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Abstract: Dynamic liquid level monitoring and measurement in oil wells is essential in ensuring
the safe and efficient operation of oil extraction machinery and formulating rational extraction poli-
cies that enhance the productivity of oilfields. This paper presents an intelligent infrasound-based
measurement method for oil wells’ dynamic liquid levels; it is designed to address the challenges
of conventional measurement methods, including high costs, low precision, low robustness and
inadequate real-time performance. Firstly, a novel noise reduction algorithm is introduced to effec-
tively mitigate both periodic and stochastic noise, thereby significantly improving the accuracy of
dynamic liquid level detection. Additionally, leveraging the PyQT framework, a software platform for
real-time dynamic liquid level monitoring is engineered, capable of generating liquid level profiles,
computing the sound velocity and liquid depth and visualizing the monitoring data. To bolster the
data storage and analytical capabilities, the system incorporates an around-the-clock unattended
monitoring approach, utilizing Internet of Things (IoT) technology to facilitate the transmission of
the collected dynamic liquid level data and computed results to the oilfield’s central data repository
via LoRa and 4G communication modules. Field trials on dynamic liquid level monitoring and
measurement in oil wells demonstrate a measurement range of 600 m to 3000 m, with consistent
and reliable results, fulfilling the requirements for oil well dynamic liquid level monitoring and
measurement. This innovative system offers a new perspective and methodology for the computation
and surveillance of dynamic liquid level depths.

Keywords: dynamic liquid level monitoring and measurement; noise reduction algorithm; Internet
of Things; LoRa

1. Introduction

With the advancement of digital oilfield construction, the automatic acquisition and
analysis of oil well dynamic liquid level parameters are crucial tasks that directly impact
the enhancement of oil well production, reductions in extraction energy consumption and
improvements in economic benefits [1,2]. The real-time adjustment of the pumping unit’s
stroke rate based on the depth of the dynamic liquid level can significantly increase the
production efficiency of the oilfield. When the dynamic liquid level depth decreases, it
indicates a sufficient reservoir fluid supply, and increasing the stroke rate of the pumping
unit can enhance the production per unit of time. Conversely, when the dynamic liquid
level depth increases, it suggests the weakening of the reservoir’s fluid supply capacity. In
such cases, reducing the stroke rate of the pumping unit or temporarily halting the machine
can maintain production while simultaneously lowering the energy consumption per unit
of time [3,4]. Therefore, the real-time monitoring and accurate measurement of the oil well
dynamic liquid level depth hold significant importance.
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Over the past two decades, experts have utilized various technologies and methods
to design and develop a range of instruments for the monitoring and measurement of
the dynamic liquid level depth in oil wells. Common methods include the float method,
pressure gauge detection method, fiber optic sensing method, indicator diagram method
and acoustic wave method [5–9]. In 2008, McCoy et al. developed a dynamic liquid
level detection system, based on the acoustic wave method, that collected high-frequency
coupling echoes and low-frequency liquid level echoes through dual channels. However,
the system was unable to perform automatic signal analysis and calculations of the liquid
level depth [10]. In 2013, Liu et al. used the explosive pressure from bullet ammunition as a
means of acoustic wave emission. At the moment of the gunpowder explosion, the emitter
housing releases a high-energy, low-frequency acoustic wave signal for dynamic liquid level
depth measurement over a short period. This method generates acoustic waves with high
energy and distinct echo signals, but the introduction of explosive materials significantly
increases the risk factor [11]. In 2015, Li et al. utilized high-pressure gas injection through
the casing to produce acoustic waves, requiring a certain pressure differential between the
well casing pressure and atmospheric pressure. This method offers low measurement errors
and simple operation, but it is only suitable for high-pressure wells with casing pressures
ranging from 5 Mpa to 25 Mpa [12]. In 2017, Zhang et al. proposed a self-correlation
analysis-based acoustic wave processing method for oil well dynamic liquid levels. This
method is only applicable to shallow wells with multiple liquid level echoes, and it is not
suitable for deep wells with weak acoustic signals [13].

Compared to previous downhole dynamic liquid level monitoring systems, the noise
suppression algorithm that we have developed demonstrates a distinct advantage. Tra-
ditional monitoring methods often lack specialized algorithms to deal with periodic and
random noise. During multiple downhole dynamic liquid level monitoring experiments,
we observed that underground environmental factors, on-site construction processes and
operators’ handling of the equipment could all introduce noise that interferes with the
monitoring results of the liquid level depth. In particular, periodic noise in the downhole
environment, such as the impact sounds produced by the up-and-down movement of the
nodding donkey of the oil extraction machine, as well as random noise like sudden vehicle
noise on-site, could be mistakenly identified as liquid level echo signals, thereby negatively
affecting the monitoring outcomes. To effectively suppress this noise and enhance the
liquid level echo signal, we have taken targeted measures. We have designed algorithms
specifically to deal with periodic and random noise; they can accurately identify and reduce
the noise interference while increasing the amplitude of the liquid level echo signal. With
these advanced noise suppression techniques, we have significantly reduced the error in liq-
uid level depth identification and improved the accuracy and reliability of the monitoring
results. Our algorithm has optimized the performance of the monitoring system, enabling
it to provide high-quality monitoring data even in complex downhole environments.

In practical applications at the Jianghan Oilfield, we conducted measurements of the
dynamic liquid level depth in multiple oil wells and analyzed the measurement errors.
Through targeted noise processing, we successfully controlled the measurement error
within 2%, meeting the accuracy requirements for dynamic liquid level measurement. We
will continue to refine our noise reduction algorithms to further improve the reliability and
accuracy of our measurements.

This paper introduces an innovative intelligent monitoring system for the dynamic
liquid levels in oil wells, designed to address the harsh conditions and complex noise envi-
ronments typical of oilfields. The system features an automated denoising algorithm that
accurately identifies the index value of liquid waves and rapidly calculates the subsurface
acoustic velocity and liquid depth, significantly enhancing the accuracy and efficiency of
the measurements. In terms of system development, it utilizes an electrically controlled
spring piston to generate infrasound excitation, simplifying the structure and enhanc-
ing the safety. The system incorporates cross-platform visualization software based on
the PyQt framework, enabling data analysis and visualization on Windows, Linux, and
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MacOS. Furthermore, the system employs LoRa and 4G communication modules for the
real-time remote transmission of data and uses wireless modules to upload the data to
cloud servers, thereby enhancing the storage capacity and enabling the comprehensive
analysis of data from multiple wells. This improves the system’s interpretive power and
monitoring efficiency, ultimately achieving the goal of automated, unattended monitoring.

The remainder of this work is organized as follows. Section 2 elaborates on the
principles and methods of dynamic liquid level depth monitoring; Section 3 introduces the
system design, including the architecture and noise reduction algorithms; Section 4 presents
the on-site experiments and error analysis; Section 5 summarizes the work, discussing the
system’s principles, practical applications, limitations and future directions.

2. Principles and Methods
2.1. Principle of Oil Well Dynamic Liquid Level Depth Measurement by Acoustic Wave Method

The principle of measuring the dynamic liquid level depth in oil wells using the
acoustic wave method is based on the concept of acoustic ranging. After the acoustic
wave generator at the wellhead produces an acoustic wave signal, the wave propagates
downward along the annular space. Upon encountering a reflection interface formed by
the coupling, a small portion of the wave generates a reflection (coupling wave), which is
received by the wellhead receiver. The majority of the acoustic wave continues to propagate
downward, with its energy gradually dissipating and the signal strength progressively
diminishing. Eventually, a fraction of the wave reaches the liquid level, and the resulting
reflection (liquid level wave) is received by the receiver. This liquid level wave exhibits
significant differences from the wellhead transmission wave and the coupling reflection in
both the time and frequency domains [14–17]. The propagation model of the acoustic wave
in the tubing is illustrated in Figure 1, and the actual acoustic waveform and the positions
of various reflections captured are shown in Figure 2.

Based on the aforementioned process of acoustic wave propagation, the formula for
the calculation of the depth of the liquid level in the well is derived.

H =
vt
2

(1)

where H represents the depth of the liquid level, v denotes the propagation velocity of the
acoustic wave within the well, and t is the time taken for the acoustic wave to reach the
liquid level and for the reflected wave from the liquid surface to be received by the receiver.
It is evident that the calculation of the dynamic liquid level depth primarily depends on
the accurate determination of the propagation time of the liquid surface wave and the
propagation speed of the acoustic wave in the well. The acquisition of time is mainly
achieved through a liquid surface echo recognition algorithm, which will be introduced in
Section 3. The propagation speed of the acoustic wave in the well will be calculated using
the coupling wave from the echo signal.
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Figure 2. Acoustic waveform and positions of various echoes.

2.2. Calculation of Sound Velocity Based on Coupling Waves

The coupling wave is formed by a small portion of the reflected wave generated
when the acoustic wave encounters the reflective interface created by the oil tube coupling.
Assuming that the length of the oil tube is L0, and the travel path difference for the coupling
wave echo is 2L0, with the frequency of the coupling wave obtained through the Fourier
transform being f0, the formula for the calculation of the propagation speed of sound waves
in the oil well is as follows [18–25].

v = 2L0 f0 (2)

The position of the coupling on the oil tube is fixed; hence, it is straightforward to
determine the length of the oil tube at the location of the coupling. There is a standardized
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specification for the oil tubes used in the wellfield, with the couplings measuring 9.8 m in
length. To more conveniently observe and analyze the coupling wave reflections, the data
points of the coupling wave reflections are extracted from Figure 3.
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To mitigate the impact of noise, an appropriate Butterworth bandpass digital filter
can be designed for the signal filtering of the coupling wave. Since the frequency of the
coupling wave is around 15 Hz, a bandpass filter with cutoff frequencies at 10 Hz and
20 Hz is selected. The filtered result is shown in Figure 4.
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Figure 4. Filtered coupling wave.

After the filtering process, it is possible to effectively evaluate the number and fre-
quency of the couplings, thereby reducing the interference of noise. Then, the filtered
signal is subjected to a Fourier transform to obtain the spectrum. As shown in Figure 5,
the dominant frequency of the coupling wave reflection signal can be estimated to be 17.73
Hz. Consequently, the propagation speed of the acoustic wave in the well can be calculated
using Equation (2).
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3. Design and Implementation

The development of monitoring and measurement systems in the industrial sector,
based on Internet of Things (IoT) hardware and software technology, is an important
trend. A large number of heterogeneous devices are interconnected, serving various
engineering technology fields, such as smart energy, smart transportation, smart cities,
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smart agriculture and smart healthcare. To meet the requirements of end-to-end low latency,
high availability and scalability and the capability to process massive amounts of data,
it is necessary to design intelligent terminal software systems at the edge. At the edge,
short-range communications (ranging from 1 m to 50 m) are achieved through LoRa or
Bluetooth, followed by the aggregation function to the oilfield data center, completed
through 4G/5G transmission systems [26–31]. As shown in Figure 6, this monitoring and
measurement system is composed of acquisition devices, network transmission, cloud
services, and software systems. The core module of the intelligent oil well dynamic liquid
level monitoring and measurement system mainly consists of three parts, including the
wellhead excitation and acquisition device, the liquid level echo depth measurement
algorithm and the data visualization software.
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3.1. Wellhead Excitation and Acquisition Device

The circuit of the wellhead excitation and data acquisition device comprises four parts,
including the power supply circuit, the motor control circuit, the signal acquisition circuit
and the data transmission circuit, as shown in Figure 7.

Sensors 2024, 24, x FOR PEER REVIEW 7 of 19 
 

 

 
Figure 7. The overall architecture of the wellhead excitation and data acquisition device. 

The microcontroller unit (MCU) controller is renowned for its high integration, low 
power consumption, programmability, user-friendliness and widespread application. It 
is primarily categorized into several main types, including MCUs based on 8-bit, 16-bit or 
32-bit architectures, digital signal processors (DSPs) specifically designed for control sys-
tems and system-on-chip (SoC) solutions tailored to embedded applications. 

The power supply circuit module is responsible for converting a 24 V DC input into 
a 5 V DC output, which facilitates the powering of various modules and chips, ensuring 
their normal operation. 

The motor control module is operated by the MCU module, which issues control sig-
nals to achieve the forward and reverse rotation of the motor by switching the contacts of 
the relay, thereby completing the compression and release of the spring. 

The signal acquisition module is tasked with gathering data from the sensors, which 
includes monitoring the voltage across different components. This module employs a ded-
icated A/D conversion chip, which leverages high-speed communication protocols for 
data transmission. It is capable of simultaneously acquiring data from three channels. 

The data transmission module serves as the interface for data communication with 
the terminal, which could be a software program on an intelligent device or a remote 
server. The main controller utilizes serial communication protocols to transmit data to the 
terminal. Additionally, the terminal can issue control commands to the main controller 
for system configuration and adjustments. 

3.2. Liquid Level Depth Measurement Algorithm 
Based on engineering experience from oil extraction wells, the depth of the dynamic 

liquid level ranges from 500 to 3000 m, the sound speed in oil extraction wells is between 
320 m/s and 360 m/s and the signal sampling rate is between 250 Hz and 1 kHz [32,33]. 
The single infrasound wave acquisition time for the dynamic liquid level monitoring sys-
tem is 90 s, during which data are collected once every 4 milliseconds, resulting in a total 
of 22,500 data points. The collected signals from point 0 to 22,500 are sequences used to 
identify the subsurface noise signals. Therefore, using parameters such as the depth of the 
dynamic liquid level, sound speed and sampling rate, the 5000 points starting from the 
moment of infrasound wave excitation can be considered as the time sequence for the 
calculation of the depth of the liquid level wave. 

Although it is relatively easy to obtain signals using the acoustic wave method, there 
are more challenges in processing these acoustic signals. Hence, the selection and 

Figure 7. The overall architecture of the wellhead excitation and data acquisition device.

The microcontroller unit (MCU) controller is renowned for its high integration, low
power consumption, programmability, user-friendliness and widespread application. It
is primarily categorized into several main types, including MCUs based on 8-bit, 16-bit
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or 32-bit architectures, digital signal processors (DSPs) specifically designed for control
systems and system-on-chip (SoC) solutions tailored to embedded applications.

The power supply circuit module is responsible for converting a 24 V DC input into
a 5 V DC output, which facilitates the powering of various modules and chips, ensuring
their normal operation.

The motor control module is operated by the MCU module, which issues control
signals to achieve the forward and reverse rotation of the motor by switching the contacts
of the relay, thereby completing the compression and release of the spring.

The signal acquisition module is tasked with gathering data from the sensors, which
includes monitoring the voltage across different components. This module employs a
dedicated A/D conversion chip, which leverages high-speed communication protocols for
data transmission. It is capable of simultaneously acquiring data from three channels.

The data transmission module serves as the interface for data communication with the
terminal, which could be a software program on an intelligent device or a remote server.
The main controller utilizes serial communication protocols to transmit data to the terminal.
Additionally, the terminal can issue control commands to the main controller for system
configuration and adjustments.

3.2. Liquid Level Depth Measurement Algorithm

Based on engineering experience from oil extraction wells, the depth of the dynamic
liquid level ranges from 500 to 3000 m, the sound speed in oil extraction wells is between
320 m/s and 360 m/s and the signal sampling rate is between 250 Hz and 1 kHz [32,33]. The
single infrasound wave acquisition time for the dynamic liquid level monitoring system
is 90 s, during which data are collected once every 4 milliseconds, resulting in a total of
22,500 data points. The collected signals from point 0 to 22,500 are sequences used to
identify the subsurface noise signals. Therefore, using parameters such as the depth of
the dynamic liquid level, sound speed and sampling rate, the 5000 points starting from
the moment of infrasound wave excitation can be considered as the time sequence for the
calculation of the depth of the liquid level wave.

Although it is relatively easy to obtain signals using the acoustic wave method, there
are more challenges in processing these acoustic signals. Hence, the selection and compre-
hensive application of effective digital signal processing methods are particularly crucial.
Due to the complex environment in oil wells, the actual acoustic signals are mixed with
various types of noise, and the useful signals attenuate with increasing depth, leading to a
decrease in the signal-to-noise ratio and preventing the accurate acquisition of dynamic
signals for the liquid level depth.

The echo signals from the subsurface (including wellhead waves, coupling waves and
liquid level waves) contain complex noise signals and exhibit both periodic and random
characteristics. The periodic noise in the subsurface is similar to the liquid level wave
signals in amplitude and frequency, introducing uncertainty in the identification of the
liquid level wave signals [34]. To accurately identify the position of the liquid level wave,
it is necessary to effectively process the noise signals, which is mainly divided into two
aspects. First, the periodic noise signals from the well must be addressed by identifying
the pattern of periodic changes and eliminating it. Then, for the random noise signals, the
superposition and processing of the acoustic signals should be carried out.

3.2.1. Periodic Noise Signal Suppression Algorithms
Periodic Noise Signal Filtering

To eliminate the interference of high-frequency components in the underground
acoustic signals, this algorithm employs a Butterworth bandpass filter to filter the signals.
The underground acoustic signals contain not only liquid level waves but also wellhead
waves, coupling waves and other components, with the wellhead wave frequency ranging
from 40 Hz to 50 Hz, that of coupling waves ranging from 10 Hz to 20 Hz and that of liquid
level waves ranging from 0 Hz to 10 Hz, and the frequency of the periodic underground
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noise also lies within 0 Hz to 10 Hz. Therefore, the chosen bandpass filter has a cutoff
frequency of 0 Hz to 10 Hz. The filtered waveform is shown in Figure 8.
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Identification and Suppression of Periodic Noise Signals

The liquid surface echo signal is within 5000 data points, and the signals within the
first 5000 points contain both valid liquid surface echo signals and periodic noise signals.
These noise signals bear a strong resemblance to the liquid level echo signals in both
frequency and amplitude. To prevent interference from the liquid level echo signal in
the identification of the noise signals, the calculation for the recognition of periodic noise
begins from the tail end of the collected signal.

Drawing from engineering experience, the number of data points between the peaks
of the periodic underground noise signals is between 4000 and 7000. Consequently, starting
from the last point of the acoustic signal (the 22,500th point), 7000 points are extracted in the
forward direction, and the point of the maximum signal amplitude, referred to as Max1, is
identified. Starting from the point of the maximum value, Max1, another 7000 points are ex-
tracted in the forward direction to identify the point with the maximum amplitude, known
as Max2. A threshold α is then set, where α = min(Max1, Max2)/max(Max2, Max1). This
threshold can be adjusted based on the actual conditions of the well. Additionally, con-
sidering the potential variations in the amplitude values of the noise signal peaks, if the
threshold is greater than or equal to 0.85, it is considered that Max1 and Max2 represent the
peak values of the noise signal. The amplitude value of the noise can be set to the average
of Max1 and Max2, as illustrated in Figure 9.

Max = (Max1 + Max2)/2 (3)
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Figure 9. Determination of maximum values for periodic noise signals.

From the beginning of the collected signal time series at point 0 to the end at point
22,500, the amplitude values of the signal are compared with the Max value. To accurately
and effectively identify the amplitude of the peaks, an amplitude deviation value of 150 is
set. Amplitude values that are less than Max − 150 or greater than Max + 150 are set to
0. Additionally, since the signal is sampled at every 4 milliseconds for one point and the
period of the noise is generally over 4000 points, an extreme value is taken every 400 points,
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and so on. All of the extreme values are placed into the sequence MaxList, and the sequence
indices corresponding to these extreme values are stored in the sequence MaxListIndex.
The index values and amplitude values of each extreme point are recorded, as shown in
Figure 10.
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Figure 10. Storing the extreme value points of periodic noise signals.

We traverse the MaxListIndex = [a, b, c, d, e, f, g, h, i, j, k, l] and calculate the differences
in indices between any two points in the MaxListIndex sequence. We record the points
with differences within the range of 4000 to 7000 into the MaxMapping and determine
whether the differences in the MaxMapping are within an error range of 200. We retain the
indices corresponding to differences of less than 200, resulting in the following sequence:

A = [187,6871, 13,379, 20,191];
B = [187, 6651, 13,379, 20,191];
C = [6345, 9848, 13,379, 16,906, 20,432].
Sequences A, B and C are shown in Figures 11–13, respectively. By summing the

indices of the sequences, the sequence with the largest sum is determined to be sequence C
[a, g, h, j, l]. Here, point a represents a noise cycle point before the device is excited and does
not participate in the calculation of the liquid level wave depth. Therefore, only points g, h,
j and l are marked in the original signal (as shown in Figure 14), and the amplitude value
corresponding to point g within the range of 0 to 5000 points is set to 0. This effectively
removes the extreme value of the periodic noise, preventing the noise signal point from
being mistakenly identified as a liquid level wave signal point.
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3.2.2. Random Noise Signal Suppression Algorithms
Random Noise Signal Filtering

In addition to periodic noise, the collected underground acoustic signals also contain
a significant amount of random noise, such as knocking from the wellhead Christmas tree,
ground construction, impacts from the nodding donkey (pole pumping unit) and noise
from passing vehicles. Based on the practical engineering experience of the oil extraction
plant, the frequencies of this random noise mostly lie within the range of 0 Hz to 5 Hz.
To effectively extract the random noise, a Butterworth bandpass filter is applied to the
collected acoustic signals. The chosen cutoff frequencies are set from 0 Hz to 5 Hz, and the
filtering results are shown in Figure 15.

Identification and Suppression of Random Noise Signals

(1) Upon the analysis of the collected acoustic signals, it was observed that random
noise signals exhibit multiple extreme points within a half period. This characteristic
does not align with the features of liquid level echo signals. Therefore, a derivative
operation is performed on the time series to identify these multiple extreme points
within the half period of the collected signal. The amplitude values of the signal at
these points are then set to 0 to eliminate the outliers, as shown in Figure 16.
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(2) After the processing in step (1), there will be waveforms with amplitudes of 0 within
a period, which do not conform to the characteristics of liquid level echo signals.
Therefore, the amplitude values of abnormal waveforms that are not sine waves are
all set to 0, as shown in Figure 17.

(3) For excitation signals and liquid level echo signals, the wavelength of the liquid
level wave in the latter half of the period should be longer than that in the first half.
Consequently, the amplitude values of the sine wave where the wavelength in the
latter half of the period is shorter than that in the first half are set to 0, as illustrated in
Figure 18.

(4) We calculate the sine wave with the greatest peak-to-trough difference within the
signal, which is identified as the liquid level echo signal, as shown in Figure 19.

(5) As shown in Figure 20, the collected signals are first processed to suppress periodic
and random noise and then superimposed three times, resulting in a significant en-
hancement in the amplitude of the liquid level echo signal, while also effectively
suppressing the noise signals. However, as shown in Figure 21, the original signals
without noise suppression are superimposed three times, and the difference in am-
plitude between the liquid level echo and the noise is not distinct, making it difficult
to differentiate between the liquid level echo and the noise signals. This demon-
strates that the noise reduction method effectively suppresses random and periodic
noise signals, thereby effectively improving the recognition effect of the liquid level
echo signal.
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3.3. Visualization Software

In the field, for the real-time monitoring of oil well dynamic liquid levels, first, it
is necessary to ensure that there is no issue with the real-time communication between
the wellhead detection device and the intelligent terminal. Then, by pressing the “Start
Detection” button on the software interface, the measurement of the liquid level depth
commences. The results of the operation are depicted in Figure 22.

Then, as shown in Figure 23, users can utilize the historical data preservation and
viewing functions to query and analyze the historical data of the dynamic liquid level
depth. Additionally, they can also observe the trends of changes in the liquid level depth.
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4. Experimentation and Evaluation

Installation and Operation
The field experiments are conducted at the Jianghan Oilfield. Firstly, the wellhead

detection device is connected to the oil extraction casing using the reserved threaded
interface so as to ensure the connection’s security. The wellhead detection device and
the on-site installation are shown in Figure 24. The data are collected by connecting
the detection device to the intelligent terminal equipment via a serial cable. Then, after
confirming that there are no issues with the electrical connections, the dynamic liquid level
detection software is launched. Some commands are sent through the intelligent terminal
device to check the data upload status. The real-time data transmission interface is depicted
in Figure 25.
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From March to October 2023, measurements were conducted on the oil wells numbered
76-2, 76-7-2, 76-5-8, 76-6-5, 76-4-1, SK8-17, SK8-11 and SH6-P20 at the Jianghan Oilfield.
The measurement results were then compared with the actual liquid level depth values.
Table 1 presents the results of the liquid level echo before noise reduction processing, and
Table 2 presents the results after noise reduction processing. The test results indicate that
the error of the measured values compared to the actual values is less than 1.2%.

Multiple on-site tests have demonstrated that the oil well dynamic liquid level moni-
toring system operates stably, with a wide range of liquid level depths and high precision.
The wellhead detection device is designed with a low cost and features an innovative
infrasound emission method, ensuring a high safety factor. The dynamic liquid level
detection software is comprehensive, integrating algorithms for the noise reduction of
the acoustic signals, the automatic calculation of the sound speed and liquid level depth
and other signal processing functions. It offers features such as automatic data storage,
historical record retrieval and the analysis of liquid level depth trend changes. The oil
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well dynamic liquid level monitoring system is composed of a wellhead detection device
and intelligent detection equipment. The system possesses a complete set of capabilities,
including automatic infrasound excitation, automatic data acquisition and upload, the
high-precision autonomous analysis of acoustic signals and data visualization for dynamic
liquid level monitoring.

Table 1. Calculation results of liquid level echo without noise reduction processing.

Well Number Measured Depth Actual Depth Absolute Error Relative Error

76-2 1240 1340 100 7.46%
76-7-2 676 750 74 9.87%
76-5-8 1233 1545 312 20.19%
76-6-5 1436 1620 184 11.36%
76-4-1 1236 1550 314 20.26%
SK8-17 2075 2240 165 7.34%
SK8-11 2461 2140 321 15.00%

SH6-P20 1922 2430 508 20.91%

Table 2. Calculation results of liquid level echo after noise reduction processing.

Well Number Measured Depth Actual Depth Absolute Error Relative Error

76-2 1343 1340 3 0.22%
76-7-2 754 750 4 0.53%
76-5-8 1537 1545 8 0.51%
76-6-5 1625 1620 5 0.31%
76-4-1 1568 1550 18 1.16%
SK8-17 2246 2240 6 0.27%
SK8-11 2147 2140 7 0.33%

SH6-P20 2438 2430 8 0.33%

5. Conclusions

This paper presents the design of an IoT-based underground dynamic liquid level
monitoring system that leverages a spring-driven excitation and data acquisition device
for the efficient collection of acoustic wave data. The system employs advanced filtering
techniques to distinguish between wellbore and wellsite noise, effectively isolating the
coupling and liquid level waves. By calculating the sound velocity from the coupling wave
frequency and integrating a denoising algorithm to pinpoint the liquid level echo, the
system achieves precise liquid level depth measurement. Our contributions are highlighted
in four key are as.

(1) Innovation in Real-Time Monitoring Algorithms: We have developed a novel noise
reduction algorithm tailored to periodic and random noise in oil well dynamic liquid
level monitoring. This algorithm enhances the liquid surface echo signal ampli-
tude while reducing background noise, significantly improving the echo recogni-
tion accuracy. Compared to traditional methods, our algorithm demonstrates supe-
rior performance in practical settings, offering a cutting-edge solution for oil well
monitoring advancements.

(2) Validation through Comparative Analysis: Our comparative analysis of actual mon-
itoring data indicates that the noise reduction algorithm maintains the monitoring
errors within a strict 2% margin. This not only validates the algorithm’s effectiveness
but also shows its significant advantage over non-noise-reduction monitoring tech-
niques, providing a robust technical approach to the development of dynamic liquid
level monitoring systems.

(3) Addressing Algorithm Limitations: While the noise reduction algorithm performs
exceptionally in most scenarios, we acknowledge its limitations in high-pressure gas
wells and complex underground environments. We are committed to ongoing research
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to enhance the algorithm’s generalization capabilities, aiming to more effectively
differentiate between liquid surface waves and noise, thereby meeting the monitoring
demands of challenging environments.

(4) Integrating Data-Driven Methods: To tackle the uncertainties in dynamic liquid
level depth monitoring, we propose the incorporation of deep learning technology
to bolster the algorithm’s generalization and robustness. Deep learning’s capabil-
ities for feature extraction from large datasets offer powerful data processing for
monitoring algorithms. Additionally, we will explore transfer learning strategies to
address the small sample size issues, expanding the underground dynamic liquid
level data sample library and enhancing the system’s adaptability and reliability in
diverse environments.

Through in-depth research and technological innovation in these areas, we anticipate
significant advancements in the real-time monitoring of oil well dynamic liquid levels,
thereby providing robust technical support for the stable and sustainable development of
the oil and gas industry.
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