity Cost Calculation
	Computational Cost
	Effectiveness of Cost Aggregation Network


	Discussions and Conclusions
	References

