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Abstract: This study explores the feasibility of analyzing soil organic carbon (SOC) in carbonate-rich
soils using visible near-infrared spectroscopy (VIS-NIR). Employing a combination of datasets, feature
groups, variable selection methods, and regression models, 22 modeling pipelines were developed.
Spectral data and spectral data combined with carbonate contents were used as datasets, while raw
reflectance, first-derivative (FD) reflectance, and second-derivative (SD) reflectance constituted the
feature groups. The variable selection methods included Spearman correlation, Variable Importance
in Projection (VIP), and Random Frog (Rfrog), while Partial Least Squares Regression (PLSR), Random
Forest Regression (RFR), and Support Vector Regression (SVR) were the regression models. The
obtained results indicated that the FD preprocessing method combined with RF, results in the model
that is sufficiently robust and stable to be applied to soils rich in calcium carbonate.
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1. Introduction

Visible near-infrared spectroscopy (VIS-NIR) has become an increasingly widely used
research tool in recent years [1–3]. The technique is based on the phenomenon of reflectivity,
and the material under examination is exposed to electromagnetic radiation of a certain
range and intensity. Specific chemical bonds absorb the radiation, reaching the object in
different ways; by estimating how much radiation has been reflected from the object in the
electromagnetic spectrum range from 400 to 2500 nm, the content of selected compounds
can be determined indirectly. The visualization of the acquired information—a characteristic
reflectance curve within which there are substance-specific peaks and valleys—provides
a spectral signature that, when properly processed, can provide valuable qualitative and
quantitative data. The acquired data require the necessary processing—preprocessing—
for which various tools are used, such as curve smoothing, moving averages, etc. [4]. In
many cases, the curves need to be corrected in specific ranges at the interface between
the measurement ranges of the sensors used in the instrument; in a broad spectrum, it
is impossible to use a single sensor. The data, prepared in an appropriate manner, are
analyzed statistically, with the analysis usually studying either whole spectral curves or
selected continuous fragments of them, dedicated—usually on the basis of previous scientific
studies—to specific chemical compounds [5].

VIS-NIR spectroscopy is used in many fields: for instance, in agriculture, including
precision agriculture, it is related to the appropriate application of the right amounts of
substances necessary for plant growth and the assessment of the condition of the plant
cover [6,7]. It is also used in geological studies, providing important information on, among
other things, the mineralogical composition or the broader genesis of bedrock [8]. It can
also be used indirectly to predict erosion risk [9].
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A key feature of VIS-NIR spectroscopy is its high throughput, which allows a signif-
icant number of samples to be analyzed in a relatively short time. This feature plays a
key role in projects requiring extensive research or the continuous monitoring of a given
object [10]. The real-time analysis provided by VIS-NIR spectroscopy is another impor-
tant advantage, enabling qualitative and quantitative assessments on site or in the field.
This real-time feature is invaluable in situations where rapid or immediate decisions are
required [11].

The quantitative analysis capabilities of VIS-NIR spectroscopy contribute significantly
to the understanding of soil properties. The method can provide information on a range
of parameters, including organic matter content [12,13], moisture levels [14] and nutrient
concentrations [15], soil contamination with different types of pollutants [16], and electric
conductivity [17]. Moreover, VIS-NIR spectroscopy is multifunctional and offers a holistic
view by simultaneously assessing different soil characteristics, such as texture and mineral
composition [18]. This comprehensive approach enables a detailed understanding of the
conditions in a soil environment [19,20].

VIS-NIR spectrometric measurements are usually performed under controlled labora-
tory conditions. Samples are suitably prepared, above all in terms of material homogeniza-
tion. The predictive models for individual soil properties obtained in the laboratory have a
high accuracy. Attempts are made to carry out tests under field conditions, but the data
obtained deviate significantly from the values obtained under laboratory conditions, and
the predictive models developed are much weaker in this case [3,21]. Importantly, however,
it should always be considered whether it is more important to obtain a better model or
obtain information in an easier and much faster way.

In order to precisely identify characteristics, so-called spectral libraries are created [19,22].
Reflectance curves are collected for specific soils with specific characteristics, and these
characteristics should include both the parameter directly covered by the spectral survey (e.g.,
organic carbon) as well as other soil characteristics that may have a significant impact on the
spectral response (e.g., grain size, carbonates, mineralogical composition, etc.). A predictive
model based on a broad spectral library should, in principle, produce higher-quality results.
However, due to the enormous variability in soils on a global scale, the use of such libraries
may be effective on a local scale or for specific soil types, under the additional assumption of
limiting the availability of these studies.

Mapping spatial variability, facilitated by the integration of VIS-NIR spectroscopy with
geospatial technologies, represents a higher level of soil survey methodology [23,24]. Creat-
ing detailed maps showing differences in soil properties within a given area is invaluable
for precision agriculture and land use optimization. By identifying spatial patterns, this
approach allows for targeted interventions, optimizing resource use and improving overall
land management practices [25].

Among the soil parameters that have been determined by researchers is grain size, in
varying aspects, both in terms of individual granulometric fractions and of the individual
finest clay fraction [26], organic carbon content [27], soil color [28], salinity [29], and calcium
carbonate content, sometimes presented as calcium carbonate equivalent [30,31].

Good results in terms of prediction based on spectral response have so far been
achieved precisely for the analysis of soil organic carbon [32,33]. VIS-NIR spectrometry
data can also be successfully used to determine the spatial variability in soil organic carbon
saturation at the field scale [10]. Nevertheless, researchers indicate that the evaluation
of the parameter in question can be affected by various other additional factors, such as
aggregate structure, moisture content, content of specific substances, etc. [34,35]. One of
the substances that could interfere and significantly affect the quality of SOC prediction is
calcium carbonate; a significant interrelation of the two components in the samples studied,
in terms of spectral properties, was pointed out by Rasooli et al. [36], among others.

The purpose of this study is to determine the feasibility of analyzing soil organic
carbon in carbonate-rich soils using VIS-NIR spectroscopy.
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2. Materials and Methods

The materials for this analysis consisted of samples of soils, developed on the weather-
ing of carbonate rocks—rendzinas—collected in Eastern Poland. The distinguishing feature
of these soils is the high abundance of calcium carbonate and the associated high pH. All
the soils at the time of collection were not in agricultural use and were perennial fallows,
covered with vegetation of a natural-succession nature; nevertheless, no trees or shrubs
were found. Soil samples were taken from the humus horizon of the soil, from the face
wall of the excavated pit, from a depth of 5–15 cm, which ensured that the sample had not
been disturbed due to processes on the ground surface, such as biological activity. The
collected material was dried under room conditions and then sieved through a 2 mm sieve
and placed in cardboard boxes. Chemical determinations were made on the material in the
laboratory. Carbon was determined using a LECO TruSpec automatic analyzer, according
to ISO 10694:1995 [37]. The analysis was performed in triplicate, in separate analytical
samples. The carbonate (inorganic carbon) content was determined by volume, using a
Scheibler apparatus, based on ISO 10693:2014 [38]. The proportion of organic carbon was
at an average level, but the presence of carbonates affected the brightening of color, which,
to some extent, masked the abundance of organic matter. The basic properties of the soils
are summarized in Table 1.

Table 1. Descriptive analysis of soil organic matter and calcium carbonate equivalent in soil samples.

Sample Set n
SOC CaCO3

Range [%] Mean Sd Range [%] Mean Sd

All samples 68 0.1–5.1 1.5 1.2 0.1–86.1 44.1 25.4
Calibration set 51 0.1–5.1 1.5 1.2 0.1–86.1 43.6 26.4
Validation set 17 0.3–4.7 1.6 1.3 1.5–73.9 45.6 22.9

Spectroradiometric data acquisition was carried out in laboratory conditions, using
a Spectral Evolution RS-3500 instrument. The instrument’s operating range is between
350 and 2500 nm, and its resolution is 2.8nm (up to 700 nm), 8 nm (up to 1500 nm), and
6 nm (up to 2100 nm). The measurement was performed by contact, directly on samples
homogenized immediately before the measurement, using a custom light source (Tungsten
lamp). Due to the nature of the material tested (very light color), reflectance calibration was
performed on a reference plate (Spectralon Reflectance Standard) before each measurement.
At the end of the measurements, the results were digitally brought down to 1 nm resolution

2.1. Spectral Preprocessing

Prior to processing raw spectral data for the development of qualitative or quantitative
analytical models in multivariate data analysis, mathematical transformations are applied.
This essential preprocessing step is implemented to mitigate spectral variability and noise
unrelated to the intended objectives of the models, while concurrently augmenting selectiv-
ity. In this study, two commonly used pretreatments for raw spectra, which included first
(FD) and second (SD) using Savitzky–Golay smoothing filtering with 8 points and a poly-
nomial order of 3, were selected. All the spectral pretreatments were performed in Python
3.8. To reduce the impact of low-intensity signals, two sections of the spectra spanning the
complete wavelength spectrum were excluded: 350–400 nm. Thus, the spectral range from
400 to 2500 nm was retained for subsequent analysis.

2.2. Selection of Optimal Wavelengths

Due to the high dimensionality of hyperspectral data, selecting variables helps de-
crease the number of features to the most relevant ones. This process mitigates overfitting
and enhances the predictive accuracy of regression models. For this investigation, Spear-
man correlation, Variable Importance in Projection (VIP), and Random Frog (Rfrog) were
employed to select variables across three feature groups: raw reflectance, FD, and SD.
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2.3. Spearman Correlation

A Spearman correlation analysis was conducted to evaluate the magnitude and di-
rection of the monotonic relationship between the ranked response variable (the stem
characteristics of each vine) and the ranked predictor variables (spectral data at various
wavelengths). This analytical approach captures the tendency for paired variables to change
in a synchronized manner, albeit not necessarily at a uniform rate, thereby facilitating the
detection of nonlinear associations without imposing assumptions regarding the normal
distribution of variables. The Spearman correlation coefficient, ranging from +1 to −1,
signifies the strength of a monotonic relationship, with values closer to ±1 indicating
stronger associations. Spearman correlation coefficients were calculated to indicate the
relationships among SOC, SIN, raw reflectance, FD, and SD spectra. Variables exhibiting
coefficients surpassing the threshold of 0.6 were deemed significant for inclusion in this
study. The correlation analysis was conducted using “spearmanr” from the scipy library in
Python 3.8.

2.4. Variable Importance in Projection (VIP)

The assessment of VIP is pivotal in multivariate analysis, particularly in the context
of Partial Least Squares (PLS) modeling. The VIP selection method utilizes coefficients
derived from a fitted PLS model to evaluate the significance of individual wavelengths
(variables) within the dataset. In this method, key matrices including the X-score matrix (T),
the y-loading vector (q), and the normalized X-weight matrix (W) are instrumental. Here,
N represents the number of samples, M denotes the number of features, and K signifies the
number of latent variables. The VIPs are computed using the following equation:

VIP =

√
M

W2(q2 Tt T)t

∑k(q2TtT)k
(1)

This approach offers a comprehensive framework for assessing variable importance,
aiding in feature selection and enhancing the interpretability of PLS models within scientific
research and analysis [39]. Since the average of squared VIP scores equals 1, only influential
wavelengths with a VIP score greater than 1 were kept in the calibration model.

2.5. Random Frog (Rfrog)

The Rfrog technique is an iterative selection method that commences with randomly
chosen features, which are dynamically adjusted throughout the iteration process. During
each iteration, a random subset or superset is generated and evaluated against the previ-
ously selected features through cross-validation. The Rfrog method maintains a counter
for each feature, and the counters for all features within the “winning” set (i.e., achiev-
ing higher cross-validation scores) are incremented after each iteration. Following the
completion of all iterations, the features with the highest selection frequencies are chosen
for inclusion [40]. The number of iterations (N) was set to 50 in this study. In this study,
VIP and Rfrog analyses were performed in Python 3.8 using the AUSWAHL (AUtomatic
Selection of WAvelengtH Library) package.

2.6. Prediction Models

In this work, two types of datasets were proposed to achieve the best prediction
accuracy for SOC estimation. The first type of dataset contained only spectral bands
selected based on Spearman’s rank correlation coefficients and the VIP and Rfrog methods.
In the second type of dataset, hyperspectral data were combined with information about
the SIC obtained from laboratory measurements. As a result, sixteen different dataset
combinations were utilized as inputs for the SOC prediction models, employing RF and
PLSR algorithms.
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2.7. Random Forest

RF is an ensemble regression technique that employs multiple decision trees. It con-
structs m decision trees from the training dataset using bootstrap resampling on m samples.
Each decision tree split is built using a random subset of the dataset to measure a random
subset of features in each partition [41]. This introduces variability among individual
trees, thereby reducing the risk of overfitting and enhancing the overall prediction perfor-
mance [42]. During the prediction phase, the algorithm aggregates the results of all trees
by averaging, fostering a collaborative decision-making process supported by multiple
trees and their insights. This approach yields stable and precise results, making Random
Forests a versatile and reliable tool for various regression tasks. Throughout the training of
the RF algorithm, a range of values were explored for the tuning parameters. Ultimately,
the following parameter settings were selected: n_estimators = 10; max_depth = 20; and
random_state = 101.

2.8. Partial Least Squares Regression Method (PLSR)

The PLSR algorithm amalgamates aspects of multiple linear regression analysis, canon-
ical correlation analysis, and principal component analysis, offering not just a fitting re-
gression model but also a comprehensive expression of information. The method operates
under the assumption that the dependent variable can be estimated through a linear
combination of explanatory variables [43]. Particularly advantageous in scenarios where
numerous variables exhibit multiple correlations and the sample sizes are small, PLSR
provides a many-to-many linear regression modeling approach. Unlike traditional classical
regression analysis, which can lead to overfitting due to correlations among independent
variables, PLSR identifies new linearly independent variables to replace the original ones,
maximizing the difference between them.

The performance of the Rf and PLSR models was evaluated utilizing the Scikit-Learn
python machine learning library package on the Windows (Spyder) platform.

2.9. Model Evaluation

In all dataset variants, the soil samples were divided at a 75:25 ratio into a calibration
set and a validation set. For merged datasets containing hyperspectral and SIC data, the
preprocessing phase involved standardizing the data to ensure compatibility with the
analysis algorithms. Data integration plays a vital role when handling diverse data sources,
often requiring merging and integration to create a cohesive and comprehensive dataset.
To standardize the data, the Scikit-Learn library’s StandardScaler was utilized, providing a
robust and efficient method for scaling features to a common mean and standard deviation.

The coefficient of determination (R2), the root mean squared error (RMSE), and the
mean squared error (MAE) were calculated as indexes to evaluate the performance of the
used models. Generally, a well-performing model tends to achieve a high R2 alongside low
RMSE and MAE values, suggesting accurate predictions with minimal error.

3. Results and Discussion

The descriptive statistics of the soil organic matter and calcium carbonate equivalent
in the soil samples are presented in Table 1 for both the calibration and validation sets. This
includes calculations for the number of samples (N), the mean, the standard deviation (SDe),
and the range. This finding indicated that the mean SOC for the calibration set and the
validation set was 1.5% and 1.6%, respectively, whereas the average CaCO3 content in the
calibration and validation set was 43.6% and 45.6%, respectively. The dataset distribution
closely resembled that of the entire dataset, suggesting a representative division. Clearly,
the inorganic carbon content in the form of calcium carbonate exceeded the organic carbon
content by an order of magnitude. This is the distinguishing feature of carbonate soils in
this type of rendzina.

Figure 1 shows raw spectra and pretreated spectra with FD and SD. In the raw spectra,
consistent shapes can be observed across all the samples. The course of the curves is typical
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for soil material, as reported by many authors (LIT). Notably, three distinct absorption
peaks are discernible in the near-infrared region, attributed to the hydroxyl group of free
water (at 1410 nm and 1900 nm) and the Al-OH group of clay minerals, at 2210 nm [13].
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Raw, unprocessed spectra showed reflectance in some sections exceeding the value
of 1.0. This was due to the fact that the analyzed material had specific properties. First
of all, the very bright color of the soil containing a high amount of carbonates resulted
in a specific spectral response: the reflectance was locally higher than the reflection from
the reference plate. In order to avoid error, calibration was performed before measuring
each soil sample, as indicated in the Section 2. The highest recorded values, reaching 1.2
(reflectance at 120% relative to the reference), were recorded for soil samples containing up
to 85% turbulent carbonates. This may be an important contribution to the discussion on
the reference materials to be used for the heaviest soils (in terms of grain-size distribution)
containing large amounts of inorganic carbon. In the literature, one does not encounter
reflectance data exceeding 1. Nevertheless, the carbonate contents in the works analyzed
are much lower (up to a maximum of 60%), and all the works showed very high correlations
between reflectance and the amount of carbonate in the samples.

In Figure 2, Spearman’s rank correlation coefficients are presented for both the raw
spectra and the spectral bands after FD and SD preprocessing. Notably, a significant
negative correlation, approximately −0.7, was detected between the SOC content and the
raw spectral data across the entirety of the spectrum range. Moreover, the SOC and the
FD and SD spectra exhibited significant negative correlations within specific wavelength
ranges, including 400–550 nm, 1400–1500 nm, and 1900–2000 nm. Conversely, a statistically
significant and notably strong positive correlation was observed within the spectral regions
spanning from 1700 to 1900 nm and from 2200 to 2500 nm. The strong correlation of the FD
spectrum at 2300 nm was influenced by the characteristic absorption peak of C–H. However,
a distinct response pattern was observed for SIC. Unlike SOC, a positive correlation was
observed between the raw spectral data and SIC across the entire spectral range. A strong
negative correlation was evident around 2300 nm and 2500 nm, while a strong positive
correlation (higher than 0.75) was observed near 2400 nm. This indicated a contrasting
relationship between the spectral data and the SIC compared to the SOC.
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After conducting the Spearman correlation analysis, 187 wavelengths were identified
for the FD spectra, while 19 wavelengths were deemed relevant for the SD spectra, all with
a Spearman correlation rank higher than 0.6. These selected wavelengths are illustrated
in Figure 3. For the FD spectra, the chosen wavelengths are aggregated into four ranges:
515–538 nm, 1420–1433 nm, 2165–2207 nm, and 2310–2333 nm. Meanwhile, the majority of
wavelengths in the SD spectra are concentrated within the range of 1406–1417 nm.
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The VIP scores of the wavelengths obtained for the raw FD and SD spectra are depicted
in Figure 4. In the case of the raw spectra (Figure 4A), three primary spectral zones were
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identified, spanning from 520 to 920 nm, around 1900 nm, and 2250–2500 nm. Additionally,
five major spectral zones were distinguished as significant for the FD spectra, ranging
from 450 to 570 nm, 1300–1520 nm, 1860–2600 nm, 2130–2200 nm, and 2270–2340 nm.
Conversely, in the SD spectra, significance was observed across the entire spectrum. The
implementation of the VIP method facilitated reduction, enabling the development of
accurate and reliable models. The number of wavelengths decreased from 2100 to 765 for the
raw spectra, resulting in a data size reduction of approximately 64%. Similarly, for the first-
and second-order differentiations, the data size was reduced by approximately 57% and
61%, respectively. All the selected variables are illustrated in Figure 4. Four main spectral
zones were observed for the raw spectra (525–927 nm, 1886–1974 nm, 2194–2250 nm, and
2287–2500 nm), while six spectral ranges were identified for the FD spectra pretreatments.
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The feature wavelengths were selected by the Random Frog algorithm through the
calculation of their selection probabilities within the spectrum. In Figure 5, the selection
probabilities of each wavelength, determined by the Random Frog algorithm, are sum-
marized for the raw and first- and second-order differentiations of the reflectance spectra.
The threshold, established at 0.7 based on prior experience, was utilized to select impor-
tant wavenumbers, with a selection probability surpassing this threshold as characteristic
waves. Additionally, the number of model simulation iterations was set to 50 to ensure
convergence. When employing a selection probability cutoff of 0.7, a total of 77, 169, and
93 significant wavelengths were identified for the raw, FD, and SD spectra, respectively
(Figure 5).
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Figure 5. VIP scores of the wavelengths obtained for the raw (A), FD (B), and SD (C) spectra.

With the hyperspectral data as an independent variable, two methods, Random Forest
(RF) and Partial Least Squares Regression (PLSR), were employed to predict the SOC. The
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performance metrics of the proposed models utilizing various feature variable extraction
methods are presented in Table 2.

Table 2. The prediction results of SOC from the established RF and PLSR models, using Spearman,
VIP, and Rfrog as data reduction methods on spectral input data.

Model
Feature

Selection
Preprocessing

Calibration Set Prediction Set

R2 MAE RMSE R2 MAE RMSE

RF

–
- 0.88 0.28 0.42 0.51 0.59 0.89

FD 0.96 0.18 0.25 0.79 0.43 0.59
SD 0.91 0.27 0.37 0.82 0.42 0.54

COR
FD 0.95 0.18 0.26 0.77 0.44 0.61
SD 0.88 0.29 0.42 0.61 0.59 0.79

VIP
- 0.91 0.26 0.36 0.38 0.69 0.99

FD 0.90 0.28 0.38 0.74 0.51 0.65
SD 0.92 0.25 0.34 0.59 0.60 0.81

Rfrog
- 1 0.63 0.71 0.69 0.71 0.63

FD 0.94 0.19 0.28 0.79 0.46 0.58
SD 0.95 0.20 0.26 0.53 0.54 0.87

PLSR

–
- 0.27 0.74 1.02 0.41 0.69 0.98

FD 0.55 0.61 0.8 0.65 0.61 0.76
SD 0.57 0.57 0.79 0.62 0.79 0.57

Spearman Cor FD 0.64 0.72 0.53 0.73 0.50 0.66
SD 0.51 0.56 0.74 0.66 0.56 0.75

VIP
- 0.28 0.73 1.01 0.41 0.70 0.98

FD 0.56 0.60 0.80 0.67 0.57 0.73
SD 0.59 0.54 0.72 0.68 0.54 0.72

RFrog
- 0.29 0.73 1.02 0.41 0.70 0.97

FD 0.64 0.54 0.72 0.75 0.47 0.64
SD 0.68 0.45 0.66 0.73 0.45 0.66

For all the studied variants, the prediction accuracies exceeded 65%. The models
were constructed after band selection but still required fine-tuning to make better SOC
predictions. The first derivative transformation of reflectance afforded the best predictions.
The RF model attained the highest R2 value of 0.79 when employing variable extraction by
Rfrog and preprocessing using FD. The model constructed based on the 19 wavelengths
selected through Spearman’s correlation could predict the SOC with an R2 value of 0.77.

The highest prediction accuracy was observed in the SOC prediction model based
on the 169 wavelengths selected using the Rfrog method, with an R2 value of 0.79 and an
RMSEP of 0.58%. Remarkably, the linear PLSR model demonstrated an inferior performance
compared to the nonlinear RF model. The prediction models constructed using the PLSR
algorithm demonstrated an adjusted validation R2 of between 0.41 and 0.75, with RMSE
values of 0.98 and 0.64.

Scatter plots depicting the predicted versus the measured values of SOC, generated by
these high-quality models, are illustrated in Figure 6.
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To enhance the predictive capability of the models, the hyperspectral data were inte-
grated with the measured values of the SIC (Table 3). Compared to the model constructed
solely based on the spectral data, the fused models showed an increase in their prediction
accuracies of up to 20% and 13% for the RF and PLSR models, respectively.

Table 3. The prediction results of SOC from the established RF and PLSR models, using Spearman,
VIP, and Rfrog as data reduction methods on fused input data.

Model
Feature

Selection
Preprocessing

Calibration Set Prediction Set

R2 MAE RMSE R2 MAE RMSE

RF

–
- 0.88 0.28 0.42 0.51 0.59 0.89

FD 0.96 0.18 0.25 0.79 0.43 0.59
SD 0.91 0.27 0.37 0.82 0.42 0.54

COR
FD 0.95 0.27 0.18 0.88 0.32 0.45
SD 0.93 0.32 0.23 0.77 0.46 0.61

VIP
- 0.89 0.26 0.42 0.42 0.65 0.97

FD 0.95 0.19 0.28 0.81 0.38 0.56
SD 0.93 0.24 0.32 0.75 0.44 0.63

Rfrog
- 0.87 0.28 0.44 0.54 0.61 0.86

FD 0.95 0.20 0.28 0.86 0.32 0.47
SD 0.93 0.24 0.32 0.58 0.62 0.82

PLSR

–
- 0.48 0.65 0.87 0.42 0.74 0.97

FD 0.72 0.49 0.64 0.70 0.50 0.69
SD 0.74 0.47 0.52 0.69 0.52 0.70

Spearman Cor FD 0.78 0.46 0.57 0.65 0.55 0.76
SD 0.61 0.57 0.75 0.69 0.50 0.71

VIP
- 0.53 0.65 0.83 0.51 0.60 0.89

FD 0.78 0.45 0.56 0.77 0.45 0.61
SD 0.80 0.42 0.54 0.74 0.51 0.65

RFrog
- 0.56 0.63 0.79 0.55 0.57 0.85

FD 0.81 0.40 0.52 0.81 0.40 0.55
SD 0.84 0.37 0.48 0.68 0.61 0.72

From Table 3, it can be noticed that the prediction accuracy, as indicated by R2, is
satisfactory. However, there are notable discrepancies in the MAE and RMSE, attributed to
the significant variability in the SOC samples. The best prediction model for the combined
data was achieved with RF-Spearman-FD (R2 = 0.88; RMSE = 0.45).
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The obtained results indicated that the FD preprocessing method combined with RF,
results in the model that is sufficiently robust and stable to be applied to soils rich in calcium
carbonate. However, from Figures 2 and 3, some discrepancy between the predicted and
the measured values of the SOC content can be observed. The prediction of soil organic
carbon (SOC) content is influenced by a range of environmental and management factors.
Key factors affecting SOC prediction include the mineral composition and soil texture and,
indirectly, soil structure, biological activity, vegetation cover, and climate conditions. These
factors interact in complex ways, leading to spatial and temporal variability in the SOC
content. Thus, effective SOC prediction models need to consider these diverse factors to
improve accuracy and reliability. Due to the complex influence of many factors on the
quality of organic carbon prediction, it should be taken into account that the laboratory
testing of standardized soil samples (of a homogeneous structure, with water removed,
free of plant debris and plant fragments) eliminates many factors that affect the results in
unpredictable ways. Hence, testing in a systematic way, according to a specific protocol,
allows one to achieve more reliable test results that are, in addition, directly comparable
with the results of other researchers [44].

Figures 6 and 7 illustrate the precision of the prediction model, observable through
the dispersion of points along the Y-axis. A narrower spread of these points around the
predicted values signifies a higher precision. However, the observed scatter indicates that
the model has certain limitations in its precision. This dispersion may stem from various
factors, including inherent model constraints, data variability, and potentially unaccounted-
for variables. Comparing prediction precision and instrumental measurement precision
is vital for the validation and reliability assessment of the SOC prediction model. The
precision of instrumental measurements, such as those obtained through the laboratory
analysis of soil samples, serves as a benchmark for the prediction model. When instruments
demonstrate a high precision, the SOC prediction model should ideally achieve a compara-
ble precision to be considered reliable. Comparing the variability in the model’s predictions
with the known precision of the instruments allows for a more detailed error analysis. If
the model’s predictions show greater variability than the instrument’s measurements, this
excess variability is likely due to the model’s limitations rather than issues with the SOC
data’s quality.
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Recognizing the precision of both the SOC prediction model and the instruments
can inform targeted improvement strategies. For instance, if the instrument’s precision
surpasses that of the model, efforts should focus on enhancing the model’s precision. This
can be achieved by incorporating additional relevant features, refining existing algorithms,
or exploring more sophisticated modeling techniques tailored to SOC data.
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In summary, the precision of the prediction model, as depicted in Figures 6 and 7,
reveals certain limitations when compared with the higher precision typically associated
with instrumental measurements.

In summary, while prediction precision and instrumental measurement precision
pertain to different domains, they share common principles, such as dependence on data
quality, the necessity of validation and calibration, and the use of statistical methods to
evaluate and enhance precision. Understanding their interconnection can lead to the better
design and implementation of both predictive models and measurement systems, ensuring
higher reliability and accuracy in various applications.

In light of the literature data, determining the precise wavelength at which a substance-
specific signal is recorded can be debatable. For calcium carbonate, specific wavelengths
have been determined: 1800 nm, 2350 nm, 2360 nm [45], 2325 nm [46], 2338 nm [47],
2340 nm [36], and 2341 nm (Gomez et al. 2008). However, in light of our analyses, the
authors would suggest indicating wider ranges, related, on the one hand, to the diversity
in soil samples and, on the other hand, the measurement method. The determination of a
single length of the order of 1 nm, taking into account the spectral resolution of the appara-
tus at the level of 6 nm, seems methodologically unjustified. The reflectance/absorbance
values at the suggested wavelengths may also be affected by the presence of certain clay
minerals in the samples, such as chlorite or illite, which increase the absorbance of a given
material in a similar range of the electromagnetic spectrum [47,48].

Organic carbon is one of the most commonly analyzed soil parameters using VIS-NIR
spectrometry [7], considering the high importance of analyzing samples in the laboratory,
with samples prepared in a specific way, which allows one to achieve more reliable results
in contrast to analysis in the field. This is because in situ analysis must take into account
local soil conditions, such as moisture content, structure, and, above all, the heterogeneity
of the material [44]; the influence of the aforementioned factors is offset by the preparation
of the material and its homogenization. The results of organic carbon prediction presented
by many authors in available publications are highly promising and indicate the feasibility
of using spectrometric techniques to analyze soil organic matter. R2 values, indicating the
accuracy of prediction, at levels exceeding 0.8–0.9, should be considered satisfactory.

Nevertheless, the selection of analytical material seems to be crucial in terms of
prediction. Interfering factors are important, affecting the direct measurement of the
spectral response of the soil in certain ranges or the specific “offset” of the entire spectral
curve, due to high reflectance [36]. This is of great importance in the case of soils rich in
calcium carbonate, such as those analyzed in this publication. The results obtained clearly
indicate that it is necessary to use input fusion techniques, allowing researchers to take
into account analytical laboratory results of calcium carbonate content. An increase in the
quality of prediction using auxiliary data is also indicated in studies by other authors, who
have taken into account, for example, soil moisture or temperature parameters [3].

One of the most important advantages of the VIS-NIR spectrometry method is that it
facilitates and speeds up the analysis of soil materials. However, in the authors’ opinion, it is
necessary, at least at this stage, to take into account traditional techniques (laboratory analytics)
to improve the quality of prediction. In any case, adopting a compromise—analyzing calcium
carbonate in the laboratory and incorporating the results into a combined prediction model—
represents a cost-effective solution in terms of labor input and analytical costs.

A methodological problem may be the relatively small database used for calibration,
especially with a small total number of samples [49]. In the case of the present work, the
number of samples used for calibration appeared to be sufficient [50]. On the other hand,
increasing the measurement base would be difficult to achieve due to the uniqueness of the
study material.

The comparison of the results obtained with those of other authors, in the case of VIS-
NIR spectroscopy, often poses methodological problems. On the one hand, the analyzed
material is highly diverse, including soils from different regions, with different basic
properties (mineralogy, grain size, etc.). Nevertheless, it can be pointed out that most
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researchers obtain prediction results at an R2 level in the range 0.6–0.9 [7]. However, it
seems that the published values cannot be generalized due to the high variability in the
research material. The soils used in the present study, with carbonate contents exceeding
40%, have not yet been analyzed in detail in terms of organic carbon prediction by VIS-
NIR spectroscopy.

On the other hand, the processing of input data is performed in a differentiated way,
which is due to the fact that authors are looking for the optimal solution (in the sense
of the one producing the most reliable results). The use of diverse modeling techniques
(e.g., Partial Least Squares Regression, cubist, Random Forest, Support Vector Machine,
convolution neural network, XGBoost, memory-based learning, etc.) can lead to strongly
divergent results in terms of prediction quality [4,51–53]. Consequently, there is no model
solution that can be universally applied, but only a collection of individual case studies.
Nevertheless, they provide an indispensable foundation for the creation of a library that
takes into account different types and species of soils. The contribution of this publication
in this regard is the inclusion of a particularly high carbonate content as an interfering
factor in the organic carbon measurement range.

4. Conclusions

This study demonstrates the potential of VIS-NIR spectroscopy for SOC analysis in
carbonate-rich soils. By integrating spectral data with SIC information and employing
advanced modeling techniques, accurate predictions of SOC levels can be achieved, offering
valuable insights for soil management and environmental monitoring.

In the case of some soils, it should be taken into account that, in certain ranges of the
spectrum, reflectance may exceed the values for the reference materials.
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