
Citation: Liu, X.; Yang, X.; Shao, L.;

Wang, X.; Gao, Q.; Shi, H. GM-DETR:

Research on a Defect Detection

Method Based on Improved DETR.

Sensors 2024, 24, 3610. https://

doi.org/10.3390/s24113610

Academic Editor: Andrea Cataldo

Received: 24 March 2024

Revised: 26 May 2024

Accepted: 27 May 2024

Published: 3 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

GM-DETR: Research on a Defect Detection Method Based on
Improved DETR
Xin Liu 1 , Xudong Yang 1, Lianhe Shao 1,*, Xihan Wang 1, Quanli Gao 1,* and Hongbo Shi 2

1 School of Computer Science, State and Local Joint Engineering Research Center for Advanced
Networking & Intelligent Information Services, Xi’an Polytechnic University, Xi’an 710048, China;
220711015@stu.xpu.edu.cn (X.L.); 20230201@xpu.edu.net (X.Y.); xihan_wang@xpu.edu.cn (X.W.)

2 Shaanxi Province Institute of Water Resources and Electric Power Investigation and Design,
Xi’an 710001, China; shihongbo@slbsxy.com

* Correspondence: shaolianhe@xpu.edu.cn (L.S.); gaoquanli@nwu.edu.cn (Q.G.)

Abstract: Defect detection is an indispensable part of the industrial intelligence process. The intro-
duction of the DETR model marked the successful application of a transformer for defect detection,
achieving true end-to-end detection. However, due to the complexity of defective backgrounds, low
resolutions can lead to a lack of image detail control and slow convergence of the DETR model. To
address these issues, we proposed a defect detection method based on an improved DETR model,
called the GM-DETR. We optimized the DETR model by integrating GAM global attention with CNN
feature extraction and matching features. This optimization process reduces the defect information
diffusion and enhances the global feature interaction, improving the neural network’s performance
and ability to recognize target defects in complex backgrounds. Next, to filter out unnecessary model
parameters, we proposed a layer pruning strategy to optimize the decoding layer, thereby reducing
the model’s parameter count. In addition, to address the issue of poor sensitivity of the original loss
function to small differences in defect targets, we replaced the L1 loss in the original loss function
with MSE loss to accelerate the network’s convergence speed and improve the model’s recognition
accuracy. We conducted experiments on a dataset of road pothole defects to further validate the
effectiveness of the GM-DETR model. The results demonstrate that the improved model exhibits
better performance, with an increase in average precision of 4.9% (mAP@0.5), while reducing the
parameter count by 12.9%.

Keywords: transformer; DETR; GAM; defect detection

1. Introduction

The aim of defect detection [1] is discovering the appearance defects in various in-
dustrial products, agricultural products, and construction roads. It is one of the important
technologies used to ensure product quality and maintain production stability. In recent
years, the development of the manufacturing industry has gradually improved the require-
ments for industrial product quality inspection, while accurate defect detection results not
only ensure that industrial products meet the necessary quality standards but also reduce
the possibility of safety hazards in the use of industrial products. The advancement of
the manufacturing industry has raised the standards for quality inspections of industrial
products. Accurate defect detection not only guarantees product quality but also minimizes
safety risks during product use [2]. However, defect detection is extremely difficult due to
issues with complex background interference, low resolutions, and varying scales of defects.
Currently, deep learning is the most commonly used technique for defect detection, and
several image processing methods have been developed [3]. Traditional defect detection
methods typically rely on handcrafted features tailored to specific types of targets, necessi-
tating the design of numerous parameters for different target types. With the continuous
development of computer technology, deep-learning-based machine vision methods have

Sensors 2024, 24, 3610. https://doi.org/10.3390/s24113610 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24113610
https://doi.org/10.3390/s24113610
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0009-6467-1560
https://orcid.org/0000-0002-7119-8144
https://doi.org/10.3390/s24113610
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24113610?type=check_update&version=2

Sensors 2024, 24, 3610 2 of 24

been increasingly researched and applied. Compared to traditional methods, deep learning
methods can automatically extract effective features from input images without the need
for manually designing complex features. The classical object detection networks include
the SSD [4], Faster R-CNN [5], and YOLO [6] series, among others. These networks have
become mainstream in the field of object detection due to their efficient detection methods.
For example, Li et al. [7] used YOLO to detect rolling steel, achieving detection accuracy
rates of up to 99% and a speed of 83 frames per second (fps). This trend has increased
the application of deep learning algorithms in object detection. However, most defect
detectors often suffer from complex detection pipelines and suboptimal performance due
to their overreliance on handcrafted components such as anchors, rule-based target assign-
ment, and non-maximum suppression (NMS). The recently proposed detection transformer
(DETR) [8] eliminates the need for such handcrafted components and establishes a fully
end-to-end framework for object detection. It uniquely utilizes self-attention instead of
convolution, which overcomes the limitations of convolution methods that restrict the re-
ceptive field size. This often requires multiple layers to attend to the entire feature map [9].
Self-attention, on the other hand, can be used to capture global spatial information for
the feature map through simple queries and assignments. This approach focuses more
on the global characteristics of the targets, improving its ability to detect large defects.
Additionally, the DETR treats the object detection problem as a set prediction problem and
uses bipartite graph matching for label assignment [10]. This approach changes the object
detection process from predicting multiple individual objects to treating all detected objects
as a whole, enhancing the model’s global attention to the targets. In conclusion, the DETR
leverages its unique mechanism to excel in handling global information, showing great
potential to become a new approach for defect detection.

While the DETR has unique advantages, it also suffers from drawbacks such as a
lack of control over the details of defective images [10], slow convergence speeds, and
other issues. During initialization, each query in the transformer assigns almost the same
weight to all positions, requiring the network to undergo a long training period to focus
the self-attention feature on specific regions. To mitigate the consumption caused by the
large-scale feature map input to the decoder, the DETR employs a downsampling strategy.
However, this results in the loss of detailed information, leading to suboptimal performance
in detection tasks. The existing research is focused on improving the feature extraction
and feature fusion processes [11]. Some scholars have enhanced the adaptability of sample
features for various scenarios by introducing adaptive mechanisms or incorporating transfer
learning [12]. Others have adjusted the extracted features by introducing upward or
downward paths and modifying the attention during the fusion process to process more
relevant information.

In contrast, our core idea is to maintain the original framework’s focus on local feature
information without modifying the self-attention mechanism, we introduce additional
GAM attention to assign appropriate weights to small targets. The fused features not
only capture enough local information, but also emphasize detailed information, aiding
in optimizing the model’s performance in detecting target defects. However, while en-
hancing feature fusion, this may lead to an increase in the original network’s parameter
count. Secondly, we have found that the original network’s loss function maps differences
to [0, 1] using the logistic function, which may emphasize subtle differences in samples.
Thus, during training, this may lead to the problem of not fitting to the optimal solution,
thereby affecting the detection and fitting speed of samples with small differences. To
address these issues, our research has three main contributions:

• This paper proposes combining the global attention (GAM) with the self-attention of
the transformer. Integrating global and local information allows the network to more
distinctly distinguish defects from the background. The recalibration of local features
reduces information diffusion and amplifies interactions between global features,
thereby enhancing the neural network's performance and improving defect detection.

Sensors 2024, 24, 3610 3 of 24

• In this paper, to prevent the excessive number of model parameters from increasing
the computational cost, we need to filter out unnecessary model parameters. We
propose a layer pruning strategy to optimize the decoding layer, thus reducing the
number of model parameters.

• This paper addresses the issue of the original loss function’s poor sensitivity to small
differences in targets by replacing it with the MSE loss. Due to its simplicity, the MSE
loss is faster and more sensitive to small differences in targets, allowing for better
differentiation. This change not only improves model accuracy but also enhances
convergence speed.

The rest of the paper is organized as follows. Section 2 summarizes the current related
work; Section 3 introduces the methods used in this paper and the specific improvements
made to the model; in Section 4, we have performed data augmentation to enhance the
model’s robustness, explaining and discussing the experimental results; Section 5 concludes
the research presented in this paper.

2. Related Work

This section discusses two main aspects of defect detection, which are categorized
into traditional defect detection methods and deep learning methods [13]. Conventional
defect detection methods usually use hand-designed characteristics to adapt to specific
types of targets. This approach requires a large number of parameters to be designed
for different target types. Researchers have proposed several methods based on these
structural characteristics, including automated statistical methods, model-based methods,
and frequency domain methods. Statistical methods usually divide images into blocks [14].
The target features are extracted by analyzing the gray value distribution of the target
pixels. Commonly used methods include autocorrelation measures, co-occurrence matrices,
and variance averaging. But these methods have a limitation; they struggle to distinguish
between the blurring of the mean gray level and small targets. Anitha and Radha [15]
used an independent component analysis algorithm to extract the required features and
structural information from the image data. The structural information can be reduced by
phase coherence. This allows the template image to be distinguished from the input image.
However, these methods are not satisfactory for detecting defects in complex images. The
modeling approach treats the structural characteristics of the target defects as a stochastic
process and utilizes statistical information. The main methods include Gaussian Markov
Random Field Models and Gaussian Mixture Models [16]. These methods can detect target
defects, but may cause false negatives or false positives when facing complex backgrounds
and small targets because small defects will merge with the background noise. Statistical
detection of these defects is challenging. Additionally, surfaces defects can be detected
based on their characteristic textures. This detection can be achieved by converting signals
from the time domain to the frequency domain. Commonly used methods for defect
detection include the Fourier transform and the wavelet transform, which suppress certain
waveforms to identify defects. Specifically, defects can be detected through changes in
these waveforms analyzed by these transforms. For example, Zalama et al. [17] proposed
a solution based on instrumented vehicles using the Gabor filter approach to detect road
defects such as longitudinal and transverse cracks. Their method has shown promising
results compared to other methods. However, their high redundancy and computational
cost relative to deep learning algorithms may make it less efficient for detection.

Defect detection algorithms have rapidly developed, resulting in an increase in pro-
posed algorithms as a result of the gradual transition from traditional methods to deep
learning. Detectors used for target detection tasks can be categorized into two main
classes: one-stage and two-stage detectors. The two-stage detection framework uses a
region proposal network (RPN) to generate region proposals, which are then subjected
to region prediction. Common two-stage detectors include R-CNN, Faster R-CNN, and
mask R-CNN [18]. In contrast, the one-stage detection framework integrates candidate
frame extraction, CNN feature learning, and non-maximum suppression (NMS) into a

Sensors 2024, 24, 3610 4 of 24

single process. It outputs the location and classification of the target. Common one-stage
detectors include SSD, YOLO, Retina Net [19], and FCOS [20]. This approach is becoming
mainstream. For example, H Xie et al. [21] proposed an improved fabric defect detection
algorithm based on SSD. They enhanced the traditional network structure by adding an
FCSE module, which improved the network’s detection accuracy and verified the algo-
rithm’s effectiveness. B Hu et al. [22] proposed a deep learning-based image detection
method for PCB defect detection which utilizes Faster R-CNN, an architecture enhanced
with the residual units of ShuffleNetV2. Experimental results indicate that the method is
more suitable for use in production than other PCB defect detection methods. However,
its effectiveness diminishes in complex scenes. Bing Hu et al. [23] utilized a two-stage
industrial defect detection framework with YOLOV5 and Optimized Inception ResnetV2 to
accomplish localization and classification tasks using two specific models. It was verified
that the superiority and adaptability of the two-stage framework reached 91.0% in the
constructed industrial defect environment. But the detection speed could not reach the
actual demand. Xun Cheng et al. [24] proposed a new deep neural network, Retina Net, for
steel surface defect detection. This network has shown better detection results compared to
other networks, but it was only verified for defective targets in a simple dataset. Overall,
both one-stage and two-stage defect detection algorithms have yielded improved detection
results in the industry.

Most of the approaches discussed still rely on many manual components, such as
anchor generation, rule-based training target assignment, and non-maximal suppression
(NMS) post-processing. Therefore, they are not considered end-to-end. In recent years, a
self-attention-based method called DETR has been proposed. Unlike the detectors men-
tioned earlier, this approach utilizes the transformer encoder–decoder architecture to
achieve object detection tasks through full attention connections. This architecture elim-
inates many manual design elements in traditional object detection methods, thereby
making the model more concise and efficient. The DETR method has achieved end-to-end
object detection, thus more effectively emphasizing the holistic and integrated characteris-
tics of the model.

However, while DETR aims for model integration, it lacks control over the details of the
detection targets. This oversight can lead to missed or incorrect detections, particularly in
complex scenarios, thereby compromising the accuracy and stability of the detection results.
To address these issues, Wang [25] and others recently proposed applying a query-based
anchor point design, a technique widely used in CNN-based methods, to DETR. By doing
so, this approach effectively resolves the challenge of accurately detecting multiple targets
within a single region. Dai et al. [11] introduced dynamic attention in both the encoder and
decoder stages of DETR to overcome limitations related to small feature resolution and slow
training convergence. Li et al. [26] introduced a self-attention up-sampling (SAU) module
to effectively capture features of small objects. Deformable DETR [27] proposes fusing the
sparse spatial sampling of deformable convolutions with the transformer’s capability to
model correlations across the entire feature map, reducing training time and enhancing
defect detection efficiency.

3. Methods

In this section, we first review the fundamental architecture of DETR and then intro-
duce the proposed improved GM-DETR framework. We also illustrate how our method
more effectively captures the diversity among defect samples, thereby enhancing detection
efficiency. Finally, we demonstrate its effectiveness on a dataset comprising 3390 real road
pothole defect images.

Sensors 2024, 24, 3610 5 of 24

3.1. The DETR Architecture

DETR is an end-to-end object detector based on the transformer architecture, designed
to simplify the typical object detection pipeline by eliminating several manually designed
components. Additionally, the model further simplifies the detection process by treating
it as a set prediction problem. The model adopts a transformer [28] encoder–decoder
architecture, where the self-attention mechanism explicitly models all pairwise interactions
among elements in the sequence. This detailed modeling enables the system to effectively
address the issue of redundant predictions. Unlike previous detection methods, DETR
employs a dichotomous matching loss function to accurately align predicted results with
real objects. The ordering of predicted objects is fixed, allowing the model to parallelize
its output generation without requiring sequential generation. DETR directly performs
set predictions, which ensures a unique match between predicted and actual bounding
boxes [28]. Once a successful match is achieved, the model calculates loss values for
several attributes of the predicted box, including its score, category, center coordinates, and
dimensions. DETR’s distinctive features include the absence of custom layers, the use of a
dichotomous matching loss function, and the combination of transformers with parallel
decoding. These characteristics make it an efficient and easily replicable object detection
algorithm that can be adapted to other frameworks.

The simplified overall architecture of DETR is illustrated in Figure 1, which includes
three main components: the CNN backbone network diagram, the encoder–decoder struc-
ture, and a simple feed-forward network. In this case, the CNN backbone consists of
multiple convolutional and pooling layers. The CNN backbone is primarily responsible for
two key functions: extracting features from the input image to generate a lower-resolution
feature map and incorporating positional coding to preserve the positional information. In
contrast to the original transformer architecture, the transformer encoder in DETR utilizes
the self-attention mechanism to process a fixed number of learned positional embeddings.
The decoder module simultaneously processes all object queries without masking any, thus
maintaining the contextual relationships across the entire image. This approach allows
the transformer decoder to generate a higher resolution and richer feature representa-
tion. This improves the accuracy of object detection while preserving more details in the
spatial dimension.

Sensors 2024, 24, x FOR PEER REVIEW 5 of 24

3.1. The DETR Architecture

DETR is an end-to-end object detector based on the transformer architecture,

designed to simplify the typical object detection pipeline by eliminating several manually

designed components. Additionally, the model further simplifies the detection process by

treating it as a set prediction problem. The model adopts a transformer [28] encoder–

decoder architecture, where the self-attention mechanism explicitly models all pairwise

interactions among elements in the sequence. This detailed modeling enables the system

to effectively address the issue of redundant predictions. Unlike previous detection

methods, DETR employs a dichotomous matching loss function to accurately align

predicted results with real objects. The ordering of predicted objects is fixed, allowing the

model to parallelize its output generation without requiring sequential generation. DETR

directly performs set predictions, which ensures a unique match between predicted and

actual bounding boxes [28]. Once a successful match is achieved, the model calculates loss

values for several attributes of the predicted box, including its score, category, center

coordinates, and dimensions. DETR’s distinctive features include the absence of custom

layers, the use of a dichotomous matching loss function, and the combination of

transformers with parallel decoding. These characteristics make it an efficient and easily

replicable object detection algorithm that can be adapted to other frameworks.

The simplified overall architecture of DETR is illustrated in Figure 1, which includes

three main components: the CNN backbone network diagram, the encoder–decoder

structure, and a simple feed-forward network. In this case, the CNN backbone consists of

multiple convolutional and pooling layers. The CNN backbone is primarily responsible

for two key functions: extracting features from the input image to generate a lower-

resolution feature map and incorporating positional coding to preserve the positional

information. In contrast to the original transformer architecture, the transformer encoder

in DETR utilizes the self-attention mechanism to process a fixed number of learned

positional embeddings. The decoder module simultaneously processes all object queries

without masking any, thus maintaining the contextual relationships across the entire

image. This approach allows the transformer decoder to generate a higher resolution and

richer feature representation. This improves the accuracy of object detection while

preserving more details in the spatial dimension.

Figure 1. The overall architecture of DETR, where the red boxes are detected targets.

The process involves computing the set prediction loss, utilizing dichotomous graph

matching [29] to determine the optimal match. It consists of the calculation of the

ensemble prediction loss; in the process of loss calculation, the dichotomous graph

matching [29] method is used to determine the optimal matching, which produces the best

bipartite matching between the predicted object and the real object. To find the category

labels and bounding boxes of the optimal prediction, the matching loss based on the

Hungarian algorithm [30] can be described as in Equation (1):

ℒHungarian(y, ŷ) = ∑ [−1 logp̂σ(i)̂
(ci) + 1{ci≠∅} ℓbox(bi, b̂σ̂(i))]

N

i=1

 (1)

Figure 1. The overall architecture of DETR, where the red boxes are detected targets.

The process involves computing the set prediction loss, utilizing dichotomous graph
matching [29] to determine the optimal match. It consists of the calculation of the ensemble
prediction loss; in the process of loss calculation, the dichotomous graph matching [29]
method is used to determine the optimal matching, which produces the best bipartite
matching between the predicted object and the real object. To find the category labels
and bounding boxes of the optimal prediction, the matching loss based on the Hungarian
algorithm [30] can be described as in Equation (1):

Sensors 2024, 24, 3610 6 of 24

LHungarian(y, ŷ) =
N

∑
i=1

[
−1logp̂ ˆσ(i)

(ci) + 1{ci ̸=∅}

Sensors 2024, 24, x FOR PEER REVIEW 5 of 24

3.1. The DETR Architecture
DETR is an end-to-end object detector based on the transformer architecture,

designed to simplify the typical object detection pipeline by eliminating several manually
designed components. Additionally, the model further simplifies the detection process by
treating it as a set prediction problem. The model adopts a transformer [28] encoder–
decoder architecture, where the self-attention mechanism explicitly models all pairwise
interactions among elements in the sequence. This detailed modeling enables the system
to effectively address the issue of redundant predictions. Unlike previous detection
methods, DETR employs a dichotomous matching loss function to accurately align
predicted results with real objects. The ordering of predicted objects is fixed, allowing the
model to parallelize its output generation without requiring sequential generation. DETR
directly performs set predictions, which ensures a unique match between predicted and
actual bounding boxes [28]. Once a successful match is achieved, the model calculates loss
values for several attributes of the predicted box, including its score, category, center
coordinates, and dimensions. DETR’s distinctive features include the absence of custom
layers, the use of a dichotomous matching loss function, and the combination of
transformers with parallel decoding. These characteristics make it an efficient and easily
replicable object detection algorithm that can be adapted to other frameworks.

The simplified overall architecture of DETR is illustrated in Figure 1, which includes
three main components: the CNN backbone network diagram, the encoder–decoder
structure, and a simple feed-forward network. In this case, the CNN backbone consists of
multiple convolutional and pooling layers. The CNN backbone is primarily responsible
for two key functions: extracting features from the input image to generate a lower-
resolution feature map and incorporating positional coding to preserve the positional
information. In contrast to the original transformer architecture, the transformer encoder
in DETR utilizes the self-attention mechanism to process a fixed number of learned
positional embeddings. The decoder module simultaneously processes all object queries
without masking any, thus maintaining the contextual relationships across the entire
image. This approach allows the transformer decoder to generate a higher resolution and
richer feature representation. This improves the accuracy of object detection while
preserving more details in the spatial dimension.

Figure 1. The overall architecture of DETR, where the red boxes are detected targets.

The process involves computing the set prediction loss, utilizing dichotomous graph
matching [29] to determine the optimal match. It consists of the calculation of the
ensemble prediction loss; in the process of loss calculation, the dichotomous graph
matching [29] method is used to determine the optimal matching, which produces the best
bipartite matching between the predicted object and the real object. To find the category
labels and bounding boxes of the optimal prediction, the matching loss based on the
Hungarian algorithm [30] can be described as in Equation (1):

ℒୌ୳୬ୟ୰୧ୟ୬(y, yො) = ቂ−1 log୮ෝಚ(ഠ) (c୧) + 1൛ୡಯ∅ൟ ℓୠ୭୶൫b୧, bෝ(i)൯ቃ
୧ୀଵ (1)box

(
bi, b̂σ̂(i)

)]
(1)

where 1{ci=∅} is a bool function that is 1 at that time and 0 otherwise. ci is the category
label of the ith object, and σ(i) is the index of the bounding box that matches the ith target.
p̂ ˆσ(i)(ci) denotes the probability that the category of the first predicted bounding box of
the σ(i) prediction of the DETR prediction is ci. The second half of the loss is calculated
for the bounding box Lbox

(
bi, b̂σ(i)

)
; the method performs the box prediction directly [30],

which simplifies the process to some extent. However, the L1 loss still scales differently
for small and large bounding boxes, despite having similar relative errors. To address this
problem, the DETR model uses a linear combination of the L1 loss and a generalized iou
loss of Liou

(
bi, b̂σ(i)

)
, which is scale-invariant and defined as shown in Equation (2):

Lbox

(
bi, b̂σ(i)

)
= λiouLiou

(
bσ(i), b̂i,

)
+ λL1

∥∥∥bσ(i) − b̂i

∥∥∥
1

(2)

where λiou,λL1 ∈ R are hyperparameters and these two losses are normalized by the number
of objects in the batch.

3.1.1. Self-Attention

The self-attention mechanism functions as an aggregator, primarily building rela-
tionships within elements by computing the association between each element and all
other elements in the context [31]. Furthermore, this mechanism enables the model to
dynamically focus on various information positions when processing sequential data, un-
constrained by a fixed window. In the DETR model, the image feature representation
at each position is considered as an “element”, with correlations among these elements
being calculated. Elements with higher correlations receive higher attention scores. These
scores are transformed into weighted representations, which generate new representations
for each position, thus aiding the model in decision making [32]. The computation of
self-attention is defined as follows. Given d as the dimension of the embedding, n as the
number of vectors, and X ∈ Rn×d representing the sequence of vectors, Wq, Wk, Wv is
the learned weight matrix and for each position in an input sequence, the Query, Key,
and Value vectors are derived by applying these matrices through a linear transformation,
i.e., Q = XWq, K = XWk, V = XWv, where dk denotes the dimension size of Q, K for
scaling the attention size. The formula for calculating the attention score is provided in
Equation (3):

Attention(Q, K, V) = Softmax

(
Q·KT
√

dk

)
·V (3)

The similarity between two vectors is calculated by the dot product of Q·KT and
divided by

√
dk. Subsequently, this result is converted into a probability distribution using

a softmax operation. Finally, the resulting values are matrix-multiplied with V to obtain
the weighted sum, which represents the output for each position, as shown in Figure 2:

Sensors 2024, 24, 3610 7 of 24
Sensors 2024, 24, x FOR PEER REVIEW 7 of 24

Figure 2. Self-attention mechanism.

Initially, we input three vectors, each of dimension 4, corresponding to the

Q (Query), K (Key), and V (Value). According to the diagram, each vector form has a

dimension of 3. At this point, the weight matrix has a dimension of 4 × 3. We multiply

these three input matrices by respective weight matrices to generate the Q matrix, and

repeat this process by multiplying them by the weight matrices for K and V to obtain the

corresponding K and V matrices. Next, we perform element-wise multiplication between

the Q from input 1 and each K from the inputs, resulting in attention scores. We then

apply a Softmax operation to these scores and update the original score vector. The

softmaxed attention scores are used to multiply each V from the inputs to obtain weighted

values. These values V are subsequently summed to produce output 1, as depicted in the

figure. Finally, attention scores are calculated for inputs 2 and 3, respectively, and they

are processed to obtain the final output 2 and output 3.

3.1.2. Multi-Head Attention

In the self-attention mechanism, an attention head can only focus on specific locations

in the element. Still, a single attention head may not adequately capture the global

dependencies and interactions of internal features in the input sequence. For this reason,

additional heads can be added to the mechanism, each responsible for focusing on

different aspects of the element, a configuration referred to as multi-head attention [33].

By mapping elements to multiple independent attentions, attention weights for each

position in the elements can be calculated in parallel. In this way, different heads can focus

on distinct feature aspects. In DETR, multi-head attention is primarily used in the decoder

phase to facilitate cross-attention between object queries and encoder features. This

facilitates modeling the positions and contextual relationships of the targets more

effectively. Specifically, the computation for multi-head attention heads is expressed as

shown in Equation (4):

MultiHead (Χ) = Concat(head1. . . . , headh)W′ (4)

where h is the number of heads, headi denotes the ith attention head, and W′ is the

learnable weight matrix for projecting the output to the final multi-head attention value

[34]. Each attention head is obtained by performing a self-attention computation on

Q, K, V. The computation formula is defined as in Equation (5):

Figure 2. Self-attention mechanism.

Initially, we input three vectors, each of dimension 4, corresponding to the Q (Query),
K (Key), and V (Value). According to the diagram, each vector form has a dimension of 3.
At this point, the weight matrix has a dimension of 4 × 3. We multiply these three input
matrices by respective weight matrices to generate the Q matrix, and repeat this process by
multiplying them by the weight matrices for K and V to obtain the corresponding K and V
matrices. Next, we perform element-wise multiplication between the Q from input 1 and
each K from the inputs, resulting in attention scores. We then apply a Softmax operation
to these scores and update the original score vector. The softmaxed attention scores are
used to multiply each V from the inputs to obtain weighted values. These values V are
subsequently summed to produce output 1, as depicted in the figure. Finally, attention
scores are calculated for inputs 2 and 3, respectively, and they are processed to obtain the
final output 2 and output 3.

3.1.2. Multi-Head Attention

In the self-attention mechanism, an attention head can only focus on specific loca-
tions in the element. Still, a single attention head may not adequately capture the global
dependencies and interactions of internal features in the input sequence. For this reason,
additional heads can be added to the mechanism, each responsible for focusing on different
aspects of the element, a configuration referred to as multi-head attention [33]. By mapping
elements to multiple independent attentions, attention weights for each position in the
elements can be calculated in parallel. In this way, different heads can focus on distinct
feature aspects. In DETR, multi-head attention is primarily used in the decoder phase to
facilitate cross-attention between object queries and encoder features. This facilitates mod-
eling the positions and contextual relationships of the targets more effectively. Specifically,
the computation for multi-head attention heads is expressed as shown in Equation (4):

MultiHead(X) = Concat(head1 . . . , headh)W
′ (4)

where h is the number of heads, headi denotes the ith attention head, and W′ is the learnable
weight matrix for projecting the output to the final multi-head attention value [34]. Each

Sensors 2024, 24, 3610 8 of 24

attention head is obtained by performing a self-attention computation on Q, K, V. The
computation formula is defined as in Equation (5):

headi = Attention(XQi, XKi, XVi) i = 1, . . . h (5)

3.2. Improving the DETR Algorithm

To better adapt to the variability among defect samples, this paper modifies the model
structure to focus on local features in the image that are relevant to defects. This enhance-
ment is intended to improve detection accuracy under the limitations posed by variations.
Furthermore, to further improve detection precision, this study explores additional meth-
ods, including the application of anchor point designs, commonly used in CNNs to the
DETR model. In defect detection, attention mechanisms are often used to enhance the
model to better focus on the differences between the regions of interest and the background,
improving the accuracy of object detection. After evaluating various attention mechanisms,
this study selected the Global Attention Mechanism (GAM), which spans spatial channel
dimensions, due to integration into the original DETR model. Integrating self-attention
into the transformer along with global GAM attention enhances the modeling of spatial
relationships between targets, facilitates consideration of global context information, and
allows adaptation to various target sizes and quantities. However, these operations can
increase the computational complexity of the model, leading to longer detection time and
increased Frames Per Second (FPS) values. To address this issue, we propose a trade-off
strategy: the layer pruning strategy, which aims to filter out unnecessary model parameters.
This reduces the model’s complexity and eases training difficulty. Based on this, the above
improvement may have the issue of slow convergence of the model during training. We
apply the improved loss function to enhance the detection accuracy of the model further,
and the specific improved model diagram is shown in Figure 3.

Sensors 2024, 24, x FOR PEER REVIEW 8 of 24

headi = Attention(ΧQi, ΧKi, ΧVi) i = 1, h (5)

3.2. Improving the DETR Algorithm

To better adapt to the variability among defect samples, this paper modifies the

model structure to focus on local features in the image that are relevant to defects. This

enhancement is intended to improve detection accuracy under the limitations posed by

variations. Furthermore, to further improve detection precision, this study explores

additional methods, including the application of anchor point designs, commonly used in

CNNs to the DETR model. In defect detection, attention mechanisms are often used to

enhance the model to better focus on the differences between the regions of interest and

the background, improving the accuracy of object detection. After evaluating various

attention mechanisms, this study selected the Global Attention Mechanism (GAM), which

spans spatial channel dimensions, due to integration into the original DETR model.

Integrating self-attention into the transformer along with global GAM attention enhances

the modeling of spatial relationships between targets, facilitates consideration of global

context information, and allows adaptation to various target sizes and quantities.

However, these operations can increase the computational complexity of the model,

leading to longer detection time and increased Frames Per Second (FPS) values. To

address this issue, we propose a trade-off strategy: the layer pruning strategy, which aims

to filter out unnecessary model parameters. This reduces the model’s complexity and

eases training difficulty. Based on this, the above improvement may have the issue of slow

convergence of the model during training. We apply the improved loss function to

enhance the detection accuracy of the model further, and the specific improved model

diagram is shown in Figure 3.

Figure 3. Structure of the GM-DETR model.

3.2.1. Attention Optimization

In DETR, the input image is first fed into the ResNet50 network of CNN for feature

extraction to obtain the feature layer. Simultaneously, the network encodes the position

of the feature layer obtained here to gain more information about the position of the

defects. These two feature layers are fused and spliced together and the fused feature layer

is input into a coding network. This network utilizes a transformer structure for encoding

and decoding the features and uses a self-attention mechanism to model the input

sequences within the encoder. However, since the self-attention mechanism focuses on

local feature information [35], it faces the problem of information loss and blurring when

processing long sequences. This often results in insufficient contextual information for

Figure 3. Structure of the GM-DETR model.

3.2.1. Attention Optimization

In DETR, the input image is first fed into the ResNet50 network of CNN for feature
extraction to obtain the feature layer. Simultaneously, the network encodes the position of
the feature layer obtained here to gain more information about the position of the defects.
These two feature layers are fused and spliced together and the fused feature layer is input
into a coding network. This network utilizes a transformer structure for encoding and
decoding the features and uses a self-attention mechanism to model the input sequences

Sensors 2024, 24, 3610 9 of 24

within the encoder. However, since the self-attention mechanism focuses on local feature
information [35], it faces the problem of information loss and blurring when processing
long sequences. This often results in insufficient contextual information for some targets,
thus creating a situation where the control of image details is missing. At the same time,
the design of self-attentive allows each position in the decoder to attend to every other
position in the input sequence. However, smaller targets within complex contexts may be
relatively sparse in the image and interact less with other objects, making it difficult for the
model to accurately capture the features of these targets. Additionally, this model utilizes
object query vectors to match the encoder features, which facilitates the retrieval of the
location and category information for the target [35]. Nevertheless, the number of object
query vectors is typically fixed and limited relative to the length of the input sequence.
This means that smaller object queries may not receive sufficient attention in self-attention,
making them difficult to detect.

Attention mechanisms are implemented by adding different modules to the network
and play a crucial role in deep learning. They enable neural networks to selectively focus
on different parts of the input data, thus improving the model’s ability to capture essential
information. In deep learning, specific types of attention modules, such as self-attention
mechanisms and Global Attention Modules (GAMs) [36], are extensively employed in
various tasks, including natural language processing, computer vision, and speech recog-
nition. The primary goal of incorporating these attention mechanisms is to enhance the
adaptability of models, enabling them to flexibly adjust their focus on input information
flexibly across different contexts.

To address the issues mentioned, we propose fusing attention modules to enhance
the capture of global and local contextual information in sequence data processing. This
design aims to enhance the network’s ability to represent objects across different scales.
With the introduction of the Global Contextual Attention module, our goal is to provide
the model with robust global sensing capabilities, enabling more efficient capture of global
correlational information [35]. Traditional neural network models often face limitations
from local information when processing sequential data. The introduction of GAM aims
to improve the model’s ability to recognize small targets by learning the importance of
different positions in the input sequence. GAM attention calculates attention weights for
each input element and considers the relationships among all elements. It can capture more
prominent dimensional features and enhancing the model’s capacity to recognize small
targets [36].

In the network, we embedded the attention module after the backbone extraction
network and the location information encoding module. This configuration is designed to
enhance the extraction of feature information before the self-coding process and to improve
the network’s fitting ability, as shown in Figure 4.

Specifically, traditional channel attention typically employs Global Average Pooling
(GAP) to calculate each channel weight, but the features derived from GAP lack feature
diversity, which hinders capture of detailed input feature information in images. In contrast,
the channel attention in this paper is shown in Figure 5. It preserves the three-dimensional
information through a technique called 3D substitution and amplifies the cross-dimensional
channel-space dependencies using a two-layer Multilayer Perceptron (MLP) to capture
the rich input feature information. The corresponding computational formula is shown in
Equation (6). Notably, the channel attention mechanism can lead to some loss of positional
information in the image. For this reason, the spatial attention mechanism is introduced,
with its computation detailed in Equation (7).

Sensors 2024, 24, 3610 10 of 24
Sensors 2024, 24, x FOR PEER REVIEW 10 of 24

Figure 4. Improved network architecture.

Specifically, traditional channel attention typically employs Global Average Pooling

(GAP) to calculate each channel weight, but the features derived from GAP lack feature

diversity, which hinders capture of detailed input feature information in images. In

contrast, the channel attention in this paper is shown in Figure 5. It preserves the three-

dimensional information through a technique called 3D substitution and amplifies the

cross-dimensional channel-space dependencies using a two-layer Multilayer Perceptron

(MLP) to capture the rich input feature information. The corresponding computational

formula is shown in Equation (6). Notably, the channel attention mechanism can lead to

some loss of positional information in the image. For this reason, the spatial attention

mechanism is introduced, with its computation detailed in Equation (7).

F2 = Mc(F1) × F1 (6)

F3 = Ms(F2) × F2 (7)

where Mc and Ms denote the channel attention mechanism and spatial attention

mechanism, respectively. The structure of the GAM module includes feature map input

and attention map output. During the embedding process, we first use the convolutional

layer to extract features from the input image to obtain the feature map, where each

location corresponds to a specific region in the image. The feature map is inputted to the

GAM module, and the feature map is transformed into a global feature vector using global

pooling operation [36]. Subsequently, the multilayer perceptual machine (MLP) processes

these global feature vectors to generate an attention map, which matches the size of the

original feature map. The attention map indicates the relative importance of each location,

and the feature map is multiplied with the attention map to obtain a weighted feature

map through the global attention mechanism. More important regions receive higher

weights, while less important regions will be assigned lower weights. This process aims

to strengthen the representation of significant regions, focusing the model more

effectively on key regions.

The GAM attention mechanism is an enhancement of the CBAM [37], which also uses

spatial attention and channel attention, but does so with different adjustments. GAM

sequentially captures global correlation information through a continuous attention-

enhancing network, integrating both CAM [38] and SAM [39]. The schematic diagram is

Figure 4. Improved network architecture.

F2 = Mc(F1)× F1 (6)

F3 = Ms(F2)× F2 (7)

where Mc and Ms denote the channel attention mechanism and spatial attention mechanism,
respectively. The structure of the GAM module includes feature map input and attention
map output. During the embedding process, we first use the convolutional layer to extract
features from the input image to obtain the feature map, where each location corresponds
to a specific region in the image. The feature map is inputted to the GAM module, and the
feature map is transformed into a global feature vector using global pooling operation [36].
Subsequently, the multilayer perceptual machine (MLP) processes these global feature
vectors to generate an attention map, which matches the size of the original feature map.
The attention map indicates the relative importance of each location, and the feature map
is multiplied with the attention map to obtain a weighted feature map through the global
attention mechanism. More important regions receive higher weights, while less important
regions will be assigned lower weights. This process aims to strengthen the representation
of significant regions, focusing the model more effectively on key regions.

The GAM attention mechanism is an enhancement of the CBAM [37], which also
uses spatial attention and channel attention, but does so with different adjustments.
GAM sequentially captures global correlation information through a continuous attention-
enhancing network, integrating both CAM [38] and SAM [39]. The schematic diagram is
shown in Figure 5. Initially, the input feature maps undergo a dimension conversion, and
the converted feature maps are input to the MLP and then converted to the original dimen-
sions. The output is processed by Sigmoid processing. In the case of SAM [39], the number
of channels is initially reduced and then increased. The number of channels is reduced
by convolution with a 7 × 7 kernel to decrease the computational effort. Following this, a
subsequent convolution operation with a 7 × 7 kernel increases the channels’ consistency
back to their original count to maintain consistency. Finally, the process goes through a
Sigmoid output.

Sensors 2024, 24, 3610 11 of 24

Sensors 2024, 24, x FOR PEER REVIEW 11 of 24

shown in Figure 5. Initially, the input feature maps undergo a dimension conversion, and

the converted feature maps are input to the MLP and then converted to the original

dimensions. The output is processed by Sigmoid processing. In the case of SAM [39], the

number of channels is initially reduced and then increased. The number of channels is

reduced by convolution with a 7 × 7 kernel to decrease the computational effort.

Following this, a subsequent convolution operation with a 7 × 7 kernel increases the

channels’ consistency back to their original count to maintain consistency. Finally, the

process goes through a Sigmoid output.

In the DETR model, each target interacts with the whole image during the encoding

stage, and each target can utilize the information from the entire image to assist in defect

detection. This interaction can establish a link between the target and other regions in the

image to better model the correlation between the targets. Even when there is occlusion

or interdependence among targets, the GAM is not only enough to guide the model to

focus on target-to-target correlations through the global attention mechanism, but also

reduces information diffusion and amplifies global interactions to increase the

performance of neural networks.

Figure 5. GAM attention mechanism.

Following the integration of the GAM attention mechanism, the network pays more

attention to the defect information to be detected. This enhancement significantly

improves the extraction of location information and allows the network to detect road

defects more accurately. The model dynamically adjusts the attention weights based on

the size and position of the targets, enhancing its capability to pinpoint defects across

various scales. Moreover, GAM attention can reduce the interference of background

information on defect detection, enabling the network to perform more precise detection.

3.2.2. Optimization of Transformer Structure

To maintain computational efficiency while introducing the Global Attention

Mechanism (GAM), we propose a layer-pruning strategy. Traditional DETR models

utilize many self-attentive layers in both the encoder and decoder to process the input

sequence and generate target bounding boxes [8]. While the encoding layer extracts

features from the input image, the decoding layer transforms these features into object

Figure 5. GAM attention mechanism.

In the DETR model, each target interacts with the whole image during the encoding
stage, and each target can utilize the information from the entire image to assist in defect
detection. This interaction can establish a link between the target and other regions in the
image to better model the correlation between the targets. Even when there is occlusion
or interdependence among targets, the GAM is not only enough to guide the model to
focus on target-to-target correlations through the global attention mechanism, but also
reduces information diffusion and amplifies global interactions to increase the performance
of neural networks.

Following the integration of the GAM attention mechanism, the network pays more
attention to the defect information to be detected. This enhancement significantly improves
the extraction of location information and allows the network to detect road defects more
accurately. The model dynamically adjusts the attention weights based on the size and
position of the targets, enhancing its capability to pinpoint defects across various scales.
Moreover, GAM attention can reduce the interference of background information on defect
detection, enabling the network to perform more precise detection.

3.2.2. Optimization of Transformer Structure

To maintain computational efficiency while introducing the Global Attention Mecha-
nism (GAM), we propose a layer-pruning strategy. Traditional DETR models utilize many
self-attentive layers in both the encoder and decoder to process the input sequence and
generate target bounding boxes [8]. While the encoding layer extracts features from the
input image, the decoding layer transforms these features into object detection results.
However, this multi-layered structure contributes to a large number of parameters and
extensive computational demands, which negatively impact the model’s efficiency. We
found through analysis that pruning the decoding layers not only simplifies the model’s
structure but also decreases computational complexity. This is because the decoder layers
contain redundant parameters compared to the encoder layers. To be specific, we retained
the core layer in the model—the coding layer. This layer converts the input image into a
series of feature vectors, and uses these feature vectors as input to the decoder [8]. Subse-
quently, after carefully analyzing the coding and decoding structures alongside the feature
maps, we selected the most representative and information-dense coding layer for retention.
This layer not only effectively extracts a series of feature vectors from the input image but
also eliminates redundant information and reduces dimensionality using Global Average

Sensors 2024, 24, 3610 12 of 24

Pooling. Simultaneously, we prune the number of decoding layers, which reduces the
model’s complexity and the risk of overfitting. When there is less training data or more
data noise, it is important to ensure that the model can maintain good performance while
reducing the number of layers.

At the same time, pruning the decoding layers not only simplifies the model structure
but also reduces its computational complexity. We will also verify the impact of pruning
these layers on the performance of the model through experiments and evaluations. Pre-
liminary results prove that the layer-pruning strategy effectively balances computational
efficiency with performance. This strategy reduces the computational complexity while
still maintaining a higher accuracy of target detection. This approach provides a highly
efficient and accurate solution in the case of limited computational resources.

3.2.3. Optimization of the Loss Function

In this paper, the L1 loss [40] function previously used in the DETR model is replaced
with the MSE loss function. DETR uses the L1 loss function to measure the difference
between the predicted bounding box coordinate values and the true labeled bounding box
coordinate values. Although the L1 loss function effectively measures the difference be-
tween the predicted and true values [40], it is susceptible to outliers because it calculates the
sum of the absolute differences, as detailed in Equation (8), where f(xi) and yi, respectively,
represent the predicted value of the ith sample and the corresponding true value, and n is
the number of samples; the curve distribution is shown in Figure 6. From the figure, it can
be seen that the loss function is relatively sharp and not smooth, and it cannot be derived
at zero, as the derivative of L1 is constant, so the smaller the value of the loss, the the larger
the obtained gradient, which may result in the model’s oscillations being not conducive to
convergence. Furthermore, we found that the L1 loss function maps the differences within
the range [0, 1] through a logistic function. This approach tends to overemphasize samples
with small differences. Therefore, it may lead to the problem of fitting less than the optimal
solution during the training process, which in turn affects the detection and fitting speed
for the samples with smaller differences.

L1 =
∑n

i=1|f(xi)− yi|
n

(8)
Sensors 2024, 24, x FOR PEER REVIEW 13 of 24

Figure 6. Schematic of the L1 loss function.

To address the above problem, we found that the MSE [41] is more sensitive to

samples with smaller differences, allowing its ability to differentiate between them. This

is because the MSE assigns larger gradient values to samples with smaller differences

during gradient computation. Consequently, the model pays more attention to these

samples during training and adjusts its parameters more quickly to minimize prediction

errors. The specific formula of MSE is shown in Equation (9), where f(xi) and yi denote

the predicted value and the corresponding true value of the ith sample, respectively, and

n is the number of samples; the distribution of the curves is shown in Figure 7. We found

that the function curves are continuous and can be guided everywhere. Notably, the

gradient decreases as the value of error decreases, promoting convergence to the

minimum value.

MSE =
∑ (f(xi) − yi)

2n
i=1

n
 (9)

To assess the effectiveness of the MSE loss function in target detection, we

implemented the MSE loss function to replace the original L1 loss function in the DETR

model. Concretely, we use the MSE loss function to measure the difference between the

predicted bounding box coordinate values and actual bounding box during the training

process [41]. Between the predicted and true values of each bounding box, the sum of the

squares of the differences of the individual coordinates is calculated and then averaged

over all dimensions. This approach not only increases sensitivity to smaller samples but

also reduces the impact of outliers on model performance. Therefore, in regression tasks,

the MSE loss pays more attention to larger errors during training and penalizes them

more, which makes the model more inclined to reduce these large errors. Moreover, the

MSE loss is computationally efficient, which further accelerates the model’s convergence

speed.

Figure 6. Schematic of the L1 loss function.

To address the above problem, we found that the MSE [41] is more sensitive to samples
with smaller differences, allowing its ability to differentiate between them. This is because

Sensors 2024, 24, 3610 13 of 24

the MSE assigns larger gradient values to samples with smaller differences during gradient
computation. Consequently, the model pays more attention to these samples during
training and adjusts its parameters more quickly to minimize prediction errors. The specific
formula of MSE is shown in Equation (9), where f(xi) and yi denote the predicted value
and the corresponding true value of the ith sample, respectively, and n is the number of
samples; the distribution of the curves is shown in Figure 7. We found that the function
curves are continuous and can be guided everywhere. Notably, the gradient decreases as
the value of error decreases, promoting convergence to the minimum value.

MSE =
∑n

i=1(f(xi)− yi)
2

n
(9)

Sensors 2024, 24, x FOR PEER REVIEW 14 of 24

Figure 7. Schematic of the MSE loss function.

We validate the DETR model using the MSE loss function on the pothole dataset and

compared its performance with the traditional DETR model and other target detectors.

The experimental results indicate that the DETR model using the MSE loss function

achieves superior performance in target detection.

4. Experimental Results and Analysis

To verify the method’s effectiveness, we built an experimental platform using

Windows 11.0 as the operating system and PyTorch 1.11.0 as the deep learning

framework. We used DETR as the baseline network; Table 1 shows the experimental

environment configuration.

Table 1. Experimental environment.

Environmental Parameters Value

Operating system Windows11.0

Deep Learning Framework PyTorch1.11.0

Programming language Python3.10

CPU Intel(R) Core(TM) i5-11400F

GPU GTX 1660 Ti

RAM 16 GB

We applied the same hyperparameters throughout the experimental training

process, and Table 2 shows our parameter settings.

Table 2. Experimental parameters.

Hyper Parameterization Value

Learning Rate 0.01

Image Size 720 × 720

Momentum 0.9

Optimizer Type Adamw

Weight Decay 0.001

Batch Size 8

Epoch 300

Figure 7. Schematic of the MSE loss function.

To assess the effectiveness of the MSE loss function in target detection, we implemented
the MSE loss function to replace the original L1 loss function in the DETR model. Concretely,
we use the MSE loss function to measure the difference between the predicted bounding box
coordinate values and actual bounding box during the training process [41]. Between the
predicted and true values of each bounding box, the sum of the squares of the differences
of the individual coordinates is calculated and then averaged over all dimensions. This
approach not only increases sensitivity to smaller samples but also reduces the impact of
outliers on model performance. Therefore, in regression tasks, the MSE loss pays more
attention to larger errors during training and penalizes them more, which makes the model
more inclined to reduce these large errors. Moreover, the MSE loss is computationally
efficient, which further accelerates the model’s convergence speed.

We validate the DETR model using the MSE loss function on the pothole dataset and
compared its performance with the traditional DETR model and other target detectors. The
experimental results indicate that the DETR model using the MSE loss function achieves
superior performance in target detection.

4. Experimental Results and Analysis

To verify the method’s effectiveness, we built an experimental platform using Windows
11.0 as the operating system and PyTorch 1.11.0 as the deep learning framework. We used
DETR as the baseline network; Table 1 shows the experimental environment configuration.

Sensors 2024, 24, 3610 14 of 24

Table 1. Experimental environment.

Environmental Parameters Value

Operating system Windows11.0
Deep Learning Framework PyTorch1.11.0

Programming language Python3.10
CPU Intel(R) Core(TM) i5-11400F
GPU GTX 1660 Ti
RAM 16 GB

We applied the same hyperparameters throughout the experimental training process,
and Table 2 shows our parameter settings.

Table 2. Experimental parameters.

Hyper Parameterization Value

Learning Rate 0.01
Image Size 720 × 720
Momentum 0.9

Optimizer Type Adamw
Weight Decay 0.001

Batch Size 8
Epoch 300

4.1. Datasets and Evaluation Indicators

In this study, we use a pothole dataset (Annotated Potholes Image Dataset) from a
database managed by Kaggle to confirm our method’s efficacy, consisting of 665 images
of real road potholes, each with a resolution of 720 × 720 pixels. Object classification was
performed by a panel of experts by determining whether the pothole under study was
present in the image and determining its location in the corresponding image. Since the
small amount of data in this dataset causes the model to be overfitted, it is necessary to
expand the dataset to improve the generalization ability and performance of the model.
To provide an objective assessment of the performance of the defect detection model, after
analyzing and processing, we performed data enhancement, which includes mirroring,
inverting, increasing brightness, and adding noise to the original image, as shown in
Figure 8. Using the method, we have expanded the dataset further. It currently comprises
3990 images that describe the detection targets of this study. The images are divided into
the training set, validation set, and test set in the ratio of 8:1:1. We tested our method
on these datasets. The primary evaluation metric, Frames Per Second (FPS), measures
the detection speed of the model, indicating how many frames the system can process
per second. Additionally, the size of the weight file created during the training of the
neural network model is indirectly indicated by #Params (MB), which reflects the model’s
complexity and resource demands. The performance of the target detector was evaluated
by using four metrics (i.e., precision, recall, F1-score, and mAP).

Precision is defined as the proportion of true positive predictions out of all positive
category predictions made by the model. Recall is the proportion of samples correctly
predicted by the model to be in the positive category out of all samples that are actually
in the positive category. Precision is the proportion of positive instances predicted by the
model that is actually in the positive category. Mean Average Precision (mAP) is used to
evaluate the model’s accuracy and is computed using the formula below. F1-score is the
weighted average of Precision and Recall. These metrics collectively assess the performance
and stability of the model.

Sensors 2024, 24, 3610 15 of 24

Sensors 2024, 24, x FOR PEER REVIEW 15 of 24

4.1. Datasets and Evaluation Indicators

In this study, we use a pothole dataset (Annotated Potholes Image Dataset) from a

database managed by Kaggle to confirm our method’s efficacy, consisting of 665 images

of real road potholes, each with a resolution of 720 × 720 pixels. Object classification was

performed by a panel of experts by determining whether the pothole under study was

present in the image and determining its location in the corresponding image. Since the

small amount of data in this dataset causes the model to be overfitted, it is necessary to

expand the dataset to improve the generalization ability and performance of the model.

To provide an objective assessment of the performance of the defect detection model, after

analyzing and processing, we performed data enhancement, which includes mirroring,

inverting, increasing brightness, and adding noise to the original image, as shown in

Figure 8. Using the method, we have expanded the dataset further. It currently comprises

3990 images that describe the detection targets of this study. The images are divided into

the training set, validation set, and test set in the ratio of 8:1:1. We tested our method on

these datasets. The primary evaluation metric, Frames Per Second (FPS), measures the

detection speed of the model, indicating how many frames the system can process per

second. Additionally, the size of the weight file created during the training of the neural

network model is indirectly indicated by #Params (MB), which reflects the model’s

complexity and resource demands. The performance of the target detector was evaluated

by using four metrics (i.e., precision, recall, F1-score, and mAP).

(a) (b)

(c) (d)

(e) (f)

Figure 8. Examples of defective data enhancements: (a) original image; (b–f) the images generated

after being randomly processed by various data augmentation algorithms.

Figure 8. Examples of defective data enhancements: (a) original image; (b–f) the images generated
after being randomly processed by various data augmentation algorithms.

The formulas contained therein are shown In (10)–(13) below:

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

mAP =
1
N

N

∑
i=1

APi (12)

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(13)

True Positive (TP) refers to the number of samples that are actually positive and
predicted as positive by the model. True Negatives (TN) refer to the number of samples
that are actually negative and are correctly predicted as negative by the model. Conversely,
False Negative (FN) is the number of samples that are actually positive but predicted
as negative by the model. False Positive (FP) is the number of samples that are actually
negative but predicted as positive by the model. A more visual representation of the above
relationships can be seen In Figure 9.

Sensors 2024, 24, 3610 16 of 24

Sensors 2024, 24, x FOR PEER REVIEW 16 of 24

Precision is defined as the proportion of true positive predictions out of all positive

category predictions made by the model. Recall is the proportion of samples correctly

predicted by the model to be in the positive category out of all samples that are actually

in the positive category. Precision is the proportion of positive instances predicted by the

model that is actually in the positive category. Mean Average Precision (mAP) is used to

evaluate the model’s accuracy and is computed using the formula below. F1-score is the

weighted average of Precision and Recall . These metrics collectively assess the

performance and stability of the model.

The formulas contained therein are shown in (10)–(13) below:

Precision =
TP

TP + FP
 (10)

Recall =
TP

TP + FN
 (11)

mAP =
1

N
∑ APi

N

i=1

 (12)

F1 = 2 ∗
Precision ∗ Recall

Precision + Recall
 (13)

True Positive (TP) refers to the number of samples that are actually positive and

predicted as positive by the model. True Negatives (TN) refer to the number of samples

that are actually negative and are correctly predicted as negative by the model.

Conversely, False Negative (FN) is the number of samples that are actually positive but

predicted as negative by the model. False Positive (FP) is the number of samples that are

actually negative but predicted as positive by the model. A more visual representation of

the above relationships can be seen in Figure 9.

Figure 9. Sample relationship chart.

4.2. Experimental Results and Analysis

4.2.1. Ablation Experiment

Data from Table 3 and Figure 10 indicate that embedding the GAM attention after

the backbone extraction network and location information encoding module slightly

increases the number of parameters and computational complexity but yields a 1.2%

improvement in accuracy. Secondly, our experiments showed that reducing the number

of decoding layers decreased parameters by 13.4%, and there was a 3.6% improvement in

the accuracy of the model. Therefore, the introduction of the MSE loss function improved

the accuracy by 4.3%. Combining the loss function module with the GAM attention

module improves the accuracy of the model. Although it increases the number of

parameters somewhat, the improvement of DETR by combining the GAM, Decoder,

Figure 9. Sample relationship chart.

4.2. Experimental Results and Analysis
4.2.1. Ablation Experiment

Data from Table 3 and Figure 10 indicate that embedding the GAM attention after the
backbone extraction network and location information encoding module slightly increases
the number of parameters and computational complexity but yields a 1.2% improvement
in accuracy. Secondly, our experiments showed that reducing the number of decoding
layers decreased parameters by 13.4%, and there was a 3.6% improvement in the accuracy
of the model. Therefore, the introduction of the MSE loss function improved the accuracy
by 4.3%. Combining the loss function module with the GAM attention module improves
the accuracy of the model. Although it increases the number of parameters somewhat,
the improvement of DETR by combining the GAM, Decoder, Reduction and the MSE loss
functions outperforms the original the DETR model in terms of detection accuracy. As
demonstrated in Figure 8, on the same dataset, the loss in the validation set decreases to
approximately 0.55 from the original 0.8. Consequently, the GM-DETR model achieves a
4.9% higher accuracy and a 12.9% reduction in the number of parameters compared to the
original DETR model. In response to DETR’s original lack of control of image details, a
significant improvement can be seen in the figure example.

Table 3. Ablation experiments.

GAM Decoder Loss mAP@0.5 (%) Para (M) FPS

76.05 41.00 17.10√
76.95 43.76 15.20√
78.83 35.52 20.78√
79.32 41.00 17.60√ √
77.96 42.34 15.67√ √ √
79.77 35.71 20.40

Due to the GAM (Global Attention Map) mechanism, if there are defects or particularly
important areas in the input image data, the model can better capture the key information
in the input data to deal with the complexity of the defects in the input data. It can also
assign greater weight to different features in the final inference and classification stage.
This approach not only improves the detection of complex defects but also focuses more on
the detection in the regions of interest.

Sensors 2024, 24, 3610 17 of 24

Sensors 2024, 24, x FOR PEER REVIEW 17 of 24

Reduction and the MSE loss functions outperforms the original the DETR model in terms

of detection accuracy. As demonstrated in Figure 8, on the same dataset, the loss in the

validation set decreases to approximately 0.55 from the original 0.8. Consequently, the

GM-DETR model achieves a 4.9% higher accuracy and a 12.9% reduction in the number

of parameters compared to the original DETR model. In response to DETR’s original lack

of control of image details, a significant improvement can be seen in the figure example.

Due to the GAM (Global Attention Map) mechanism, if there are defects or

particularly important areas in the input image data, the model can better capture the key

information in the input data to deal with the complexity of the defects in the input data.

It can also assign greater weight to different features in the final inference and

classification stage. This approach not only improves the detection of complex defects but

also focuses more on the detection in the regions of interest.

As shown in Figure 11 below, we can see that the loss curve training and validation

sets are more closely matched to the smoothness. Additionally, the loss values for GM-

DETR decrease rapidly within the same epoch and produce a relatively low stabilization

value. Furthermore, it can be seen that the GM-DETR model converges faster. Moreover,

on the Precision curve, more points are in the position where Precision and Recall are

higher at the same time, indicating that the model’s prediction results contain most of the

true positive examples. This performance represents points with excellent model

performance, thus further validating that our method improves the accuracy of the model.

Table 3. Ablation experiments.

GAM Decoder Loss mAP@0.5(%) Para(M) FPS

 76.05 41.00 17.10

√ 76.95 43.76 15.20

 √ 78.83 35.52 20.78

 √ 79.32 41.00 17.60

√ √ 77.96 42.34 15.67

√ √ √ 79.77 35.71 20.40

Figure 10. Ablation experiment figure. Figure 10. Ablation experiment figure.

As shown in Figure 11 below, we can see that the loss curve training and validation sets
are more closely matched to the smoothness. Additionally, the loss values for GM-DETR
decrease rapidly within the same epoch and produce a relatively low stabilization value.
Furthermore, it can be seen that the GM-DETR model converges faster. Moreover, on the
Precision curve, more points are in the position where Precision and Recall are higher at the
same time, indicating that the model’s prediction results contain most of the true positive
examples. This performance represents points with excellent model performance, thus
further validating that our method improves the accuracy of the model.

4.2.2. Comparison of Different Attention Mechanisms

By embedding different attentions after the backbone extraction network and after
the location information encoding module, the effect on the detection accuracy of the
DETR model is shown in Table 4 and Figure 12. From the table, we can see that using
different attentions has a different effect on the accuracy and the number of parameters,
increasing in both the number of parameters and the accuracy. We utilized a combination
of attention types, including Channel Attention (CA) [42], Squeeze and Excitation (SE) [43],
Dynamic Weighted Residual (DWR) [44], Efficient Channel Attention (ECA) [45], and
Global Attention Module (GAM) [36]. In some cases, we can see that the use of attention
decreases the accuracy, but the accuracy improves when using channel attention CA,
SE, and the global attention GAM. This underscores that channel attention significantly
enhances network accuracy. However, global attention demonstrated a more pronounced
effect, boosting model accuracy to 76.95%, which is enough to better compensate for the
defects of self-attention in DETR, and has better detection accuracy compared with channel
attention CA and SE.

Table 4. Comparative experiments with different attention.

Models mAP@0.5 (%) Para (M) FPS

DETR 76.05 41.00 17.10
DETR + CA 76.04 41.32 17.02
DETR + SE 76.56 42.20 15.90

DETR + DWR 75.35 41.50 16.73
DETR + ECA 75.92 41.78 17.56
DETR + GAM 76.95 43.76 15.20

Sensors 2024, 24, 3610 18 of 24

Sensors 2024, 24, x FOR PEER REVIEW 18 of 24

(a) (b)

(c) (d)

(e) (f)

Figure 11. Evaluation with the original model: (a) loss graph for the DETR model; (b) loss graph

for the GM-DETR model; (c) precision graph for the DETR model; (d) precision graph for the GM-

DETR model; (e) precision and recall graphs for the DETR model; (f) precision and recall graphs

for the GM-DETR model.

Figure 11. Evaluation with the original model: (a) loss graph for the DETR model; (b) loss graph for
the GM-DETR model; (c) precision graph for the DETR model; (d) precision graph for the GM-DETR
model; (e) precision and recall graphs for the DETR model; (f) precision and recall graphs for the
GM-DETR model.

Sensors 2024, 24, 3610 19 of 24

Sensors 2024, 24, x FOR PEER REVIEW 19 of 24

4.2.2. Comparison of Different Attention Mechanisms

By embedding different attentions after the backbone extraction network and after

the location information encoding module, the effect on the detection accuracy of the

DETR model is shown in Table 4 and Figure 12. From the table, we can see that using

different attentions has a different effect on the accuracy and the number of parameters,

increasing in both the number of parameters and the accuracy. We utilized a combination

of attention types, including Channel Attention (CA) [42], Squeeze and Excitation (SE)

[43], Dynamic Weighted Residual (DWR) [44], Efficient Channel Attention (ECA) [45], and

Global Attention Module (GAM) [36]. In some cases, we can see that the use of attention

decreases the accuracy, but the accuracy improves when using channel attention CA, SE,

and the global attention GAM. This underscores that channel attention significantly

enhances network accuracy. However, global attention demonstrated a more pronounced

effect, boosting model accuracy to 76.95%, which is enough to better compensate for the

defects of self-attention in DETR, and has better detection accuracy compared with

channel attention CA and SE.

Table 4. Comparative experiments with different attention.

Models mAP@0.5(%) Para(M) FPS

DETR 76.05 41.00 17.10

DETR + CA 76.04 41.32 17.02

DETR + SE 76.56 42.20 15.90

DETR + DWR 75.35 41.50 16.73

DETR + ECA 75.92 41.78 17.56

DETR + GAM 76.95 43.76 15.20

Figure 12. Comparative experiments with different attentions.

4.2.3. Performance Comparison of Different Models

Figure 13 shows the detection results of the network on the dataset. Comparative

analysis reveals that our algorithm can improve the problem of missing control of image

details and improve the detection of smaller defects. In the graph of detection results, we

can see that the detection in complex backgrounds has been significantly improved, and

the problem of missed detection has also been improved. This is mainly because we

combine the global attention GAM with self-attention. By merging global information

with local features, the network more effectively distinguishes target defects from the

background, enhancing the detection performance.

Figure 12. Comparative experiments with different attentions.

4.2.3. Performance Comparison of Different Models

Figure 13 shows the detection results of the network on the dataset. Comparative
analysis reveals that our algorithm can improve the problem of missing control of image
details and improve the detection of smaller defects. In the graph of detection results, we
can see that the detection in complex backgrounds has been significantly improved, and the
problem of missed detection has also been improved. This is mainly because we combine
the global attention GAM with self-attention. By merging global information with local
features, the network more effectively distinguishes target defects from the background,
enhancing the detection performance.

After comparison, we observed that in the first set of comparison images, our algorithm
is more sensitive to small defects, which makes the network more capable of detecting
defects of different scales. In the second set of images, it can be found that in the complex
multi-defective scene, our algorithm can accurately detect the defective parts, while the
original network cannot detect some of the defects. In the third set of images and the
fourth set of images, it is demonstrated that our detection algorithm can improve the
detection of small targets and reduce omission detections, achieving higher accuracy in the
complex backgrounds.

We also compared the detection results of the different networks, including Faster-
RCNN [5], YOLOv4 [46], YOLOv5, Retina Net [19], FCOS [20], and SSD [4], as shown
in Table 5 and Figure 14. The GM-DETR model has a high accuracy of 79.77 and a good
F1-score, as well as a low number of parameters, and performs relatively well in several
other aspects. These results demonstrate that GM-DETR can not only improve the problem
that the DETR model lacks control of image details due to the complexity of defect types,
but also has a good performance on the above images and accuracy. In addition, to avoid
the excessive number of model parameters from increasing the computational cost, the
layer-pruning strategy proposed in this paper optimizes the decoding layer, which reduces
the amount of model parameters by 12.9%. It is further shown that our optimization is
further validated about the GM-DETR model.

Sensors 2024, 24, 3610 20 of 24

Sensors 2024, 24, x FOR PEER REVIEW 20 of 24

After comparison, we observed that in the first set of comparison images, our
algorithm is more sensitive to small defects, which makes the network more capable of
detecting defects of different scales. In the second set of images, it can be found that in the
complex multi-defective scene, our algorithm can accurately detect the defective parts,
while the original network cannot detect some of the defects. In the third set of images
and the fourth set of images, it is demonstrated that our detection algorithm can
improve the detection of small targets and reduce omission detections, achieving higher
accuracy in the complex backgrounds.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 13. Before and after the improvement of this graph: (a,b) the first group; (c,d) the second
group; (e,f) the third group; (g,h) the fourth group.

Figure 13. Before and after the improvement of this graph: (a,b) the first group; (c,d) the second
group; (e,f) the third group; (g,h) the fourth group.

Sensors 2024, 24, 3610 21 of 24

Table 5. Comparative experiments with different models.

Models mAP@0.5 (%) Params (M) Precision (%) Recall (%) F1

SSD 72.50 26.28 88.03 55.98 0.68
FCOS 77.97 36.76 77.91 72.83 0.75

Retina Net 70.47 37.76 90.65 52.72 0.67
Faster-
RCNN 75.62 137.09 35.07 80.43 0.49

YOLOv4 77.70 63.50 84.00 74.00 0.78
YOLOv5 75.32 47.92 80.60 58.70 0.68

DETR 76.05 41.00 58.72 80.43 0.68
GM-DETR 79.77 35.71 61.54 82.61 0.71

Sensors 2024, 24, x FOR PEER REVIEW 21 of 24

We also compared the detection results of the different networks, including Faster-

RCNN [5], YOLOv4 [46], YOLOv5, Retina Net [19], FCOS [20], and SSD [4], as shown in

Table 5 and Figure 14. The GM-DETR model has a high accuracy of 79.77 and a good F1-

score, as well as a low number of parameters, and performs relatively well in several other

aspects. These results demonstrate that GM-DETR can not only improve the problem that

the DETR model lacks control of image details due to the complexity of defect types, but

also has a good performance on the above images and accuracy. In addition, to avoid the

excessive number of model parameters from increasing the computational cost, the layer-

pruning strategy proposed in this paper optimizes the decoding layer, which reduces the

amount of model parameters by 12.9%. It is further shown that our optimization is further

validated about the GM-DETR model.

Table 5. Comparative experiments with different models.

Models mAP@0.5(%) Params(M) Precision (%) Recall (%) F1

SSD 72.50 26.28 88.03 55.98 0.68

FCOS 77.97 36.76 77.91 72.83 0.75

Retina Net 70.47 37.76 90.65 52.72 0.67

Faster-RCNN 75.62 137.09 35.07 80.43 0.49

YOLOv4 77.70 63.50 84.00 74.00 0.78

YOLOv5 75.32 47.92 80.60 58.70 0.68

DETR 76.05 41.00 58.72 80.43 0.68

GM-DETR 79.77 35.71 61.54 82.61 0.71

Figure 14. Comparative experiments with different models.

5. Conclusions

In this paper, we address the problem of the DETR model's limitations in controlling

image details and its slow convergence, which stem from complex the defective

backgrounds and low resolution, by proposing the GM-DETR algorithm. This method

uses GAM global attention and self-attention within DETR to combine global information

with local features, allowing the network to better distinguish between target defects and

background. At the same time, the method recalibrates the local features, reduces the

target information dispersion, and amplifies the global feature interactions to improve the

performance of the neural network, thus improving the detection performance.

Subsequently, to eliminate unnecessary parameters, we implement a layer-pruning

strategy, which enhances the computational efficiency of the model. Furthermore, due to

the problem of poor sensitivity of the original loss function to defective targets with small

Figure 14. Comparative experiments with different models.

5. Conclusions

In this paper, we address the problem of the DETR model's limitations in controlling
image details and its slow convergence, which stem from complex the defective back-
grounds and low resolution, by proposing the GM-DETR algorithm. This method uses
GAM global attention and self-attention within DETR to combine global information with
local features, allowing the network to better distinguish between target defects and back-
ground. At the same time, the method recalibrates the local features, reduces the target
information dispersion, and amplifies the global feature interactions to improve the perfor-
mance of the neural network, thus improving the detection performance. Subsequently,
to eliminate unnecessary parameters, we implement a layer-pruning strategy, which en-
hances the computational efficiency of the model. Furthermore, due to the problem of
poor sensitivity of the original loss function to defective targets with small differences, this
paper chooses to use the MSE loss not only to improve the detection accuracy but also to
improve the convergence speed. This method highlights the convenience and simplicity
of end-to-end detection compared to traditional methods. The model outperforms other
mainstream detection models such as Faster R-CNN, SSD, and Retina Net. The GM-DETR
model has higher detection accuracy, lower parameter requirements, and improved model
fitting. Specifically, the loss on the validation set decreased from around 0.8 to 0.55, and
the small differences between predicted results and actual results confirm the fitting per-
formance of this model in complex scenarios. As a result, the model fits better, improving
detection accuracy by 4.9% and reducing the number of parameters by 12.9%. This paper
demonstrates that the model we have presented is particularly suitable for scenarios with
limited resources, such as edge devices or IoT devices. In future research, our goal will

Sensors 2024, 24, 3610 22 of 24

focus on designing an end-to-end defect detection model that addresses a wider range of
defect types and can be deployed across a broader range of fields. We aim to enhance the
model’s detection capabilities to contribute to the advancement of artificial intelligence in
practical applications.

Author Contributions: Conceptualization, X.L. and Q.G.; methodology, X.L. and X.Y.; software, X.L.,
L.S. and X.W.; validation, X.L., X.Y. and Q.G.; formal analysis, X.L. and L.S.; investigation, X.L. and
X.Y.; resources, X.L. and X.W.; data curation, X.L. and X.Y.; writing—original draft preparation, X.L.;
writing—review and editing, X.L.; visualization, X.L. and H.S.; supervision, H.S. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the Natural Science Foundation of China (No. 62072362,
12101479) and the Shaanxi Provincial Key Industry Innovation Chain Program (No. 2020ZDLGY07-
05), Natural Science Basis Research Plan in Shaanxi Province of China (No. 2021JQ-660), Xi’an Major
Scientific and Technological Achievements Transformation Industrialization Project (No. 23CGZH-
CYH0008).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Peng, T.; Zheng, Y.; Zhao, L.; Zheng, E. Industrial Product Surface Anomaly Detection with Realistic Synthetic Anomalies Based

on Defect Map Prediction. Sensors 2024, 24, 264. [CrossRef] [PubMed]
2. Cumbajin, E.; Rodrigues, N.; Costa, P.; Miragaia, R.; Frazão, L.; Costa, N.; Fernández-Caballero, A.; Carneiro, J.; Buruberri, L.H.;

Pereira, A. A Real-Time Automated Defect Detection System for Ceramic Pieces Manufacturing Process Based on Computer
Vision with Deep Learning. Sensors 2023, 24, 232. [CrossRef] [PubMed]

3. Saberironaghi, A.; Ren, J.; El-Gindy, M. Defect detection methods for industrial products using deep learning techniques: A
review. Algorithms 2023, 16, 95. [CrossRef]

4. Chen, Z.; Guo, H.; Yang, J.; Jiao, H.; Feng, Z.; Chen, L.; Gao, T. Fast vehicle detection algorithm in traffic scene based on improved
SSD. Measurement 2022, 201, 111655. [CrossRef]

5. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans.
Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [CrossRef] [PubMed]

6. Jiang, P.; Ergu, D.; Liu, F.; Cai, Y.; Ma, B. A Review of Yolo algorithm developments. Procedia Comput. Sci. 2022, 199, 1066–1073.
[CrossRef]

7. Li, J.; Su, Z.; Geng, J.; Yin, Y. Real-time detection of steel strip surface defects based on improved yolo detection network.
IFAC-PapersOnLine 2018, 51, 76–81. [CrossRef]

8. Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. In
Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 213–229.

9. Cheng, Y.; Liu, D. An image-based deep learning approach with improved DETR for power line insulator defect detection. J. Sens.
2022, 2022, 6703864. [CrossRef]

10. Dang, L.M.; Wang, H.; Li, Y.; Nguyen, T.N.; Moon, H. DefectTR: End-to-end defect detection for sewage networks using a
transformer. Constr. Build. Mater. 2022, 325, 126584. [CrossRef]

11. Dai, X.; Chen, Y.; Yang, J.; Zhang, P.; Yuan, L.; Zhang, L. Dynamic detr: End-to-end object detection with dynamic attention.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021;
pp. 2988–2997.

12. Zhu, M.; Kong, E. Multi-Scale Fusion Uncrewed Aerial Vehicle Detection Based on RT-DETR. Electronics 2024, 13, 1489. [CrossRef]
13. Czimmermann, T.; Ciuti, G.; Milazzo, M.; Chiurazzi, M.; Roccella, S.; Oddo, C.M.; Dario, P. Visual-based defect detection and

classification approaches for industrial applications. Sensors 2020, 20, 1459. [CrossRef] [PubMed]
14. Ren, Z.; Fang, F.; Yan, N.; Wu, Y. State of the art in defect detection based on machine vision. Int. J. Precis. Eng. Manuf. Green

Technol. 2022, 9, 661–691. [CrossRef]
15. Anitha, S.; Radha, V. Evaluation of defect detection in textile images using Gabor wavelet based independent component analysis

and vector quantized principal component analysis. In Proceedings of the Fourth International Conference on Signal and Image,
Paris, France, 7 July 2013; pp. 433–442.

https://doi.org/10.3390/s24010264
https://www.ncbi.nlm.nih.gov/pubmed/38203128
https://doi.org/10.3390/s24010232
https://www.ncbi.nlm.nih.gov/pubmed/38203095
https://doi.org/10.3390/a16020095
https://doi.org/10.1016/j.measurement.2022.111655
https://doi.org/10.1109/TPAMI.2016.2577031
https://www.ncbi.nlm.nih.gov/pubmed/27295650
https://doi.org/10.1016/j.procs.2022.01.135
https://doi.org/10.1016/j.ifacol.2018.09.412
https://doi.org/10.1155/2022/6703864
https://doi.org/10.1016/j.conbuildmat.2022.126584
https://doi.org/10.3390/electronics13081489
https://doi.org/10.3390/s20051459
https://www.ncbi.nlm.nih.gov/pubmed/32155900
https://doi.org/10.1007/s40684-021-00343-6

Sensors 2024, 24, 3610 23 of 24

16. Allili, M.S.; Baaziz, N.; Mejri, M. Texture modeling using contourlets and finite mixtures of generalized Gaussian distributions
and applications. IEEE Trans. Multimed. 2014, 16, 772–784. [CrossRef]

17. Zalama, E.; Gómez-García-Bermejo, J.; Medina, R.; Llamas, J. Road crack detection using visual features extracted by Gabor filters.
Comput.-Aided Civ. Infrastruct. Eng. 2014, 29, 342–358. [CrossRef]

18. Xu, Y.; Li, D.; Xie, Q.; Wu, Q.; Wang, J. Automatic defect detection and segmentation of tunnel surface using modified Mask
R-CNN. Measurement 2021, 178, 109316. [CrossRef]

19. Tran, V.P.; Tran, T.S.; Lee, H.J.; Kim, K.D.; Baek, J.; Nguyen, T.T. One stage detector (RetinaNet)-based crack detection for asphalt
pavements considering pavement distresses and surface objects. J. Civ. Struct. Health Monit. 2021, 11, 205–222. [CrossRef]

20. Yao, S.; Zhu, Q.; Zhang, T.; Cui, W.; Yan, P. Infrared image small-target detection based on improved FCOS and spatio-temporal
features. Electronics 2022, 11, 933. [CrossRef]

21. Xie, H.; Zhang, Y.; Wu, Z. An improved fabric defect detection method based on SSD. AATCC J. Res. 2021, 8, 181–190. [CrossRef]
22. Hu, B.; Wang, J. Detection of PCB surface defects with improved faster-RCNN and feature pyramid network. IEEE Access 2020, 8,

108335–108345. [CrossRef]
23. Li, Z.; Tian, X.; Liu, X.; Liu, Y.; Shi, X. A two-stage industrial defect detection framework based on improved-yolov5 and

optimized-inception-resnetv2 models. Appl. Sci. 2022, 12, 834. [CrossRef]
24. Cheng, X.; Yu, J. RetinaNet with difference channel attention and adaptively spatial feature fusion for steel surface defect detection.

IEEE Trans. Instrum. Meas. 2020, 70, 2503911. [CrossRef]
25. Wang, Y.; Zhang, X.; Yang, T.; Sun, J. Anchor detr: Query design for transformer-based detector. In Proceedings of the AAAI

Conference on Artificial Intelligence, Carnegie Mellon University, Pittsburgh, PA, USA, 8 July 2022; pp. 2567–2575.
26. Li, D.; Yang, P.; Zou, Y. Optimizing Insulator Defect Detection with Improved DETR Models. Mathematics 2024, 12, 1507.

[CrossRef]
27. Wang, D.; Li, Z.; Du, X.; Ma, Z.; Liu, X. Farmland obstacle detection from the perspective of uavs based on non-local deformable

detr. Agriculture 2022, 12, 1983. [CrossRef]
28. Han, K.; Xiao, A.; Wu, E.; Guo, J.; Xu, C.; Wang, Y. Transformer in transformer. Adv. Neural Inf. Process. Syst. 2021, 34, 15908–15919.
29. Karp, R.M.; Vazirani, U.V.; Vazirani, V.V. An optimal algorithm for on-line bipartite matching. In Proceedings of the Twenty-

Second Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, 13–17 May 1990; pp. 352–358.
30. Mills-Tettey, G.A.; Stentz, A.; Dias, M.B. The dynamic hungarian algorithm for the assignment problem with changing costs.

Robot. Inst. Pittsburgh 2007, 7, 27–40.
31. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv.

Neural Inf. Process. Syst. 2017, 30, 1–11.
32. Ding, G.; Georgilas, I.; Plummer, A. A Deep Learning Model with a Self-Attention Mechanism for Leg Joint Angle Estimation

across Varied Locomotion Modes. Sensors 2023, 24, 211. [CrossRef]
33. Li, J.; Wang, X.; Tu, Z.; Lyu, M.R. On the diversity of multi-head attention. Neurocomputing 2021, 454, 14–24. [CrossRef]
34. Li, X.; Song, J.; Gao, L.; Liu, X.; Huang, W.; He, X.; Gan, C. Beyond rnns: Positional self-attention with co-attention for video

question answering. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February
2019; pp. 8658–8665.

35. Shao, Y.; Lin, J.C.-W.; Srivastava, G.; Jolfaei, A.; Guo, D.; Hu, Y. Self-attention-based conditional random fields latent variables
model for sequence labeling. Pattern Recognit. Lett. 2021, 145, 157–164. [CrossRef]

36. Niu, Z.; Zhong, G.; Yu, H. A review on the attention mechanism of deep learning. Neurocomputing 2021, 452, 48–62. [CrossRef]
37. Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference

on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.
38. Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning deep features for discriminative localization. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2921–2929.
39. Shi, P.; Qiu, J.; Abaxi, S.M.D.; Wei, H.; Lo, F.P.-W.; Yuan, W. Generalist vision foundation models for medical imaging: A case

study of segment anything model on zero-shot medical segmentation. Diagnostics 2023, 13, 1947. [CrossRef] [PubMed]
40. Zhao, H.; Gallo, O.; Frosio, I.; Kautz, J. Loss functions for image restoration with neural networks. IEEE Trans. Comput. Imaging

2016, 3, 47–57. [CrossRef]
41. Wang, Z.; Bovik, A.C. Mean squared error: Love it or leave it? A new look at signal fidelity measures. IEEE Signal Process. Mag.

2009, 26, 98–117. [CrossRef]
42. Hou, Q.; Zhou, D.; Feng, J. Coordinate attention for efficient mobile network design. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, Nashville, TN, USA, 10–25 June 2021; pp. 13713–13722.
43. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141.
44. Wei, H.; Liu, X.; Xu, S.; Dai, Z.; Dai, Y.; Xu, X. DWRSeg: Rethinking Efficient Acquisition of Multi-scale Contextual Inf ormation

for Real-time Semantic Segmentation. In Proceedings of the Computer Vision and Pattern Recognition, New Orleans, LA, USA,
18–24 June 2022; pp. 1–10.

https://doi.org/10.1109/TMM.2014.2298832
https://doi.org/10.1111/mice.12042
https://doi.org/10.1016/j.measurement.2021.109316
https://doi.org/10.1007/s13349-020-00447-8
https://doi.org/10.3390/electronics11060933
https://doi.org/10.14504/ajr.8.S1.22
https://doi.org/10.1109/ACCESS.2020.3001349
https://doi.org/10.3390/app12020834
https://doi.org/10.1109/TIM.2020.3040485
https://doi.org/10.3390/math12101507
https://doi.org/10.3390/agriculture12121983
https://doi.org/10.3390/s24010211
https://doi.org/10.1016/j.neucom.2021.04.038
https://doi.org/10.1016/j.patrec.2021.02.008
https://doi.org/10.1016/j.neucom.2021.03.091
https://doi.org/10.3390/diagnostics13111947
https://www.ncbi.nlm.nih.gov/pubmed/37296799
https://doi.org/10.1109/TCI.2016.2644865
https://doi.org/10.1109/MSP.2008.930649

Sensors 2024, 24, 3610 24 of 24

45. Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient channel attention for deep convolutional neural networks.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020;
pp. 11534–11542.

46. Hu, X.; Liu, Y.; Zhao, Z.; Liu, J.; Yang, X.; Sun, C.; Chen, S.; Li, B.; Zhou, C. Real-time detection of uneaten feed pellets in
underwater images for aquaculture using an improved YOLO-V4 network. Comput. Electron. Agric. 2021, 185, 106135. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.compag.2021.106135

	Introduction
	Related Work
	Methods
	The DETR Architecture
	Self-Attention
	Multi-Head Attention

	Improving the DETR Algorithm
	Attention Optimization
	Optimization of Transformer Structure
	Optimization of the Loss Function

	Experimental Results and Analysis
	Datasets and Evaluation Indicators
	Experimental Results and Analysis
	Ablation Experiment
	Comparison of Different Attention Mechanisms
	Performance Comparison of Different Models

	Conclusions
	References

