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Abstract: As remote sensing technology has advanced, the use of satellites and similar technologies
has become increasingly prevalent in daily life. Now, it plays a crucial role in hydrology, agriculture,
and geography. Nevertheless, because of the distinct qualities of remote sensing, including expansive
scenes and small, densely packed targets, there are many challenges in detecting remote sensing
objects. Those challenges lead to insufficient accuracy in remote sensing object detection. Conse-
quently, developing a new model is essential to enhance the identification capabilities for objects in
remote sensing imagery. To solve these constraints, we have designed the OD-YOLO approach that
uses multi-scale feature fusion to improve the performance of the YOLOv8n model in small target
detection. Firstly, traditional convolutions have poor recognition capabilities for certain geometric
shapes. Therefore, in this paper, we introduce the Detection Refinement Module (DRmodule) into the
backbone architecture. This module utilizes Deformable Convolutional Networks and the Hybrid At-
tention Transformer to strengthen the model’s capability for feature extraction from geometric shapes
and blurred objects effectively. Meanwhile, based on the Feature Pyramid Network of YOLO, at the
head of the model framework, this paper enhances the detection capability by introducing a Dynamic
Head to strengthen the fusion of different scales features in the feature pyramid. Additionally, to
address the issue of detecting small objects in remote sensing images, this paper specifically designs
the OIoU loss function to finely describe the difference between the detection box and the true box,
further enhancing model performance. Experiments on the VisDrone dataset show that OD-YOLO
surpasses the compared models by at least 5.2% in mAP50 and 4.4% in mAP75, and experiments on
the Foggy Cityscapes dataset demonstrated that OD-YOLO improved mAP by 6.5%, demonstrating
outstanding results in tasks related to remote sensing images and adverse weather object detection.
This work not only advances the research in remote sensing image analysis, but also provides effective
technical support for the practical deployment of future remote sensing applications.

Keywords: YOLO; remote sensing; small object detection

1. Introduction

Due to the ongoing advancements in remote sensing technologies, the utilization of
Remote Sensing Images (RSIs) has expanded significantly, including in the detection of lake
surface water [1], applications in grain production [2] and landslide research [3]. In recent
years, the capabilities of neural network models have continuously improved. And, com-
puter vision technology has advanced significantly, resulting in object detection methods
that are vastly different from those of the past. The models of deep learning can extract
deeper features from remote sensing images, showing great potential for applications in
the recognition of remote sensing image targets [4].

However, the characteristics of remote sensing images also lead to several problems
as follows: Firstly, remote sensing images include satellite images and images taken by
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unmanned aerial vehicles (UAVs), which differ significantly from ground-level images.
What is more, remote sensing images exhibit rich diversity, capturing subjects across a
variety of scales, perspectives, and forms. This diversity makes object detection more
challenging. Secondly, remote sensing images have very large differences in object size,
and these images cover both small and large targets. This difference in scale increases the
complexity of the object detection task. Further, remote sensing images have a complicated
background condition, which introduces a new consideration of environmental factors for
object detection. The textures and colors of the objects in the images can closely resemble
those of the background and complicate their differentiation. Therefore, it raises the level
of challenge in detecting. Simultaneously, images captured through remote sensing often
suffer from diminished object details and insufficient information, posing challenges to
precise object detection. Finally, the weather has a great influence on remote sensing
images; for example, there is a big difference between rainy days and sunny days in terms
of the ability to capture objects, and bad weather may lead to blurred images or noise.
The combination of these factors compounds the challenges associated with detecting
targets in RSI.

This paper introduces the OD-YOLO model framework in response to the challenging
conditions of remote sensing images, aiming to enhance its object detection capabilities
within remote sensing imagery tasks. We have designed a DRmodule, which enhances
feature extraction for geometric structures. According to the Feature Pyramid Network
(FPN) of YOLOv8 [5], this paper introduces the Dynamic Head module, which effectively
improves the feature fusion capability across layers in the FPN. This paper proposed a new
OIoU loss function. The OIoU can more accurately describe the localization of the targets
in images. These improve the performance of the model, which shows an improvement of
about 5.2% in mAP50 and 4.4% in mAP75 compared to recentadvanced methods.

The main contributions of this paper are as follows:

1. In this paper, we propose the OD-YOLO framework for target detection in remote
sensing scene captured by unmanned aerial vehicles.

2. An enhanced feature extraction Detection Refinement module (DRmodule) and OIoU
loss function are employed to improve the model’s capacity to gather features from
small objects and detect them.

3. Experiments with a remote sensing object detection dataset prove that the OD-YOLO
effectively boosts the performance in detect objects in remote sensing scenes.

The rest of the paper is organized as follows: Section 2 offers an overview of related
work in the field. Section 3 provides a thorough explanation of the method we propose.
The results from comparative and ablation studies are detailed in Section 4. Section 5
explores the disadvantages of our approach and offers ideas for improvements in the
future. Finally, Section 6 provides a summary of the findings and conclusions drawn from
this research.

2. Related Work
2.1. YOLO Model

As deep learning grows, CNN has made great achievements, and YOLO [6] is one of
the most popular models in CNNs. The YOLO model boasts an extensive array of applica-
tions in industry due to its simple structure, lightweight network and excellent detection
results. Zhukov et al. [7] used the YOLO model with an attention mechanism and achieved
better results in rail lines defect detection. Zhao et al. [8] have improved the YOLOv5 by
making it lightweight to enable the rapid detection of sewer defects. Chen et al. [9] used
the YOLO model to achieve good results in suspicious object detection in millimeter wave
images. Ding et al. [10] improved the YOLOv5 model’s capacity for global feature fusion by
integrating the EPMS module. Tang et al. [11] improved the object detection ability of the
YOLO model in complex traffic roads by introducing an RMA module. Wu et al. [12] pro-
posed the SOD-YOLO model to achieve outstanding capacity in detecting mini-goal in the
high-voltage transmission lines. Yuan et al. [13] effectively improved the precision in detect-
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ing defects of PCB by using the LW-YOLO model. Song et al. [14] proposed MED-YOLO to
improve the model’s recognition ability in complex traffic scenes. Du et al. [15] developed
the DSW-YOLO model for strawberry fruit recognition and successfully implemented it in
a strawberry-picking robot, achieving relatively good results. Wan et al. [16] proposed the
LGP-YOLO, which has led to considerable advancements in identifying surface defects on
light guide plates.

In other methods, the ability of YOLO model’s feature extraction is mainly improved
through the attention mechanism, which essentially assists the model to accurately pinpoint
and identify the target objects. But mostly, these models ignore the neck structure feature
structure. In this paper, we raise the capacity of the feature fusion of the FPN in the
framework. To achieve this, our method uses the Dynamic Head [17] to improve the overall
recognition precision.

2.2. Remote Sensing Object Detection

Over the past few years, as objects detection technology has continually evolved,
significant progress has been made in object detection in remote sensing imagery. However,
many problems persist in detecting small targets, which are difficult to identify. Du et al. [18]
effectively tackled the issue of losing crucial feature information of small-scale targets
during multiple downsampling by combining feature integration across multiple scales and
integrating an attention module. Liang et al. [19] proposed an object identification approach
based on a novel cloud collaboration and restructured convolutional architecture, which
improves the model’s capacity in detecting remote sensing scenes in real time. Wu et al. [20]
introduced the GNAM module, which combines several attention mechanisms to create a
global normalized attention weight. This helps better utilize valuable information in the
input feature channels and spatial dimensions, improving the effectiveness of the model in
identifying remote sensing targets. Liu et al. [21] integrated a data augmentation algorithm
with a highly efficient subspace attention module, while also fine-tuning the quantity of
detection heads and refining the loss function. In a training period, Mai et al. [22] employed
a dynamic dual-domain alignment (DDA) approach, which addresses possible mismatches
in spatial and feature domains throughout the learning phase. Zhang et al. [23] introduced
Drone-YOLO, which improves the capability of the model in understanding different scales
features by utilizing the APFN [24] structure and RepVGG [25].

This paper proposes the DRmodule to tackle the difficulties of identifying small and
diverse-shaped objects in remote sensing imagery. This module effectively lowers the
likelihood of missing small objects and improves the model’s capabilities in identifying
targets across remote sensing images.

2.3. Small Object Detection

In traditional machine learning tasks, detecting small objects has always been a chal-
lenging task because the features of small object images are not distinct, making them
difficult for models to recognize. Attention mechanisms and improved loss functions
are often used to promote the model’s effectiveness in the tasks of detecting small target.
Mo et al. [26] incorporated multi-attention into YOLOv5 to yield improved outcomes in
detecting small objects on airport runways. Yang et al. [27] merged an enhanced chan-
nel attention mechanism with a better version of E-ELAN [28] to introduce an upgraded
YOLOv7 model, which is designed to identify small spots on grape leaves. Aibibu et al. [29]
combined the strengths of various networks to improve the detection performance of small
target vehicles. Liu et al. [30] utilized dynamic snake convolution [31] and introduced
WISE-IoU [32] to boost the model’s effectiveness in detecting small traffic-related objects.
Wang et al. [33] proposed a joint attribute soft-sharing and contextual local method to
improve the model’s efficacy in re-identifying pedestrians.

In this paper, the OIoU loss function is used, which is a more precise and stable metric
tailored to small target detection. This approach enhances the precision and resilience in
detecting objects.
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3. Proposed Method

This paper uses the YOLOv8n model as a foundational architecture and presents
the OD-YOLO framework. We propose the DRmodule in the OD-YOLO framework,
specifically designed to identify small objects in remote sensing images, aiming to improve
the model’s feature extraction performance. Additionally, we incorporate the OIoU loss
to boost the model’s ability to semantically express detection boxes of small objects. Our
model also integrates a Dynamic Head to strengthen the feature fusion ability in the feature
pyramid. OD-YOLO enhances feature representation, leading to improved recognition
accuracy in identifying objects within remote sensing imagery tasks.

As shown in Figure 1, three components are in the framework of the OD-YOLO:
Backbone, Neck and Head. Before being fed into the network, the input image’s resolution
will be adjusted to 640 × 640. Mosaic data augmentation stitches together four images
using random cropping, brightness adjustments, and flipping. Feature Pyramid Network
(FPN) [34] and Path Aggregation Network (PANet) [35] are used in OD-YOLO’s neck,
and finally, the OD-YOLO uses Dynamic Head to boost feature fusion capability. At last,
the model outputs detection boxes, confidence scores, and categories in the form of a
Decoupled Head.

Conv

DR module

DR module

DR module

DR module

SPPF

Upsample

C

C2f

Upsample

C C2f

Upsample

C

C2f

Upsample

C C2f

Dynamic

Head

Dynamic

Head

Dynamic

Head

+

Backbone Neck Head

Figure 1. The framework of OD-YOLO. Four DRmodules are placed in the backbone for feature
extraction. In the neck, features across scales are fused. Finally, detection targets are output using
three dynamic heads of different scales.

3.1. Detection Refinement Module

Objects in remote sensing images may be relatively small. It is challenging for YOLO to
detect samll targets because of the lack of specific information. To address these challenges,
we designed a module called the Detection Refinement module (DRmodule), which is
placed in the Backbone of the YOLO module to further enhance detection performance.
The DRmodule enhances multi-scale expressive abilities and improves performance in
low-resolution settings for detecting small targets in remote sensing images by integrat-
ing DCNv2 [36,37] and the Hybrid Attention Transformer [38]. As shown in Figure 2,
the DRmodule uses DCNv2 to derive geometric features from the input features. Then, a
Hybrid Attention Transformer (HAT) is applied for feature extraction before using DCNv2
again to extract deeper features. These two sets of features are concatenated together.
By fusing features across scales and adapting to deformations, the DRmodule enhances
the effectiveness of the model in handling complicated situations in the images of remote
sensing, thus improving the precision and reliability of target detection.
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DCNv2

HAT DCNv2

C

Figure 2. The structure of DRmodule. It integrates Deformable Convolutional Networks and Hybrid
Attention Transformer for enhanced geometric feature extraction in remote sensing imagery.

3.1.1. Deformable Convolutional Networks

In traditional CNN, convolution kernels have a very fixed structure, which results
in poor feature extraction capability for certain geometric structures. DCNv2 [36,37] is an
enhanced convolution technique capable of adaptively modifying the convolution kernel
shape to more effectively accommodate the target’s deformation or multi-scale features.
The scale of targets in remote sensing imagery can differ substantially, and DCNv2 can
better capture features of targets at different scales. Objects in remote sensing images
may undergo unstructured deformations, such as tilting or morphing. DCNv2 can handle
these situations better by adapting the shape of its convolution kernels, thus boosting the
precision of object detection.

For a DCNv2, in a 3 × 3 convolution, we assume that the relative positions of the
convolutionally extracted features are as shown Equation (1).

q = {(−1,−1), (−1, 0), . . . , (1, 0), (1, 1)}. (1)

In DCNv2, each position of the convolution feature extraction has a position offset ∆p and a
weight coefficient ∆m, learned from the preceding feature map. Therefore, the final feature
output map is as shown Equation (2).

y(p0) = ∑
pn∈q

w(ln) · x(p0 + pn + ∆pn) · ∆mn (2)

Here, p0 denotes the value at each location on the output feature map y, ∆mn is a decimal
between [0, 1] used to represent the weight of that position. pn represents the point in the
input feature map. ∆pn denotes the offset learned from the earlier feature map.

DCNv2 dynamically adapts to each feature extraction position by introducing a devia-
tion that enables dynamic feature extraction. It also incorporates a weight, allowing for
varied feature expression based on each position’s unique characteristics. It can capture
detailed information about the boundaries and complex shapes of target objects more accu-
rately, especially useful for detecting objects that change shape. This approach effectively
describes the geometric shapes of targets in remote sensing image recognition and boosts
OD-YOLO’s capability to extract features from small objects.

3.1.2. Hybrid Attention Transformer

Remote sensing object detection tasks face challenges such as highly complex back-
grounds and multi-scale objects, which often lead to limitations in the recognition accuracy
and generalization capabilities of traditional models. By using HAT’s advanced features,
including its robust global and local information processing abilities and acute sensitivity
to complex backgrounds, the model significantly enhances its capability to detect objects of
different scales.

As shown in Figure 3, to derive shallow features from the image, HAT initially applies
a convolution process, and it employs several RHAGs and a 3 × 3 convolution process
for deriving deep feature. After that, the convolution layer and a Pixel Shuffle layer [39]
is used for rebuilding the resolution, and then another 3 × 3 convolution layer is used to
produce the ultimate image. The RHAG has several HAB layers; an OCAB layer and a 3× 3
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convolutional layer with a residual connection are used to achieve better reconstruction
effects. This module comprises two principal elements: Window-based Self-Attention [40]
and Channel Attention [41]. First, the input features are normalized, then processed
using the window-based self-attention mechanism. This mechanism segments the features
maps into local windows, and every window will calculate self-attention to capture the
association information of local areas. Next, through the channel attention, more global
features are introduced to calculate channel attention weights. This attention module
utilizes global insights to weight the features, thus activating more pixels.

RHAG RHAG RHAG

Conv
Pixel

shuffle

Shallow Feature

Extraction Deep Featur Extraction
Image

Reconstruction

HAB
......

HAB OCAB

Residual Hybrid Attenetion Group(RHAG)
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o
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Channel Attention Block(CAB)

Global

pooling

Activation

function

Element-wise sum

Element-wise product

Sigmoid function

Figure 3. Diagram of the Hybrid Attention Transformer (HAT) in the DRmodule, showing how it
extracts basic features, processes them with attention groups for detailed analysis, and then rebuilds
the image to better capture object details for detection.

In HAT, the OCAB module is additionally proposed, as shown in Figure 4. Com-
pared to the CAB module, it introduces an overlapping cross-attention layer to establish
cross-connections between windows in window self-attention, enhancing the network’s
representation ability.
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Figure 4. The Overlapping Channel Attention Block (OCAB) in the HAT, showing how it uses
attention across different areas and channels to better detecting targets.

As shown in Figure 5, the specific computation procedure resembles that of the W-
SMA module [40], but in calculating the attention mechanism, zero-padding is applied
to the original image during the computation of K/V, allowing for learning from the
content in another window through a larger window. When a feature map is input into this
layer, it is divided into several M ∗ M windows, which serve as the Query in the attention
mechanism. At the same time, the original feature map undergoes zero-padding controlled
by the parameter γ. The padded feature map is divided into M0 ∗ M0 feature maps, which
serve as the Key/Value. The attention algorithm is as shown in Equation (3). The design of
this module enables better utilization of the pixel information within a window for queries,
thereby improving the model’s performance.

Attention(Q, K, V) = So f tMax(QKT/
√

d + B)V (3)
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Here, d stands for the dimension of Q and KT , and B stands for the encoding of the position.
The computation of Q, K, V is as described above. The calculation of attention is refered to
in the literature [42].

Through incorporating the HAT module into the architecture of the OD-YOLO model,
we boost the model’s capacity to process fine features in remote sensing images and
markedly promote the model’s adaptability to the unique spatial variability of remote
sensing images through HAT’s channel and window self-attention mechanisms. This
improvement boosts the precision in the detection of the remote sense and strengthens the
model’s reliability against complex backgrounds and varied target sizes.

Figure 5. The Overlapping Cross-attention Layer.

3.2. Dynamic Head

A major challenge in detecting objects in remote sensing is handling target detection
across multiple scales and against complex backgrounds. Due to the difficulties, traditional
object detection methods often struggle to accurately identify small targets or targets
within complex backgrounds. Therefore, we employed Dynamic Head [17] to promote the
performance on the small targets detection.

In traditional Feature Pyramid Networks [34], F ∈ RL×H×W×C represents the fea-
tures across all levels of the feature pyramid, where L represents the number of layers,
and H, W, C represent the height, width, and channels. In the Dynamic Head, we define
S = W × H so the tensor in the Feature Pyramid Network is reshaped into F ∈ RL×S×C.
Scale-aware, Spatial-aware, and Task-aware attention mechanisms are incorporated in the
Dynamic Head. Their structures are illustrated in Figure 6.

Scale-aware Attention dynamically integrates features from various scales by de-
pending on the significance, adjusting them according to their semantic importance. This
attention mechanism can effectively improve performance issues in object detection caused
by differences in object scales. The specific calculation equation is as shown in Equation (4).

πL(F) · F = δ( f (
1

SC ∑
S,C

F)) · F (4)
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Here, f (·) is a convolutional layer close to 1 × 1, and δ is an activation function, with the
specific expression being δ = max(0, x+1

2 ), F represents the input feature map.

avg pool

conv 1x1

relu

hard sigmoid

index

conv 3x3

offset

sigmoid

avg pool

fc

relu

fc

normalize

α1，β1，α2，β2

Figure 6. The Dynamic Head incorporates three attention mechanisms: Scale-aware, Spatial-aware,
and Task-aware attentions. This diagram shows the process of dynamically adjusting feature emphasis
on different scales, spatial regions, and task-specific features to enhance object detection performance.

Spatial-aware Attention, designed with reference to DCN [36,37], is an attention
mechanism in spatiality, which enables sparse sampling of features at different levels. It
can unify features of different positions and levels. The specific calculation equation is
shown in Equation (5).

πs(F) · F =
1
L

L

∑
l=1

K

∑
k=1

wl,k · F(l, pk + ∆pk, c) · ∆mk (5)

Here, L stands for the level of the FPN, w is a module similar to convolution for multidi-
mensional feature sampling used for feature collection, and F represents the input feature.
c represents the sampled channel. K represents the area for sparse feature sampling, while
∆pk and ∆mk, respectively, represent the position’s offset and the position’s weight, both of
which are learned from the input feature map.

Task-aware Attention is a dynamic, task-sensitive attention mechanism that dynam-
ically turns off and on the features of certain channels in different tasks. The specific
calculation equation is shown in Equation (6).

πC(F) · F = max(α1(F) · Fc + β1(F), α2(F) · Fc + β2(F)) (6)

Here, Fc stands for the features in the channelc, F is the input feature map. α1, α2, β1, β2
are initially set to [1, 0, 0, 0], and their final values are learned during the training process
from the preceding feature maps. To diminish dimensions, it first performs global average
pooling on the channel, followed by the application of two fully connected layers and a
normalization layer. Ultimately, it utilizes a shifted sigmoid function to standardize the
output to the range of [−1, 1].

The entire structure of Dynamic Head is shown in Figure 7. It consists of a collection
of several attention structure modules, and an ROI Pooling layer [43]. At last, a decou-
pled detection head is used to output information related to categories and detection
boxes separately.

R
O

I 
P

o
o

lin
g Classifier

Box Regressor

Figure 7. The structure of Dynamic Head, showing how it combines attention mechanisms to decide
on object classes and their locations in the image.
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OD-YOLO uses Dynamic Head as its detection head to greatly improve its ability to
recognize targets from remote sensing images. This is particularly effective for small targets
and complex backgrounds. Dynamic Head’s special attention mechanism offers better
feature details, making the model more adaptable to changes in size and more focused on
important areas. This boosts the detection quality. The enhancements not only improve
accuracy on remote sensing images, but also make the model better at identifying targets
in complex settings.

3.3. OIoU Loss Function

In the tasks of detecting objects, the difference between the model’s predictions and
the true target is described by the loss function. It plays a crucial role as the model
learns to be accurate. During the process of remote sensing target detection, the objects
detected are typically small in size; therefore, accurately describing the detection boxes
is quite challenging. When dealing with small objects, traditional loss functions might
have some issues. Since small objects usually occupy fewer pixels in an image, traditional
loss functions are quite sensitive to the pixel shift between predicted and true target boxes,
which can lead to unstable results. Therefore, we propose OIoU loss function to precisely
detect boxes. Its calculation process mainly includes the following parts:

3.3.1. Angle Loss

We use δ to represent the size of angle loss in OIoU. In this paper, B signifies the box
predicted, and BGT signifies the real detection box, as shown in Figure 8. The definition of
δ is shown in Equation (7).

δ = 1 − 2 × sin2(arcsin(
Ch
γ
)− π

4
) = cos(2 × arcsin(

Ch
γ
)− π

4
) (7)

where Ch is the height disparity between the predicted and true detection boxes, and γ rep-
resents the Euclidean distance between the centers of the two detection boxes. Throughout
the training phase, if α ≤ π

4 minimize α first; if not, focus on reducing β.
Equation (7) describes the angular difference between the two detection boxes. If α is

π
2 or 0 during training, the angle loss is 0. In the convergence process, if α ≤ π

4 , minimizing
α will be prioritized; otherwise, minimizing β will be prioritized.

B

BGT

CW

CH

Figure 8. Diagram showing how angle loss is calculated between the predicted and real object boxes.

3.3.2. Distance and Shape Loss

In OIoU, we define the distance loss as ϵ. As shown in Figure 9, BGT represents the real
box, and B represents the predicted box. Bc and BGT

c . represent the centers of the two detec-
tion boxes, respectively. The calculation equation for ϵ is shown in Equations (8) and (9).
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ϵ = ∑
t=x,y

(1 − e−µρt) = 2 − e−µρx − e−µρy (8)

Here, the expressions of ρx and ρy are in Equation (9).

ρx = (
BGT

cx − Bcx

Cw
)2, ρy = (

BGT
cy − Bcy

Ch
)2, µ = 2 − δ (9)

Equations (8) and (9) show the discrepancy in the distance of the midpoints of the
predicted and actual boxes. These equations take into account the Euclidean distance in
both the x and y directions and use an exponential function to control the sensitivity of the
loss. Here, µ is an adjustment parameter used to balance the impact of angle loss on distance
loss. The goal of these equations is to bring the center of the predicted box as close as
possible to the center of the real box, thus reducing the model’s error in target localization.

B

BGT

CW

CH

Figure 9. This shows how distance and shape loss is calculated between the predicted and real
object boxes.

We also define the shape loss as ζ, with the specific calculation equation shown in
Equations (10) and (11).

ζ = ∑
t=w,h

(1 − e−wt)θ = (1 − e−Ww)θ + (1 − e−Wh)θ (10)

Here, (w, h) and (wGT , hGT) stands for the width and height of the predicted and actual
boxes. The parameter range of θ is [2, 6], signifying the level of focus on shape loss, and it
is set to 4 in the OD-YOLO. The expressions for Ww and Wh are shown in Equation (11).

Ww =
|w − wGT |

max(w, wGT)
, Wh =

|h − hGT |
max(h, hGT)

(11)

Equations (10) and (11) measure the shape discrepancy between the predicted box and
the real box. Through calculating the relative error in position of two boxes, and applying
an exponential function to adjust the sensitivity of the loss, it adjusts the emphasis on
shape loss. The goal of shape loss is to predict when true boxes are more closely aligned,
improving detection accuracy.

In OIoU, there is another part of the distance loss that more accurately describes the
variance in shape and distance in the predicted box and the real box. Here, we use η to
represent it, with the specific calculation process shown as Equation (12).
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η =
σ2(b, bGT)

c2 +
σ2(w, wGT)

C2
w

+
σ2(h, hGT)

C2
h

(12)

Here, σ denotes the Euclidean distance of two points. Cw and Ch indicate the minimum
bounding rectangle’s width and height for the predicted and real bounding boxes. b and
bGT represent the centers of the two boxes, while (w, h) and (wGT , hGT) stand the width
and height of the predicted and real boxes.

Equation (12) introduces a comprehensive distance loss, which scrutinizes the vari-
ations in shape and center position more closely between the predicted boxes and the
actual ones. It calculates the square of the discrepancies in the shape of the boxes and
center points between the predicted and real boxes. Then it is divided by the width and
height of the minimum bounding rectangle that encloses both the predicted and actual
boxes. It measures the differences in size and position between the two boxes. This design
aims to more accurately measure and optimize the differences between the predicted and
real boxes, further boosting the model’s effectiveness in detecting objects within remote
sensing imagery.

3.3.3. OIoU

In OIoU, we use IoU to describe the difference between predicted and real detection
boxes. Figure 10a shows the intersection between the detection boxes, and Figure 10b
shows their union. We use A to represent the predicted detection box, and B to represent
the real detection box. The calculation equation for IoU is shown in Equation (13).

IoU =
A

⋂
B

A
⋃

B
(13)

In summary, the OIoU loss function is calculated as in Equation (14).

LossOIoU = 1 − IoU +
ϵ + ζ + η

3
(14)

By introducing the OIoU loss function, the OD-YOLO model can more accurately de-
tect small objects in remote sensing images and also improve its ability to recognize objects
against complex backgrounds. Experimental results show that OD-YOLO outperforms
several advanced models on the VisDrone dataset, with significant improvements in both
mAP50 and mAP75 metrics. This demonstrates the OIoU loss function’s efficiency and
superiority in tasks involving object detection in remote sensing imagery.

(a) (b)

Figure 10. Illustration of the Intersection over Union (IoU) calculation for object detection.
(a) Intersection; (b) Union.



Sensors 2024, 24, 3596 12 of 23

4. Experiment
4.1. Experiment Details

In this paper, the image resolution is set to 640 × 640. We choose the Adam optimizer
to fine-tune the parameters, setting an initial learning rate of 0.01 and a weight decay
of 0.0005. All computational tasks, including training and testing, are executed on an
NVIDIA RTX 4060 Laptop GPU, utilizing Pytorch 2.0.1 and CUDA 11.8. To efficiently
manage local memory resources, the BatchSize is established at 8. We use Mosaic data
augmentation [44] in a training period and merge the four images together.

4.2. Dataset

Visdrone We chose the challenging VisDrone-2019 dataset [45], which has 8599 images
to evaluate our model. These images were taken by drones at various positions and
altitudes. In this dataset, there are lots of photos with small detection targets, dynamic blur,
and obstructions. These challenges help evaluate the model’s effectiveness. The dataset
is by default divided into 6471 training images and 548 validation images, totaling about
540k detection boxes. The rest being used as the test set, which is not used for training
or evaluation.

Foggy Cityscapes We chose a challenging dataset for adverse weather conditions:
Foggy Cityscapes [46]. This dataset is based on Cityscapes and each image has been
fogged with coefficients of 0.01, 0.02, and 0.005, providing valuable reference for object
detection in adverse weather. The dataset consists of a total of 8925 training images and
1500 validation images.

4.3. Evaluation Metrics

This paper mainly uses mAP50 and mAP75 as the key indicators, and their calculation
process is as follows. First, we need to calculate the average precision (AP). In mAP50, we
consider a detection correct if the IoU between the predicted box and the ground truth box
is greater than 50%. In mAP75, we consider a detection correct if the IoU is greater than
75%. After calculating the AP for each category, we take the average of the AP values for
all categories to obtain the final mAP. The specific computational equation is as shown in
Equation (15).

mAP =
1
m

∫ m

1
AP (15)

4.4. Experimental Results

We performed a comparison analysis of our proposed framework against alternative
methods, with the results presented in Table 1. OD-YOLO achieves 36.16% on mAP50 and
21.6% on mAP75. When compared with YOLOv8n, YOLOv5s, Cascade-RCNN, RefineDet,
and M2S, it shows an improvement of 5.2%, 9.9%, 4.2%, 7.3%, and 6.4% on mAP50, and 4.4%,
7.4%, 6.6%, 7.5%, and 7.4% on mAP75. These results show that OD-YOLO not only detects
more objects accurately on the VisDrone dataset for remote sensing images, but it is also better
at detecting objects of varying scales and complexities. Especially at high IoU thresholds,
OD-YOLO still maintains high detection accuracy. This means it locates and recognizes targets
very accurately. It shows OD-YOLO’s strengths and potential in detecting targets.

Table 1. The Comparsion of various state-of-the-art models on VisDrone dataset.

Model AP mAP50 mAP75

YOLOv8n 17.6% 30.9% 17.2%
YOLOv5n [47] 14.2% 25.1% 13.4%
YOLOv5s [47] 15.00% 26.6% 14.2%

Cascade-RCNN [48] 16.1% 31.9% 15.0%
RefineDet [49] 14.9% 28.8% 14.1%

M2S [50] 16.1% 29.7% 14.2%
Ours 21.8% 36.1% 21.6%
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Table 2 details the comparison between the OD-YOLO model and the YOLOv8n
model in detecting different types of targets on the VisDrone dataset. It lists the average
precision (AP) for 10 categories, as well as the mAP at IoU thresholds of 0.5 and 0.75.
Thorough comparing the AP, mAP50 and mAP75 of YOLOv8n and OD-YOLO in each
category, it is clear that OD-YOLO performs better in almost all categories. Specifically,
OD-YOLO not only shows a clear improvement in precision when dealing with small
target recognition tasks but also demonstrates higher detection accuracy at higher IoU
thresholds. This enhancement validates the efficacy and promise of the OD-YOLO model
for applications in remote sensing image analysis.

Table 2. The result of different classes on VisDrone dataset.

Class
YOLOv8n OD-YOLO

AP mAP50 mAP75 AP mAP50 mAP75

pedestrian 0.135 0.323 0.0899 0.163 0.364 0.121
people 0.086 0.254 0.036 0.109 0.291 0.0538
bicycle 0.024 0.0615 0.015 0.041 0.0995 0.0266

car 0.508 0.744 0.563 0.546 0.776 0.607
van 0.251 0.366 0.286 0.297 0.419 0.339

truck 0.163 0.258 0.17 0.22 0.333 0.243
tricycle 0.107 0.198 0.106 0.134 0.242 0.212

awning-tricycle 0.0625 0.102 0.0653 0.0958 0.151 0.106
bus 0.282 0.43 0.309 0.374 0.53 0.431

motor 0.142 0.353 0.0841 0.176 0.412 0.115

Figure 11 showcases the detection outcomes for five representative images using
YOLOv8n and OD-YOLO. From the illustrations, it is evident that OD-YOLO surpasses
YOLOv8n in several key areas: it excels in identifying smaller objects, operates more
effectively in dimly lit environments, and demonstrates superior performance in navigating
complex roadways. OD-YOLO showcases heightened confidence in its target detections,
with marked improvements in recognizing distant small targets and those obscured by
shadows. Moreover, in intricate scenes, OD-YOLO achieves greater accuracy in classifying
various categories and boasts a higher success rate in target identification. This enhanced
capability is particularly pronounced in the model’s handling of small object recognition,
where OD-YOLO consistently outperforms its predecessor. The advancements made by
OD-YOLO can be attributed to its refined algorithms that better interpret the nuances of
remote sensing imagery, including the intricate play of light and shadow, as well as the
model’s adeptness at processing the detailed textures and shapes indicative of small and
distant objects. This increased accuracy not only improves the reliability of the detections,
but also minimizes the instances of false positives and negatives, crucial for applications
requiring high precision.

In order to evaluate the effectiveness of the model, this study plots the Precision–Recall
curve. Each point on the curve represents the precision and recall at a specific threshold.
The shape of the curve reflects the classifier’s performance at different thresholds. Generally,
we aim for a high precision while maintaining a high recall, to ensure that all positive
samples are identified as much as possible while minimizing false positives. Figure 12
shows the PR curve for YOLOv8n, and Figure 13 shows the PR curve for OD-YOLO. In the
figures, it is evident that OD-YOLO achieves higher precision at the same recall level. This
means the OD-YOLO model can provide more accurate predictions while maintaining a
high recall rate. The Precision–Recall curve of OD-YOLO is smoother, indicating that the
predictions from the OD-YOLO model are more stable and consistent.
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(a) (b) (c)

Figure 11. The detecting result comparison between YOLOv8n and OD-YOLO. (a) Original images.
(b) The result of YOLOv8n. (c) The result of OD-YOLO.

A confusion matrix is a commonly used tool for evaluating classifiers in classification
problems. It shows how well the classifier performs by organizing the prediction results
into a matrix based on the true and predicted categories. This visually shows how the
classifier does with different categories. Figure 14 represents the confusion matrix for
YOLOv8n, and Figure 15 represents the confusion matrix for OD-YOLO. In the confusion
matrix, the horizontal axis shows the true values, and the vertical axis shows the predicted
values. By looking at the confusion matrices of both models, OD-YOLO has higher accuracy
and lower error rates for each category, showing that it is better at correctly predicting
multiple categories. Compared to YOLOv8n, OD-YOLO has fewer mix-ups and is more
accurate in distinguishing samples of different categories. Overall, OD-YOLO’s confusion
matrix is better than YOLOv8n’s, with more true positives, lower misclassification rates,
higher precision, and fewer cases of mixing up categories.
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Figure 12. The Precision-Recall curve of YOLOv8n.

Figure 13. The Precision-Recall curve of OD-YOLO.
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Figure 14. The confusion matrix of YOLOv8n.

Figure 15. The confusion matrix of OD-YOLO.

In this paper, we use Grad-CAM [51] technology to visualize features. We chose the
C2f layer before the 128 × 128 × 128 Dynamic Head of Figure 1. This layer integrates
features from several smaller scales within the backbone, demonstrating the backbone’s
ability to extract features for small objects. In the visualized heatmap, the deeper the color,
the greater the contribution to the outcome. As shown in Figure 16, OD-YOLO demonstrates
a significant improvement in the capability to derive features from small targets compared
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to YOLOv8n. These feature extraction capabilities come from the DRmodule’s superior
ability to extract small-scale features, and OIoU helps the model better locate the position
and shape of the objects.

(a) (b) (c)

Figure 16. The figure displays a comparison of heatmaps between YOLOv8n and OD-YOLO.
(a) is the original picture, (b) is the heatmap of YOLOv8n, and (c) is the heatmap of OD-YOLO.
It can be observed in the figure that the colors representing small targets in OD-YOLO are deeper,
indicating that OD-YOLO has a stronger capability for feature extraction.

To better verify the role of OIoU in small object detection, we used YOLOv8n as the
training model and conducted experiments on the Visdrone dataset for comparison. In the
standard YOLOv8n, the CIoU loss function is used. We conducted comparison experiments
by replacing the loss function. As show in Table 3, the experiments showed that OIoU
has a significant advantage in small object detection compared to other loss functions. It
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improved the AP metric by up to 1.4%, mAP50 by up to 1.8%, and mAP75 by up to 1.4%.
This indicates that OIoU has a clear advantage in small object detection. This advantage
comes from OIoU’s more accurate consideration of the angle and distance differences
between the predicted box and the ground truth box, resulting in more accurate bounding
box positioning.

Table 3. The Comparsion of various loss function on VisDrone dataset.

Loss Function AP mAP50 mAP75

CIoU [52] 17.6% 30.9% 17.2%
DIoU [53] 17.7% 31.1% 17.6%
EIoU [54] 17.2% 30.2% 17.0%
GIoU [55] 17.0% 30.0% 16.8%
WIoU [32] 17.3% 30.5% 17.2%

OIoU 18.4% 31.8% 18.2%

To evaluate the performance of the OD-YOLO model in complex weather conditions,
we chose the challenging Foggy Cityscapes dataset for comparison experiments. It is
important to note that the Foggy Cityscapes dataset is derived from the Cityscapes dataset,
and its labels also come from Cityscapes. However, because the Cityscapes dataset is
suitable for both object detection and panoptic segmentation tasks, some class settings
are not suitable for evaluating object detection. Therefore, we adopted the mainstream
method for evaluating the model on Foggy Cityscapes: training with all classes together
and selecting the average Precision (AP) of eight classes (person, rider, car, truck, bus, train,
motorcycle, bicycle) and the mean AP of these eight classes for comparison.

Table 4 shows the performance of OD-YOLO and other models on the Foggy Cityscapes
dataset. From the table, we can see that OD-YOLO has a significant advantage compared
to other models. Compared to YOLOv8n, YOLOv5n, SIGMA, and DeFRCN, OD-YOLO
shows a notable improvement in each category, with an overall mAP increase of 5.5%, 8%,
8%, and 20.4%, respectively, for the eight categories. Compared to MILA, although there is
a slight decrease in the car, bus, and train categories, the overall mAP increased by 2.6%.
The experimental results indicate that OD-YOLO significantly enhances feature extraction
capability for object recognition tasks under adverse weather conditions.

Table 4. The Comparsion of various state-of-the-art models on Foggy Cityscapes dataset.

Model Person Rider Car Truck Bus Train Motorcycle Bicycle mAP

YOLOv8n 45.2% 65.4% 60.2% 35.1% 53.4% 26.6% 30.4% 55.2% 47.7%
YOLOv5n 42.9% 61% 58.6% 28.0% 52.8% 19.5% 39.9% 50.9% 44.2%
SIGMA [56] 44% 43.9% 60.3% 31.6% 50.4% 51.5% 31.7% 40.6% 44.2%
DeFRCN [57] 34.3% 41.4% 47.3% 24.3% 32.9% 17.3% 26.6% 38.4% 32.8%
MILA [58] 45.6% 52.8% 64.8% 34.7% 61.4% 54.1% 39.7% 51.5% 50.6%

Ours 47.5% 67.3% 63.2% 42.8% 56.5% 49.6% 41.9% 56.5% 53.2%

Figure 17 shows a comparison of typical prediction results between YOLOv8n and OD-
YOLO on the Foggy Cityscapes dataset. In the first image, YOLOv8n mistakenly detects a
traffic sign as a person, while OD-YOLO better detects the person in dense fog conditions.
In the second image, OD-YOLO accurately detects a train and a small, occluded car. In the
third image, OD-YOLO successfully detects a car that is partially occluded by a nearby
car and also accurately detects a person in dense fog conditions. In the fourth image, OD-
YOLO accurately detects a nearby car covered in dense fog. In the fifth image, OD-YOLO
avoids YOLOv8n’s mistake of identifying a traffic sign as a car and successfully detects
a motorcycle. This demonstrates that OD-YOLO has better object detection performance
under adverse weather conditions compared to YOLOv8n.The improvement in OD-YOLO’s
detection capability under adverse weather conditions comes from the enhanced modules
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within OD-YOLO. These modules better extract the less obvious features of objects in
adverse weather, particularly the DRmodule’s ability to extract blurred features. Such
enhancements allow the model to meet higher accuracy requirements for object recognition
in adverse weather conditions.

(a) (b) (c)

Figure 17. The detecting result comparison in Foggy Cityscapes dataset between YOLOv8n and
OD-YOLO. (a) Original images; (b) The result of YOLOv8n; (c) The result of OD-YOLO.

4.5. The Result of Ablation Study

To evaluate the effectiveness of each module and investigate their impact on the
accuracy of the algorithm, we conducted a variety of ablation experiments. Starting
with YOLOv8n as the baseline, we incrementally added improvements. According to
the ablation experiment data in Table 5, incorporating the DRmodule into the backbone
network improved the mAP50 and mAP75 by 1.3% and 0.9%, respectively, compared to the
original network. This demonstrates that the DRmodule significantly enhances the model’s
ability to capability to derive geometric shape features, boosting its performance. Adding
the Dynamic Head module on top of the DRmodule further increased mAP50 and mAP75
by 3.1% and 2.6% indicated that Dynamic Head greatly improves the feature fusion ability
in the feature pyramid of the YOLO model, achieving excellent results in object detection.
Finally, including the OIoU loss function in the model resulted in an additional increase of
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0.8% in mAP50 and 0.5% in mAP75, showing that OIoU accurately describes the prediction
accuracy of small object detection, thereby enhancing model performance.

GFLOPs represent the number of floating-point operations required by the model,
indicating its computational complexity. FPS represents the number of frames that can be
detected per second. From the ablation experiments, OD-YOLO increased the computa-
tional complexity by 3.7 GFLOPs compared to YOLOv8n. Although the FPS decreased from
256.4 to 134.3, maintaining 134.3 FPS on devices with limited computing power still allows
for very smooth object detection tasks. This drop in frame rate is completely justified.

Table 5. The result of ablation study on VisDrone dataset.

Model AP mAP50 mAP75 GFLOPs FPS

YOLOv8n 17.6% 30.9% 17.2% 8.9 256.4
+DRmodule 18.2% 32.2% 18.1% 10.4 214.3

+Dynamic Head 21.2% 35.3% 21.1% 12.6 134.3
+OIoU 21.8% 36.1% 21.6% 12.6 134.3

5. Discussion

While the model demonstrates superior performance in small object detection within
remote sensing images, there are several limitations and avenues for future work that merit
attention. One of the primary limitations of the OD-YOLO model lies in its computational ef-
ficiency and resource requirements. The integration of complex modules like the DRmodule
and the feature fusion detection head, while beneficial for accuracy, significantly increases
the computational load. This can pose challenges for real-time applications or when deploy-
ing on hardware with limited processing capabilities. Secondly, object image recognition
in remote sensing can be affected by objective factors such as weather. Although in this
experiment, OD-YOLO performed very well under adverse weather conditions, there is
still a need to explore and address object detection in extreme conditions.

Looking ahead, there are several promising directions for enhancing the OD-YOLO
model. First, optimizing the model architecture to reduce computational demands while
maintaining or even improving accuracy would make OD-YOLO more practical for a
broader array of applications, including those requiring real-time processing. Investigating
lightweight versions of the model that do not compromise significantly on performance
could be particularly beneficial. For example, using lightweight methods such as Ghost-
Module [59] to replace certain structures in the model can improve the model’s real-time
performance while maintaining accuracy. Secondly, we will explore more data processing
techniques. For example, in extreme weather conditions, we can use advanced image pro-
cessing techniques such as dehazing [60]. In the future, we will focus more on researching
image processing methods for remote sensing image object recognition, facilitating object
detection under extreme conditions. Thirdly, to achieve better detection results, we will
fine-tune our model to achieve optimal performance.

In conclusion, while the OD-YOLO model represents a significant step forward in re-
mote sensing image analysis, continuous efforts in addressing its limitations and exploring
future directions are essential for advancing the field and meeting the evolving demands of
practical applications.

6. Conclusions

In this paper, we introduce the OD-YOLO model, designed specifically for the task
of recognizing targets in remote sensing images. This model incorporates three key com-
ponents: the DRmodule, which boosts feature fusion; a detection head that improves the
feature pyramid structure; and the OIoU loss function, tailored to enhance recognition of
small targets. Our experiments conducted on the VisDrone and Foggy Cityscapes dataset
demonstrate that OD-YOLO outperforms existing models in detecting small targets and
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bad weather condition. Moving forward, we aim to further refine the model’s performance,
striving to develop more effective target recognition approaches for remote sensing imagery.
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