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Abstract: The artificial potential field method has efficient obstacle avoidance ability, but this tradi-
tional method suffers from local minima, unreasonable paths, and sudden changes in heading angles
during obstacle avoidance, leading to rough paths and increased energy consumption. To enable
autonomous mobile robots (AMR) to escape from local minimum traps and move along reasonable,
smooth paths while reducing travel time and energy consumption, in this paper, an artificial potential
field method based on subareas is proposed. First, the optimal virtual subgoal was obtained around
the obstacles based on the relationship between the AMR, obstacles, and goal points in the local
environment. This was done according to the virtual subgoal benefit function to solve the local
minima problem and select a reasonable path. Secondly, when AMR encountered an obstacle, the
subarea-potential field model was utilized to solve problems such as path zigzagging and increased
energy consumption due to excessive changes in the turning angle; this helped to smooth its planning
path. Through simulations and actual testing, the algorithm in this paper demonstrated smoother
heading angle changes, reduced energy consumption, and a 10.95% average reduction in movement
time when facing a complex environment. This proves the feasibility of the algorithm.

Keywords: artificial potential field; predicted potential field; subarea potential field; local path
planning; autonomous mobile robot; path planning; obstacle avoidance

1. Introduction

In recent years, with the rapid development of intelligent control and artificial intelli-
gence, AMRs have been applied in fields such as mineral exploration, military reconnais-
sance, cargo handling, and industrial production [1]. During the execution of tasks, AMRs
encounter various obstacles, and the question of how to plan a reasonable path to enable
them to efficiently avoid obstacles and reach their destination safely has become one of the
hot topics in AMR path-planning technology [2].

AMR path planning can be divided into two categories [3]: The first category is
global path planning, where the entire driving path is determined based on the complete
prior information of the environmental map [4]. Examples of algorithms used in global
path planning include the A* algorithm [5,6], Dijkstra algorithm [7], genetic algorithm [8],
and Rapidly-exploring Random Tree [9], among others. However, the effectiveness of
the planned path in global path planning is limited by the accuracy and non-real-time
updating of the pre-loaded environment map [10]. The second category is local path
planning, which is based on partial knowledge of the environment along with real-time
information obtained from sensors mounted on the AMR to dynamically plan the driving
path [11]. Examples of algorithms used in local path planning include the dynamic window
approach [12], velocity obstacle method [13], artificial potential field method [14], and
reinforcement learning [15], among others.
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In local path planning, the artificial potential field method is widely applied [16]. The
artificial potential field method treats the task environment of the AMR as a potential
field. In this method, the goal point generates an attractive potential field to guide the
AMR toward the goal, while obstacles in the environment generate repulsive potential
fields to keep the AMR away from obstacles [17]. However, traditional artificial potential
field methods face challenges such as local minima and excessive deviation in the heading
angle, leading to unrealistic paths [18]. Therefore, many scholars have made improvements
to address the issues of the traditional artificial potential field method [19]. When faced
with local minima situations, Szczepanski et al. [20] predicted the upcoming local minima
points in advance to guide the AMR around them and reach the goal. However, their
approach suffered from abrupt changes in turning angles and non-smooth path planning.
Wau et al. [21] proposed a deterministic annealing-based artificial potential field method to
prevent the AMR from getting trapped in local minima traps. However, their approach
exhibited discontinuous changes in turning angles during path planning. Guo et al. [22]
created guide points around obstacles to provide additional attraction for the AMR to
escape local minimum situations. Hossain et al. [23] used a dynamic window and improved
follow-the-gap method to calculate reasonable deviation angles for the goal points, enabling
the AMR to reach the goal in the presence of dynamic obstacles. However, their approach
suffered from excessive turning angles in path planning. Hu et al. [24] optimized the
planned path using Said-Ball curves, resulting in smooth paths in scenarios with multiple
obstacles. Yang et al. [25] introduced a smoothing switch function and optimized the
repulsive potential field parameters to achieve smoother trajectories for the mobile robot.
Wang et al. [26] combined genetic algorithms with artificial potential fields and introduced
B-spline smoothing to modify the globally planned path, resulting in smoother turning
angles in the trajectory.

To address issues such as local minima and unreasonable paths in path planning, this
paper proposes a local path-planning strategy for mobile robots based on the Subarea-
Artificial Potential Field Model (5-APFM). Firstly, a virtual subgoal utility function is
designed to select the optimal virtual subgoal around obstacles, effectively solving the
problems caused by local minima and the irrational placement of virtual subgoals leading
to path elongation. Secondly, the Subarea-Potential Field Model (5-PFM) is introduced to
smooth the changes in heading angles during obstacle avoidance, resulting in smoother
planned paths.

The organizational structure of this article is as follows: Section 2 introduces the local
path planning strategy for mobile robots based on the Subarea-Artificial Potential Field
Model. Section 3 provides a detailed description of the algorithm simulation and results
analysis. Section 4 covers the experimental results and analysis. Section 5 discusses the
local path planning strategy. Section 6 summarizes this article and presents outlooks for
the future.

2. Local Path Planning Strategy for Mobile Robots Based on the Subarea-Artificial
Potential Field Model

The S-APEM algorithm flow is shown in Figure 1. First, the main influencing obstacles
in front of the AMR were identified based on calculations. Then, the optimal virtual
subgoals (OVS) were obtained using the optimal virtual subgoal model. Finally, when the
AMR reached the range of the subregion potential field of the main influencing obstacle,
the S-PFM was utilized to smoothly navigate around the obstacle and reach the goal point.
The S-APFM algorithm involves two key technical points: constructing the optimal virtual
subgoal model and building the S-PFM.
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Figure 1. S-APFM algorithm flow chart.

2.1. Construction of Optimal Virtual Subgoal Model

During the motion of the AMR, obstacles are avoided and local minima traps are
escaped. Firstly, calculations affect the path into obstacles (APO). Secondly, the pending
virtual subgoals (PVS) are set around the APO [27]. Finally, the optimal virtual subgoal
(OVS) is calculated using the virtual subgoal utility function J, and the AMR is guided to
move towards the OVS to avoid obstacles.

2.1.1. Set Pending Virtual Subgoals Based on Collision Detection

The current investigation introduced collision detection [23,28-31] and set the de-
tection distance d,; and detection angle d7 according to the sensor characteristics of the
AMR [20,28], calculating the APO on the AMR'’s driving path. Meanwhile, to reduce the
risk of collision, an Obstacle Expansion Area (OEA) with a radius of Rog4 was set in the
area around the APO [23,32] (Obstacle Expansion Area, OEA), as shown in Figure 2. The
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calculation of Roga is shown in Equation (1) [22,28,29]. To simplify the schematic diagram,
the AMR is treated as a particle in this article.

Roea = Rops +damr, 1)

where R,y represents the radius of the obstacle and dapr represents the diameter of
the AMR.
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Figure 2. PVS setup diagram.

Secondly, the PVS is selected around the APO for the subsequent screening of the
OVS [27], as shown in Figure 2. L, is the line connecting the AMR and the center of
the obstacle; L, is perpendicular to L;, with the intersection at the center of the obstacle,
intersecting the outer boundary of OEA at points Ppys1 and Ppys2. These two points are the
PVS [28].

2.1.2. Using the Benefit Function to Determine the Optimal Virtual Subgoal

A reasonable virtual subgoal can reduce the path length and energy consumption of
AMR during operation. Therefore, it is crucial to select OVS from the PVS for the subsequent
travel of the AMR. To screen the OVS, this study designed a virtual subgoal benefit function
] based on the distance and angle relationship between the PVS and obstacles. The utility
benefit function ] for the virtual subgoal is shown in Equation (2):

] = eVdist/Vtmgle 0< dAob S ddet/ (2)

where d 4., represents the distance between the AMR and the obstacle. V;; represents the
distance parameter and V¢, represents the angle parameter.

(1) Distance parameter Vg

Considers the presence of obstacles between the APO and the goal point, as shown
in Figure 3. An Obstacle Influence Area (OIA) is introduced outside the OEA due to the
presence of obstacles [33], with a radius of Rpj4. The numerical range of Rpja is 1.85 Ry to
2.85 Ryps- The value of Rpjy affects the size of the obstacle avoidance range of the AMR.
Ly, represents the line connecting the PVS and the goal point, and (P,s, Lyg) represents the
distance from the obstacle to L.
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The formula for calculating the distance parameter V;; is shown in Equations (3) and (4):

Vdist = 1/6V‘7/

V, = kf: i ((Pohs_kr Lpg_i) — ROIA) (
—1i=

= Roea

n=2k=1,2,...m),

®)

)

where n represents the number of pending virtual subgoals and m represents the number
of obstacles between the APO and the goal point. When the value of ((Pyps, Lyg) — Roia) is
smaller, this means that L, is closer to the OIA, the larger the V ;. Therefore, the AMR
needs to perform obstacle avoidance actions to move away from the obstacles in the OIA
region. Hence, a larger V ;;; has a greater impact on the subsequent path of the AMR.

(2)  Angle parameter Vi,

The angle parameter V0, takes into account the angle relationship between the PVS,
obstacles, and the goal point, as shown in Figure 4. 60, represents the tangent angle from
the PVS to OEA, 6, represents the angle from the PVS to the center of the obstacle, and

8pvg represents the angle from the PVS to the line connecting to the goal point.

Figure 4. PVS and obstacle Angle diagram.
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The calculation of Vg is shown in Equation (5):

m n

0 — Oppe i
ZA(pob_kpUgl‘> Bpoh_k>9pvg7i (HZZ;k:l,ZwJYl)

k=1i=1 ‘Gpoe_i - Bpob_k
Vangle - m n vag P — epob X ’ (5)
)3 Z A(;) epob_k < Gpvg_i (1’1 =2%k=12--- m)
k=1i=1 ‘Gpoefi - Gpob_k‘
. . 000 i—0po
where A is added as a constant to avoid extremely small values for V;,¢;,. When %
poe_i —Ypob_k

is smaller, indicating a smaller Vg, this means that Ly, is closer to the line connecting the
center of PVS and the obstacle. This implies that the AMR needs to avoid the obstacle at a
larger angle in the subsequent path. Therefore, a smaller V¢, has a greater impact on the
subsequent path of the AMR.

The virtual subgoal benefit function | varies with Vs and Viangle, a8 shown in Figure 5.
As Vyis increases, V01, decreases and ] increases.

Figure 5. Relationship diagram between ] and Vy;5; and Vg

2.2. Subregion-Potential Field Model

After the selection of the OVS was completed, the AMR still faced the problem of
excessive changes in the heading angle during obstacle avoidance [34], which results in
an unsmooth planned path. The smoothness of the path has a significant impact on the
process of AMR’s obstacle avoidance [35].

To reduce the angle changes and obtain a smoother path for the AMR during obstacle
avoidance, this study introduced the Predicted Potential Field [36], virtual subgoal influence
force, and angle constraints to form a Subarea-Potential Field Model (S-PFM) [30,36,37].
At the same time, a series of circular regions were set around the obstacles, as shown in
Figure 6. Starting from the innermost region and moving outward, these circular regions
were the Obstacle Expansion Area (OEA), the Obstacle Influence Area (OIA), and the
Predicted Potential Field Area (PPFA) [28,33,38]. The Predicted Potential Field exerted its
influence in the PPFA circular region, enabling the anticipation and control of the AMR’s
avoidance angle. The influencing force of the virtual subgoal was applied within the OIA
circular region.



Sensors 2024, 24, 3604

7 of 25

F pre_ang

Figure 6. Predicted potential field diagram.

2.2.1. Predictive Force within the Predicted Potential Field Area (PPFA)

As the AMR is not only influenced by its previous velocity while traveling but is also
affected by the direction of the potential field force, this paper introduced predictive force
to proactively control the avoidance angle of the AMR [36]. At the same time, the predicted
potential field force within the PPFA circular region was decomposed into the velocity

predictive force F pre_v and the angle predictive force F pre_ang, With the two forces being
perpendicular to each other [36,39]. This is shown in Figure 6, where V represents the
current velocity of the AMR, and where Ppys is the optimal virtual subgoal.

The magnitude of the velocity predictive force Fp_» was calculated as shown in

Equation (6), and the magnitude of Fp._, was determined by the angle between the AMR

and PVS: oy 10

—bx +0AMR

—= 27 1), 6
1000 — Ox| ) (6)

where kp._y. represents the velocity prediction force gain coefficient, 6 4y represents the
current velocity direction of the AMR, 6 represents the angle between the AMR and the
line connecting it to the OVS, and 6,, represents the angle between the AMR and the line
connecting it to the center of the obstacle. The direction of the velocity prediction force

F pre_v = kpre_ve eXP(

F pre_v is collinear with the line connecting the AMR and OVS.
The magnitude of the angle predictive force Fpre_ang is calculated as shown in

Equation (7). The magnitude of Fpre_ang is defined by the distance between the AMR
and the PVS. When the AMR approaches the PVS, the current motion angle should be
adjusted to control the direction of obstacle avoidance.

d
Ppre_ang = kpre_ang eXp(ﬁ - 1)/ )

where kpre_ang represents the gain coefficient of the angle predictive force and d 4o represents
the distance between the AMR and the Ppys. The direction of the angle predictive force

F pre_v is perpendicular to the line connecting the AMR and the PVS.
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When the AMR is within the PPFA circular region, in addition to being affected by the
predictive potential field force, it is also subject to the attraction force F 4(goal) of the goal

point [17]. The magnitude of F 4 (goal) is calculated as shown in Equation (8):

Fatt(goal) = kattd(Papmr, Pgoal)z (8)
where ka1 represents the attraction gain coefficient and d(Pamr, Pgonr) represents the distance
between the current position of the AMR and the goal point. The direction of the attraction
force F 4(goal) is from the AMR towards the goal point.

Therefore, when the AMR is within the PPFA, the total force F . 4 acting on it is
given by Equation (9):

Fpre_ull = Fant (goal) + Fpre_tmg + Fpre_v, )

2.2.2. Influence Force of Virtual Subgoals in the Obstacle Influence Area (OIA)
When the AMR travels through the PPFA circular region and enters the OIA circular

region, the force F,, 4 is canceled out, and it is only influenced by the influence force

F 4+ (0vs) generated by the obstacle avoidance potential field of the OVS [17]. This guides
the AMR to avoid obstacles within the OIA, as illustrated in Figure 7.

_/*Goal

Figure 7. OVS influence force diagram.

The magnitude of the influence force F 4 (0vs) acting on the AMR within the OIA is
given by Equation (10), as shown [17]:

Fatt(ovs) = kvs_attdAO/ (10)

where kys a1t represents the improved attraction potentlal Coeff1c1ent
The magnitudes of the two component forces F 4 x(0vs) and F att_y(0vs) of the force

F 4+t (0vs) along the X and Y axes are defined by Equations (11) and (12):

Fart x(0vs) = Fap(0vs) cos(0a4(a0)), (11)
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Fatt_y(0vs) = Fast(0vs) sin(0g¢t(a0)), (12)

where 0,4+(a0) represents the angle between the AMR and the line connecting it to the center
of the obstacle. After the AMR passes the virtual subgoal, since the obstacle no longer
poses a collision threat, the area occupied by this obstacle is removed, and the attraction
force generated by the goal point guides the AMR’s movement.

2.2.3. Angle Constraints

To minimize the turning angle and reduce the angular jitter and abrupt changes in
the AMR’s direction, aiming for a smoother path, the concept of angle constraint was
introduced in this study [30,36,37].

The maximum desired turning angle 6,3, was defined based on the structural char-
acteristics of the AMR itself, and the actual heading angle change A8, was defined by
Equation (13):

Abcom = 9t+1 — 6, (13)
where 6,1 represents the turning angle of the AMR at the next moment and 6; represents
the current angle of the AMR. To decrease the turning angle of the AMR, the turning angle

is limited. The actual turning angle of the AMR at the next moment 6, is defined as shown
in Equation (14):

Bt = { 0111 |ABcom| < Ojge (14)
ac sgn(A@wm)AGide |A9com| > Qide ’

3. Algorithm Simulation and Result Analysis

Considering the impact of energy consumption power P4yr by the AMR during the
entire period T, this paper introduced energy consumption to evaluate the simulation results.
The formula for calculating E4pr energy consumption is shown in Equation (15) [40]:

Eamr = ) Pamr(i)ti (i=1,2,3---n) (15)
i

where t; represents the i moment during the entire period T.

3.1. OVS Selection

In the case of selecting OVS in the PVS, the coordinates of the starting point and goal
point of the AMR were set as (—2, —2) and (12, 12), respectively. The coordinates of the
main obstacles were (3, 3.3), as shown in Figure 8.

T T T

12 O  obstacle
<4  pvsit
10k ¢ pvs2
S—APFM1
S—-APFM2

E 4
>~ -~
e
\ ~—
ol
2 Strat
4+
5 0 5 10 15
x[m]

Figure 8. Influence diagram of different PVS.
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When the AMR selects PVS1 as an OVS, it only needs to avoid obstacle (3, 3.3) during
the driving process. When the AMR selects PVS2 as an OVS, it not only needs to avoid
obstacle (3, 3.3) but also needs to avoid obstacle (8.3,9.9) during the driving process. Addi-
tionally, obstacle avoidance actions are added throughout the entire path, which increases
energy consumption.

The experimental data for selecting PVS1 or PVS2 as OVS is shown in Table 1. Choos-
ing PVS1, with the smaller ] value, results in reductions in algorithm iterations, energy
consumption, and path length compared to choosing PVS2. Therefore, selecting OVS with
a smaller ] value can reduce the impact of obstacles on the subsequent path of the AMR.

Table 1. Comparison of simulation data of different PVS.

Pending Virtual Iteration Energy
Subgoals J Number (N) Consumption (KJ) Path Length (m)
PVS1 7.30 102 10.47 19.80
PVS2 76.60 107 11.10 21.00

3.2. Simulation Tests in Different Environments

In this section, simulation experiments were mainly conducted on three scenarios:
local minima, unreachable goals, and complex environments. The traditional artificial
potential field method (referred to as TAPF), the algorithm in reference [22], the algorithm
in reference [28] (referred to as IM-APF), and the proposed algorithm in this paper (referred
to as S-APFM) were simulated and compared.

3.2.1. Local Minimum

For the scenario of local minima, the starting point of the AMR was set at (2, 2) and
the goal point coordinates were (12, 12). The coordinates of the obstacle were (6.5, 6.5), as
shown in Figure 9. When the AMR moved towards the obstacle using the T-APF algorithm,
it got stuck in front of the obstacle. In the other algorithms, due to the presence of virtual
subgoals, the AMR was able to escape from the local minima and reach the goal point when
it became trapped in a local minimum situation.

O  obstacle

12F | @  dummy goal Goal

T-APF

Figure 9. Local minimum simulation path diagram.

Comparing the angle changes of different algorithms, as shown in Figure 10, the
heading angle variances for IM-APF algorithms was 14.87, respectively, while the heading
angle variance for the S-APFM algorithm was 8.15.
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Figure 10. Local minimum simulation angle change diagram.

Further statistics on the number of iterations, energy consumption, and path lengths
for different algorithms in the scenario of local minima are presented in Table 2. In terms of
the number of iterations, the S-~APFM algorithm showed an improvement of 52.58% and
11.40% in efficiency compared to the IAPF algorithm and IM-APF algorithm, respectively.
This indicates that the S-APFM algorithm has higher computational efficiency. In terms
of energy consumption, the S-APFM algorithm reduced energy consumption by 52.56%
and 11.39% compared to the IAPF algorithm and IM-APF algorithm, respectively. This
demonstrates that the S-APFM algorithm has lower energy consumption during the AMR'’s
movement. As for path length, the simulated path length of the S-SAPFM algorithm was only
slightly different from that of the IM-APF algorithm, but it decreased by 6.16% compared
to the IAPF algorithm.

Table 2. Comparison data of Local minimum simulation.

. . Iteration Energy
Scenarios Algorithm Number (N) Consumption (KJ) Path Length (m)
T-APF - - -
Local mini IAPF 213 22.07 21.10
ocal munimum IM-APF 114 11.82 19.93
S-APFM 101 10.47 19.80

3.2.2. Unreachable Goal

In the scenario of an unreachable goal, the starting point of the AMR was set at
(=2, —2), and the goal point was located at (12, 12), as shown in Figure 11. When the
AMR moved towards the goal point using the T-APF algorithm, it got stuck in front of
the obstacle (13.9, 12) because the repulsive force from the obstacle was greater than the
attractive force from the goal point, preventing it from reaching the goal. On the other
hand, the IAPF algorithm, IM-APF algorithm, and S-APFM algorithm were able to ignore
irrelevant obstacles and reach the goal point.

Comparing the angle changes for different algorithms, as shown in Figure 12, both
the IAPF algorithm and the IM-APF algorithm adjusted their heading angles by more than
20 degrees during obstacle avoidance. In contrast, the S-APFM algorithm kept the heading
angle deviation within 10 degrees while the AMR was moving, indicating that the S-S APFM
algorithm had more optimized path planning.

Further statistics on the number of iterations, energy consumption, and path length
for different algorithms in the scenario of an unreachable goal are presented in Table 3. The
S-APFM algorithm reduced energy consumption by 52.97% and 12.05% and the number of
steps by 52.97% and 12.05%, respectively, compared to the IAPF al-gorithm and IM-APF
algorithm during obstacle avoidance. Additionally, the planned path length of the S-APFM
algorithm was slightly reduced compared to the IAPF al-gorithm and IM-APF algorithm.
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Figure 11. Unreachable goal simulation path diagram.
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Figure 12. Unreachable goal simulation angle change diagram.
Table 3. Comparison data of unreachable goal algorithms.
Scenarios Algorithm Iteration Energy Path Length (m)
& Number (N) Consumption (KJ) &
T-APF - - -
Unreachable IAPF 217 22.48 21.24
goal IM-APF 116 12.02 20.06
S-APFM 102 10.58 20.00

3.2.3. Complex Environments

To validate the feasibility of the S-APFM algorithm in complex environments, this
study created a simulated environment for testing and verification. The starting point of
the AMR was set at (—2, —2), and the endpoint was (12, 12). The obstacles that affected the
path were located at (4, 4.3) and (6.5, 4.4), as shown in Figure 13. In the face of complex
scenarios, the local path planning of the S-APFM algorithm was able to successfully avoid
obstacles and select an appropriate path to reach the goal point. Similarly, the global path
planning of the IAPF algorithm, IM-APF algorithm, and T-APF algorithm were also able to
reach the goal point.
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Figure 13. Complex environment simulation path diagram.

Comparing the angle variations corresponding to different algorithms, as shown in
Figure 14, it can be observed that the T-APF algorithm and IAPF algorithm exhibited signif-
icant angle changes when encountering obstacles. The T-APF algorithm had a maximum
turning angle of 177 degrees, while the IAPF algorithm had a maximum turning angle of
17.53 degrees. Additionally, although the IM-APF algorithm had fewer changes in heading
angle along the travel path, it reached a maximum turning angle of 34.37 degrees, resulting
in an uneven path. In contrast, the S-APFM algorithm, with its zone-based predictive
potential field model, restricted the angle changes to small an-gles (within 10 degrees),
resulting in smoother travel paths. The variance in the head-ing angle changes for the four
algorithms was 211.66, 6.58, 16.38, and 7.12, respectively. From the variance data, it can
be inferred that the S-APFM algorithm had a smaller variance in heading angle changes,
indicating less fluctuation in angle variations.

200 . . . .
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Step
Figure 14. Complex environment simulation angle change diagram.

Further statistics on the iteration times, energy consumption, and path length of
different algorithms in complex environments are presented in Table 4. The S-APFM
algorithm, utilizing the optimal virtual subgoal model and zone-based predictive potential
field model, selects a reasonable path and smoothens the trajectory. Compared to the IAPF
algorithm and IM-APF algorithm, the S-APFM algorithm reduced iteration times by 53.88%
and 14.41% and decreased energy consumption by 53.87% and 14.39%. Simultaneously, it
planned the shortest paths in complex scenarios. This indicates that the S-APFM algorithm
was able to effectively reduce the energy consumption and path length of the robot during
obstacle avoidance, thereby improving the robot’s movement efficiency and autonomy.
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Table 4. Comparison data of complex environment algorithms.

Iteration Energy

Scenarios Algorithm Number (N) Consumption (KJ) Path Length (m)
T-APF 216 22.38 21.40
Complex IAPF 219 22.69 21.41
environment IM-APF 118 12.23 19.99
S-APFM 101 10.47 19.80

In local path planning, when facing complex situations, the S-APFM algorithm used
detection distance to gather information about obstacles ahead and selected relatively
reasonable paths based on predicted potential field forces and angle adjustment strategies,
thereby reducing the number of turns. Additionally, due to the presence of the virtual
subgoal utility function, the robot was able to intelligently avoid obstacles and select shorter
paths. In global path planning, the IAPF algorithm and TAPF algorithm experienced
path curvature and increased path length and energy consumption when faced with
two obstacles at similar distances. Although the IM-APF algorithm was able to obtain
reasonable paths from global information, it tended to result in path deviations near the
virtual subgoal.

4. Experimental Results and Analysis

This article created an AMR task execution environment with multiple obstacles and
conducted physical experiments for three scenarios in Section 4. An environment map
was established for the AMR’s adaptive Monte Carlo localization. The AMR and physical
environment maps are shown in Figure 15 and the physical environment creation map is
shown in Figure 16.

Figure 15. The AMR and physical environment maps.

Figure 16. Physics experiment environmental scan map.
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4.1. Local Minimum Test

The global map for the local minimum scenario is shown in Figure 17. The local
path planning path for the AMR under the S-APFM algorithm is depicted in Figure 18,
while the global path planning paths under the IM-APF algorithm and TAPF algorithm are
shown in Figures 19 and 20, respectively. When facing different types of local minimum
scenarios, both the S-APFM algorithm and the IM-APF algorithm were able to escape the
local minimum traps and successfully reach the destination point. However, the TAPF
algorithm got stuck in front of the obstacle due to its inability to overcome the influence of
local minima.

Figure 19. IM-APF path in local minimum scenario.
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Figure 20. TAPF path in local minimum scenario.

The change in the cornering angle in radians during AMR travel was counted and is
shown in Figure 21. The variance in the turning angle changes for the S-APFM algorithm
and the IM-APF algorithm was 0.0052 and 0.006, respectively. This indicates that the
S-APFM algorithm had smaller turning angle variations and smoother angle changes. The
voltage variation of the battery during this movement was also monitored and is depicted
in Figure 22. The sum of the squared voltage variations for the two algorithms was 0.0385
and 0.040, respectively, indicating that the S-APFM algorithm consumed less battery energy.
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Figure 21. Local minimum angle radian change diagram.
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Figure 22. Under simulation local minimum voltage variation diagram.

The data for the time and length spent by the AMR in the physical experiments are
presented in Table 5. In terms of AMR travel time, the S-APFM algorithm showed a 11.87%
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improvement compared to the IM-APF algorithm, while the path length increased by 0.47%
during actual operation.

Table 5. Comparison of experimental data under local minimum.

Scenarios Algorithm Time (s) Path Length (m) Situation
T-APF - - Failure
Local minima IM-APF 6.23 4.24 Success
S-APFM 5.49 4.22 Success

When faced with local minima situations, the S-APFM algorithm was able to smoothly
escape from local minima points and reach the goal point more quickly.

4.2. Unreachable Goal Test

In Figure 23, the global map of the goal unreachable scenario is presented, where the
goal point is located inside the OIA of an obstacle. The local path planning path under
the S-APFM algorithm is shown in Figure 24, and the global path planning paths under
the IM-APF and TAPF algorithms are shown in Figures 25 and 26. The S-APFM algorithm
and IM-APF algorithm can avoid the goal being unreachable due to the goal point being
inside the OIA of obstacles, while the TAPF algorithm tends to linger around the goal point
because it experiences a repulsive force greater than the attractive force near the goal point.

Figure 23. Unreachable goal scenario map.

Figure 24. S-APFM path at unreachable goal scenario.
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Figure 25. IM-APF path at unreachable goal scenario.

Figure 26. TAPF path at unreachable goal scenario.

The corner changes in radians during path travel were counted, as shown in Figure 27.
The variance in the angular changes for the S-APFM algorithm and the IM-APF algorithm
was 0.005 and 0.0045, respectively. Although the IM-APF algorithm had a smaller variance
in angular changes during obstacle avoidance compared to the S-APFM algorithm, its
planned path exhibited a sudden change in angle, rendering the path non-smooth. Sta-
tistical battery voltage changes during driving are shown in Figure 28. The sum of the
squared battery voltage changes for the S-APFM algorithm, IM-APF algorithm, and TAPF
algorithm was 0.088, 0.095, and 0.118, respectively, indicating that the S-APFM algorithm
consumed less battery energy during the traversal process.

The data for path traversal time and path length in physical experiments with AMR
are presented in Table 6. In terms of AMR travel time, the S-APFM algorithm exhibited a
11.77% improvement compared to the IM-APF algorithm, while the path length increased
by 0.33% during actual travel.

Table 6. Comparison of experimental data under unreachable goal.

Scenarios Algorithm Time (s) Path Length (m) Situation
Unreachable T-APF 21.634 3.460 Failure
goal IM-APF 4.443 3.034 Success

S-APFM 3.920 3.024 Success
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Figure 28. Diagram of voltage variation in Unreachable goal situation.

When faced with the scenario of an unreachable goal, the S-APFM algorithm remained
practical and effective.

4.3. Complex Environments Test

This section focuses on the physical experiments conducted for the simulated sim-
ulation in Section 3.2.3 of this paper. The experimental map is shown in Figure 29. The
local path planning path under the S-APFM algorithm is illustrated in Figure 30, while the
global path planning paths under the IM-APF algorithm and TAPF algorithm are shown
in Figures 31 and 32. When employing the S-APFM algorithm for local path planning in
complex environments, it was still able to select an optimal velocity profile to reach the goal
point, resulting in a smoother path compared to the paths produced by the IM-APF and
TAPF algorithms for obstacle avoidance. Under global path planning, the IM-APF algo-
rithm was capable of reaching the goal point, but the TAPF algorithm generated excessively
large turning angles due to the repulsive forces caused by obstacles and also failed to reach
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the goal point, as the gravitational force gradually diminished as the AMR approached
the goal.

Figure 30. S-APFM path in Complex environments scenario.

Figure 31. IM-APF path in Complex environments scenario.

The corner change in radians during the statistical path traveling is shown in Figure 33.
The S-APFM algorithm was able to limit the angular velocity within a certain range during
traveling, while the IM-APF algorithm and the TAPF algorithm were constrained by the
angular limitation of the robot’s structure, and were not able to avoid obstacles by the
corner radians in the simulation test. For the S-APFM algorithm, IM-APF algorithm, and
the TAPF algorithm, the variance of the corner change of the three algorithms was 0.0056,
0.008, and 0.016, respectively, suggesting that the S-SAPFM algorithm may be better adapted
to generate smoother paths when the robot’s structure has angular constraints.
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Figure 32. TAPF path in Complex environments scenario.
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Figure 33. Diagram of radian changes in complex environmental situations.

The statistics on battery voltage changes during traveling are shown in Figure 34.
When the S-APFM algorithm was driving, due to the reduction in the angle of mutation, the
AMR battery voltage was changed compared to the IM-APF algorithm, and compared to the
TAPF algorithm, the transformation amplitude was decreased. For the S-APFM algorithm,
IM-APF algorithm, and TAPF algorithm, the square sum of the battery voltage change
was 0.054, 0.061, 0.179, respectively, indicating that the S-APFM algorithm maintained low
power energy consumption when facing complex environments.

The results of AMR in physical experiments on path consumption time and path length
data are shown in Table 7. AMR can be based on the value of the benefit function, derived
from the different virtual subgoals in the local area of the path value; a smaller value of the
benefit function indicates that the AMR are moving toward the current virtual subgoals on
a forward path with less obstacle avoidance action, with less energy consumed. Although
the path length in the IM-APF algorithm was 0.71% less than that in the S-APFM algorithm,
it improved 9.23% compared to the IM-APF algorithm in terms of traveling time. In the
complex environment, the S-APFM algorithm performed better in local path planning.
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Table 7. Comparison of experimental data under Complex environment situations.
Scenarios Algorithm Time (s) Path Length (m) Situation
c ) T-APF - - Failure
omplex IM-APF 6.07 4.20 Success
environment S-APFM 5.51 423 Success

5. Discussion

The traditional artificial potential field and its improved versions have certain limi-
tations when dealing with issues such as local minima, unreasonable paths, and sudden
changes in heading angle. In the face of local minima and unreachable goal situations, the
traditional artificial potential field gradually reduces the value of attraction as the AMR
approaches the goal point, causing the AMR to fail to reach the goal point. The improved
artificial potential field utilizes virtual subgoals to reach the goal point, but when turning
towards a virtual subgoal, the AMR tends to have a larger turning angle. Additionally,
due to the turning radius and angle limitations of the Ackermann-type AMR structure,
it cannot suddenly turn at a large angle during travel, which leads to a certain collision
probability and an uneven path. This study aims to propose an efficient local path planning
algorithm for the obstacle avoidance system of AMR during task execution. Simulation
experiments and physical experiments on AMR show that the proposed algorithm can
achieve fast, safe, and reasonable path planning in different scenarios. Compared with
traditional and improved algorithms, the proposed algorithm significantly improves the
driving time, path turning angle, and path rationality. The experimental results show
that the proposed algorithm can generate reasonable paths even in complex environments
and local minima. Compared with the improved artificial potential field, the proposed
algorithm improved the driving time by 9.23%. Moreover, the variance of the heading
angle change during travel was smaller and the path was smoother, enabling the AMR
to reach the destination faster and safer. The path planning algorithm proposed in this
study has significant practical significance for AMR automatic driving systems; it can help
AMR plan the best path quickly and safely, improve driving efficiency, and reduce collision
risks. Additionally, the proposed algorithm can also be applied in fields such as drone
control and logistics management, providing support for the development of intelligent
transportation and logistics systems. Although the local path planning algorithm performs
well in multiple test scenarios, there are still some limitations; for example, the algorithm
may be limited in extremely complex obstacle environments. Future research can explore
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more advanced obstacle avoidance models to address these challenges. In addition, our
algorithm can be further improved to support the avoidance of dynamic obstacles.

6. Conclusions

This paper presented a local path planning method for autonomous AMR under
the predictive potential field to address the issues of traditional artificial potential field
algorithms. This method introduced virtual subgoals to guide the robot to avoid stagnant
waypoints and overcome local minimum problems. To smooth the heading angle change
during obstacle avoidance, a predictive potential field with virtual subgoals was introduced.
Additionally, to address the issue of unreasonable robot paths in local path planning, a
utility function for virtual subgoals was proposed, which considered both obstacle distance
and angle factors. Finally, to ensure that the robot can travel at a faster speed, constraints
on turning angles were added. The feasibility of the algorithm was demonstrated through
simulation experiments and experiments on the ROS platform. This study improved
upon the shortcomings of traditional artificial potential field algorithms and proposed
several key technical innovations: Firstly, the concept of virtual subgoals was introduced to
guide the robot’s actions, solving the problems of unreachable goals and local minimums.
Secondly, by combining the predictive potential field and virtual subgoals, smooth turns
during obstacle avoidance were achieved, improving the effectiveness of path planning.
Furthermore, by introducing a utility function for virtual subgoals and considering factors
such as obstacle distance and angle, the issue of unreasonable robot paths in local path
planning was effectively addressed. Lastly, constraints on turning angles were added to
ensure fast robot travel while maintaining safety. The results of simulation experiments
and experiments on the ROS platform demonstrated the effectiveness and feasibility of
this method in solving the autonomous AMR path planning problem. Future research
directions will be to further optimize the algorithm, improve the efficiency and accuracy of
path planning, and apply the algorithm to a wider range of autonomous AMR fields.
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