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Abstract: Aiming at the shortcomings of single-sensor sensing information characterization ability,
which is easily interfered with by external environmental factors, a method of intelligent perception
is proposed in this paper. This method integrates multi-source and multi-level information, including
spindle temperature field, spindle thermal deformation, operating parameters, and motor current.
Firstly, the internal and external thermal-error-related signals of the spindle system are collected by
sensors, and the feature parameters are extracted; then, the radial basis function (RBF) neural network
is utilized to realize the preliminary integration of the feature parameters because of the advantages
of the RBF neural network, which offers strong multi-dimensional solid nonlinear mapping ability
and generalization ability. Thermal-error decision values are then generated by a weighted fusion
of different pieces of evidence by considering uncertain information from multiple sources. The
spindle thermal-error sensing experiment was based on the spindle system of the VMC850 (Yunnan
Machine Tool Group Co., LTD, Yunnan, China) vertical machining center of the Yunnan Machine
Tool Factory. Experiments were designed for thermal-error sensing of the spindle under constant
speed (2000 r/min and 4000 r/min), standard variable speed, and stepped variable speed conditions.
The experiment’s results show that the prediction accuracy of the intelligent-sensing model with
multi-source information fusion can reach 98.1%, 99.3%, 98.6%, and 98.8% under the above working
conditions, respectively. The intelligent-perception model proposed in this paper has higher accuracy
and lower residual error than the traditional BP neural network perception and wavelet neural
network models. The research in this paper provides a theoretical basis for the operation, maintenance
management, and performance optimization of machine tool spindle systems.

Keywords: spindle; thermal-error modeling; multi-source information fusion; intelligent perception;
machine tool

1. Introduction

The spindle system plays a crucial role in machine tools, and its stability and accuracy
directly affect the machining quality. Under complex working conditions, the uneven
distribution of the temperature field of the spindle system may lead to unpredictable
thermal deformation, which, in turn, affects the machining accuracy. Therefore, study-
ing intelligent-sensing methods for spindle thermal errors is crucial for improving the
performance and intelligence of CNC machine tools. The ability of the spindle system to
independently perceive its own state and environmental conditions can allow the system to
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realize real-time monitoring and adjustment of the machining process, thereby improving
machining accuracy and stability. The research on this intelligent-perception method not
only helps to improve the machining quality of the machine tool but also enhances the
intelligent level of operation and maintenance management of the machine tool, making it
more adaptable to the complex and changing machining environment and its needs [1,2].

The research on intelligent sensing of thermal error in machine tool spindles mainly
has two aspects: thermal-error signal analysis and thermal-error modeling. Thermal-error
signal analysis mainly collects the relevant signals in the machine tool and the surround-
ing machining environment through temperature sensors, displacement sensors, etc. It
performs signal analysis and feature extraction on them. Brecher, C. et al. [3] used the
unscented Kalman filter (UKF) to estimate machine tool kinematic error model parameters.
The kinematic error model of a machine tool contains the time-varying errors, both geomet-
ric and thermal. The researchers used an unscented Kalman filter to fuse three-dimensional
probe data with a low sampling rate, three-dimensional probe data with a high sampling
rate, and comprehensive deformation sensor data with a high sampling rate for the real-
time calibration of thermal-error models. This reduces the impact of modeling errors caused
by nonlinearity and measurement noise and improves the machining accuracy and stability
of the machine. Guo et al. [4] proposed a static thermal deformation modelling method (ST-
CLSTM) for machine tools based on a spatiotemporal correlation hybrid CNN-LSTM. They
used a convolutional neural network (CNN) to extract temperature features and construct
the dataset and a long short-term memory (LSTM) network to capture the temperature
change features, considering the sequential nature of the temperature data. The experiment
verifies that the model has higher prediction accuracy than the traditional model and
solves the problem of temperature-sensitive point selection in thermal-error modeling.
Jia et al. [5] constructed a thermal-error prediction model using a one-dimensional convo-
lutional neural network-gated recurrent unit (1DCNN-GRU-Attention). The convolution
module is used to replace the traditional temperature-sensitive point selection method. The
experiment’s results show that the prediction accuracy of the proposed model is 81.53%
under multi-coupled factors. The root-mean-square error (RMSE) is 40% lower than that of
the traditional method.

Regarding thermal-error modeling, there are presently mainly thermal-error modeling
methods based on heat transfer theory, and polynomial fitting or neural network modeling
methods based on experimental data [6]. The thermal-error modeling method based on heat
transfer theory is mainly based on the energy conservation equation of heat conduction–
convection–thermal radiation used to solve the temperature field and the corresponding
displacement field of the machine tool spindle or key components. The classical methods
are the centralized mass method and the finite element method [7]. The centralized mass
method simplifies the geometry and material distribution of the analyzed object, and
by reasonably selecting the location and mass value of the concentrated mass points,
connecting each of them with each other using thermal resistance, and establishing the
energy conservation equation, a thermal-error model can be obtained in order to predict
the characteristics and response of the structure [8].

Kim et al. [9] used the centralized mass method to model the thermal error of the ball
screw feed drive system to calculate the temperature distribution and thermal deformation
of the ball screw feed drive system. Huang et al. [10], who used the centralized mass
method to model the thermal errors of tension rods and bending beams, investigated the
relationships between thermal deformation and temperature and heat. In this case, the
thermal-error model of the spindle was established by using the thermoelastic mechanics
theory and the lumped heat capacity method, and the average fitting accuracy of the
model reached 91.3%. The finite element analysis method uses finite element software
to model the structure and material properties of the machine tool. Then, it analyzes the
thermal error of the machine tool under different operating conditions [11]. Wu et al. [12]
used the finite element method to analyze the thermal characteristics of a ball screw feed
drive system under long-term operating conditions. By estimating the heat source inten-
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sity, based on the temperature profile, through inverse analysis, the primitive domain of
the ball screw is divided into multiple units so that the discrete system is equivalently
replaced by a continuous system. The temperature distribution is then converted into
transient heat transfer in a non-deforming medium, and the thermal expansion of the
ball screw is simulated based on the calculated heat flux. Yang et al. [13] have numeri-
cally simulated the thermal expansion process of a high-speed motorized spindle under
normal operating conditions using a transient thermal–structural coupled finite element
analysis method. The finite element prediction results were also compared with the mea-
sured temperatures and deformations, and it was found that the thermal model can be
used to predict the transient thermal characteristics under various operating conditions.
Ma et al. [14] developed a three-dimensional finite element model, considering thermal
contact resistance and bearing stiffness, for transient thermal–structural coupling analysis
of a high-speed electrical spindle. They verified the validity of the model through thermal
balance experiments.

Thermal-error modeling methods based on heat transfer theory generally involve com-
plex mathematical and physical equations, which may require significant computational
resources and time, to solve complex structures. The centralized mass method and the
finite element method usually require some approximations to reduce the computational
complexity, but these approximations, to a certain extent, affect the accuracy of the analysis
results, which need to be evaluated and verified according to the actual situation in the
specific application.

A polynomial fitting or neural network modeling method based on experimental data
is used to construct a correlation model using internal and external information from the
machine, such as temperature rise at sensitive points and machine speed obtained from
thermal-error experiments, as inputs, and thermal drift as output. Among these methods,
the polynomial fitting method usually uses a polynomial function to fit the thermal-error
data of a machine tool in order to model and predict it. In contrast, the neural network
method trains a neural network model with a large amount of data, thus realizing the
modeling and prediction of the thermal error of the machine tool. These classical methods
have been widely used and studied in practical engineering.

Gowda Chethana, R. et al. [15] used multiple linear regression methods to develop a
prediction model for thermal errors in CNC machine tools. They used the experimentally
measured diameter deviation as the dependent variable and the temperature data as the
independent variable. They obtained the regression coefficients in multiple linear regres-
sions using the least-squares method to determine the deviation between the tool point
and the workpiece. The experiment’s results show that the method effectively predicts
the radial deviation of CNC machine tools. Zhao et al. [16] proposed a three-dimensional
thermal-error analysis method based on rotation error vector and translation error vector,
obtained six vectors of thermal error in the three-dimensional space of the spindle through
the testing experiments, and used the thermal-error compensation technique of space
coordinate transformation parameters to verify the machining of S samples before and after
the compensation for the thermal error. The machining accuracy of the parts was improved
by 34.1%, which laid a theoretical foundation for the detection of and compensation for
thermal error in asymmetric spindles in the same kind of high-torque CNC machine tools.
Li [17] and others established a least-squares support vector machine (LSSVM) prediction
model optimized by Aquila Optimizer (AO), and the experiment’s results showed that
the prediction accuracy of the AO-LSSVM prediction model for the thermal error of the
electrical spindle can reach 94%, and it has a good stability and generalization ability.
Huang et al. [18] introduced a genetic algorithm to optimize the initial weights and thresh-
olds of the traditional back-propagation neural network. They used the combination of
genetic algorithm and neural network in the thermal-error prediction of high-speed spin-
dles, which showed advantages in solving the global minimum search problem quickly,
compared with the traditional back-propagation neural network model. Lee et al. [19]
applied fuzzy logic decision to thermal-error modeling, and many other scholars [20–22]



Sensors 2024, 24, 3614 4 of 21

have applied a gray model and an artificial neural network to spindle thermal-error predic-
tion, an approach which has fewer learning samples and avoids the loss of information in
a single modeling approach. All of these methods reflect the thermal error by modeling
the correlation between the temperature-sensitive points and the thermal deformation, so
selecting the temperature-sensitive points is particularly important.

The methods mainly used for selecting temperature-sensitive points are the empir-
ical correlation coefficient and the cluster analysis [23]. The empirical analysis method
empirically analyses the components in which thermal deformation occurs and uses the
temperature-sensitive points associated with them as model inputs. Among these efforts,
Wu et al. [24] used three temperature measuring points, associated with spindle speed,
spindle movement, and coolant system, as temperature-sensitive points; Yang et al. [25]
used measuring points related to the spindle base, X-axis screw, and spindle column as
the temperature-sensitive points, according to empirical statistics; the correlation coef-
ficient method involves screening the temperature measuring points by describing the
correlation coefficient between the temperature field and the thermal error to determine its
temperature-sensitive point. Using this, Guo et al. [26] used the correlation coefficient to
classify the 12 groups of temperature measuring point data. A group of data was selected
in each category to reflect the temperature information in the group. Three groups of
temperature-sensitive-point data were obtained as inputs for the model after screening.
Liu et al. [27] used the correlation coefficient method to evaluate the correlation between
temperature-sensitive points and thermal errors. They found that this method has advan-
tages in selecting temperature-sensitive points that remain stably correlated with thermal
errors over time. The cluster analysis method of screening temperature-sensitive points
generally uses a clustering algorithm to group temperature data, calculate the distance
between data points and the clustering centers, and group data points with similar temper-
atures into one category. Fu et al. [28] used correlation analysis and K-means clustering
to select combinations of global temperature sensitivities for machine tools. Liu et al. [29]
used a fuzzy clustering algorithm combined with average influence values to optimize the
temperature collection points, which ensured the robustness of the model by classifying the
variables and prompting the selection of typical variables to reduce the inputs. Hu [30] used
fuzzy C-mean (FCM) clustering and correlation analysis to select temperature-sensitive
points in the thermal-error modeling and introduced the Dunn index to determine the
optimal number of clusters, a tactic which can effectively suppress the multicollinearity
problem between temperature measuring points. Li et al. [31] used the fuzzy C-mean
clustering algorithm to screen the temperature-sensitive points and then used the Pearson
correlation coefficient to improve the covariance and correlation between the temperature
variables; the covariance and correlation problems between the temperature variables were
effectively weakened.

In summary, most existing studies only consider the spindle temperature field’s
influence on the spindle’s thermal error. In contrast, the spindle speed, spindle load, cooling
system, spindle structure, ambient temperature, lubrication, and the thermal conductivity
of processing materials, and so on, will affect the thermal error of the spindle system in the
actual working process, so it is necessary to analyze the internal and external information
from the machine tool in a comprehensive perception of the tool and the use of multi-source
information fusion can help to obtain a more accurate thermal-error model.

The rest of this paper is structured as follows: Section 2 firstly briefly analyzes the
generation mechanism of the thermal error of the CNC machine tool spindle and then
systematically introduces the proposed intelligent-sensing method and model of spindle
thermal error based on multi-source information fusion and describes in detail the multi-
source information feature extraction and information fusion algorithm in the model.
Section 3 describes the experimental design testing thermal-error sensing for spindles.
Then, the experiment’s results are analyzed and discussed in Section 4, and the proposed
intelligent thermal-error sensing method based on multi-source information fusion is
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compared and analyzed with the existing algorithms. Finally, conclusions are drawn in
Section 5.

2. Intelligent-Sensing Method of Thermal Error

2.1. Mechanism Analysis of Thermal Error of CNC Machine Tool Spindle

During the machining process, CNC machine tools are affected by internal and external
heat sources such as cutting heat, friction heat, and the surrounding environment. The
heat generated {Q} is transferred to the machine components by radiation, convection, and
conduction. This can result in an uneven distribution of the temperature field {ϕ} and
the thermal deformation {u} of the machine tool due to the incomplete symmetry of the
structure of the machine tool, the different materials of the internal components, and the
differences in the degree of heat dissipation on the surface of the machine tool. This causes
the CNC machine to produce a change in the relative positions of the components compared
to the standard steady-state condition, which ultimately leads to a relative displacement
{δ} between the workpiece and the tool, affecting the machining accuracy, as shown in
Figure 1.
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As a critical core component of CNC machine tools in high-speed operation, the
spindle will be subject to friction, cutting heat, and other factors, resulting in a rise in the
spindle’s local temperature and causing thermal deformation. Meanwhile, the spindle
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is affected by high temperatures during the working process, and the local area will be
affected by thermal stress, which will change the shape of the spindle and cause thermal
error. In addition, with the complexity and variability of the machining environment and
working conditions, the spindle in the operation process or machining process produces
unpredictable thermal errors, so it is vital to carry out intelligent sensing of the spindle
thermal error of the machine tool under complex working conditions. In the actual opera-
tion of the machine tool, machine settings, staff operation, maintenance, calibration, and
other aspects of these factors may have impacts on the thermal error. However, the impact
on the thermal error is relatively small, so in order to simplify the model analysis, these
factors can be ignored.

Existing thermal-error sensing models generally model the correlation between
temperature-sensitive points and thermal deformation. However, the selection of the
sensitive points, given that the thermal-error model has been established using a single
sensor, has certain limitations. These points cannot accurately reflect the correlation of
temperature field and thermal deformation under different working conditions. In order
to improve the robustness of the thermal-error sensing model, the factors affecting the
thermal error of the spindle system are analyzed, and it is found that the main signals
related to the thermal error of the spindle are the spindle temperature field, the spindle
working-condition parameters, and the motor current signal. In addition, elements of
working-condition information such as the spindle reach, thermal balance time, spindle
speed, and size of the cutting force directly affect the thermal deformation of the spindle;
when the spindle is at a high speed, the friction and cutting heat will increase, resulting
in rises in the spindle’s temperature, increasing the possibility of thermal error. The spin-
dle motor current signal reflects the spindle load condition and working status, and the
increase in cutting load will increase the spindle force, generate more heat, and aggravate
the thermal error of the spindle system.

Therefore, the work of utilizing sensors to collect multi-source thermal information
associated with both the machine tool spindle itself and the machining environment, and
analyzing, processing, and fusing it in real-time to construct a thermal-error model is indeed
critical to improving the performance and accuracy of the machine tool. Such an intelligent-
sensing system allows the machine tool to know, in real time, its own thermal state and
the influence of the surrounding environment, allowing it to make timely adjustments
and optimizations during the machining process to improve the quality and efficiency of
its machining.

2.2. CNC Machine Tool Spindle Thermal-Error Sensing Methods

Thermal-error sensing of machine tool spindles generally requires thermal perfor-
mance tests under different operating conditions to obtain temperature rise data and
thermal deformation data at measurement points. Then, using the test data, with the corre-
sponding method for the optimization of the selection of each temperature measurement
point, the experimental thermal deformation data and optimized measurement point data
are used to establish the spindle system’s temperature-sensitive points and determine
the thermal deformation using the correlation model. This employs a large number of
samples to obtain the parameters of the correlation model, and then relies on the measured
temperature rise data for thermal-error sensing prediction.

Referring to the structural characteristics of the vertical machining center spindle and
the thermal deformation mechanism, this paper proposes an intelligent-sensing method
architecture for spindle thermal error based on multi-source information fusion, as shown
in Figure 2. This consists of three main layers: the perception layer, the analysis layer, and
the reasoning decision-making layer. The perception layer senses the internal and external
signals of the machine tool spindle system by arranging a number of sensors, including
an infrared thermal imager (Japan Avionics Co., Ltd. Yokohama, Japan) and eddy current
displacement sensors, and inputs them into the PC to complete the acquisition of signals.
The analysis layer prepares the multi-source information by filtering, denoising, and uti-
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lizing other pre-processing and feature extraction techniques to achieve the screening of
information, in order to obtain the spindle temperature, motor current, and spindle oper-
ating conditions, as well as other characteristics and parameters, enabling high-precision
intelligent sensing, to provide more accurate information to the decision-making layer.
Data preprocessing reduces the complexity of the data by considering only the extracted
or selected data for modeling, thus improving the performance of the model [32]. The
decision-making layer fuses the multi-source information, takes the multi-physical-domain
fusion information as the input to the intelligent-sensing model of the thermal error of the
machine tool spindle, adopts the corresponding intelligent algorithm to process to deter-
mine the estimated result of the thermal error, and analyzes the decision to detetermine the
optimal strategy by considering the specific constraints [33].

Sensors 2024, 24, x FOR PEER REVIEW 7 of 22 
 

 

an infrared thermal imager (Japan Avionics Co.,Ltd. Yokohama, Japan) and eddy current 
displacement sensors, and inputs them into the PC to complete the acquisition of signals. 
The analysis layer prepares the multi-source information by filtering, denoising, and uti-
lizing other pre-processing and feature extraction techniques to achieve the screening of 
information, in order to obtain the spindle temperature, motor current, and spindle oper-
ating conditions, as well as other characteristics and parameters, enabling high-precision 
intelligent sensing, to provide more accurate information to the decision-making layer. 
Data preprocessing reduces the complexity of the data by considering only the extracted 
or selected data for modeling, thus improving the performance of the model [32]. The 
decision-making layer fuses the multi-source information, takes the multi-physical-do-
main fusion information as the input to the intelligent-sensing model of the thermal error 
of the machine tool spindle, adopts the corresponding intelligent algorithm to process to 
determine the estimated result of the thermal error, and analyzes the decision to deteter-
mine the optimal strategy by considering the specific constraints [33]. 

 
Figure 2. Thermal error intelligent-perception architecture. 

2.3. Intelligent-Perception Model of Spindle Thermal Error Based on Multi-Source  
Information Fusion 

By analyzing the causes of thermal error in the spindle systems of CNC machine 
tools, it can be seen that the primary sources of information related to thermal error are 
the spindle temperature field, operating condition information, and motor current signals. 
According to the thermal error intelligent-sensing architecture, the thermal-error sensing 
model of the spindle system is constructed as shown in Figure 3, including key steps such 
as signal acquisition, signal preprocessing, feature extraction, feature fusion, and decision 
fusion. In order to obtain comprehensive information about the temperature field and to 
avoid arranging a large number of contact temperature sensors that would interfere with 

Figure 2. Thermal error intelligent-perception architecture.

2.3. Intelligent-Perception Model of Spindle Thermal Error Based on Multi-Source
Information Fusion

By analyzing the causes of thermal error in the spindle systems of CNC machine
tools, it can be seen that the primary sources of information related to thermal error are
the spindle temperature field, operating condition information, and motor current signals.
According to the thermal error intelligent-sensing architecture, the thermal-error sensing
model of the spindle system is constructed as shown in Figure 3, including key steps such
as signal acquisition, signal preprocessing, feature extraction, feature fusion, and decision
fusion. In order to obtain comprehensive information about the temperature field and to
avoid arranging a large number of contact temperature sensors that would interfere with
normal processing, a non-contact infrared thermometer is used to obtain the temperature
value of the measurement point from the thermal image. Since the spindle speed and motor
current have large influences on the temperature field distribution and thermal deformation
of the spindle system, the built-in speed sensor and current sensor of the machine tool
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are used here to obtain the spindle speed signal and motor current signal, respectively.
Signal preprocessing requires filtering and denoising of multi-source signals to improve
the efficiency and accuracy of the system’s signal processing. The spindle temperature
field, operating condition information, and motor current associated with thermal error are
extracted to construct a collection of evidence bodies in the feature space. In view of the
advantages of the RBF neural network, with strong multi-dimensional nonlinear mapping
ability, generalization ability, and clustering analysis ability, the RBF neural network is used
to perform feature-layer fusion on the collection of evidence bodies in the feature space. At
the same time, considering the uncertain information from multiple sources, the improved
D-S evidence theory is further used to fuse the fusion results of the feature layer at the
decision-making layer to solve the problem of accurate sensing of thermal errors of CNC
machine tool spindles under complex machining environments. By weighting the fusion of
different evidence, the degrees of contribution of different information sources can be more
accurately reflected, making the final fusion result closer to the real situation. The specific
steps are as follows:

Step 1 Analyze the main causes of thermal error, identify multiple sources of information
associated with thermal error, and specify the type of sensor.

Step 2 Obtain the signal from the sensors, perform signal preprocessing, extract the
feature parameters associated with the thermal error, and construct a collection of
evidence bodies in the feature space to complete the training of the temperature
rise–thermal error neural network model for temperature-sensitive points.

Step 3 The RBF neural network is used to diagnose the body of evidence in each feature
space separately, and the set of preliminary diagnostic results is obtained.

Step 4 Calculate the basic credibility of each preliminary diagnostic result set.
Step 5 The reliability interval of each evidence body in the recognition framework under

the action of a single evidence body is calculated according to the basic credibility
assignment of the evidence body in each feature space.

Step 6 According to the weighted evidence fusion algorithm, the spindle thermal-error
prediction value is calculated, and the thermal-error sensing result is obtained.
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The image of the temperature field of the spindle system obtained by the infrared
thermal imager contains a large number of temperature measuring points. In order to
reduce the amount of computation associated with the sensing model and to ensure the
accuracy of the sensing model, it is necessary to optimize the selection of the temperature
measuring points. A combination of gray correlation and principal component analysis
is used to screen the temperature sensitivities of the temperature field. Firstly, the tem-
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perature measuring points highly correlated with thermal error are roughly screened by
gray correlation analysis. Then its n uncorrelated principal components are extracted by
principal component analysis. The principal components are used instead of the original
temperature data as inputs for the thermal-error sensing model; the steps are shown in
Figure 4.
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Firstly, the reference sequence in the gray correlation analysis is determined to be the
thermal deformation data, and the comparison sequence is the temperature rise data of
the temperature measuring points; the two sequences of data are standardized. Then, the
gray comprehensive relational grade between each comparison sequence and the reference
sequence is calculated, and the comparison sequence corresponding to the gray comprehen-
sive relational grade is selected as the primary temperature rise variable, that is, the sample
sequence for principal component analysis. The covariance between different factors of the
sample series is calculated. Specifically, the temperature rise data of different temperature
measuring points are ascertained; the contribution rates of the principal components corre-
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sponding to each characteristic root are found by calculating the characteristic root, and
then selecting the first q characteristic roots and the corresponding characteristic vectors
according to the contribution rate to obtain the principal components. Finally, based on
the characteristic vectors, the contribution rates of the temperature measuring points as
to each principal component are obtained, and the optimal temperature-sensitive points
are determined.

The feature extraction of the spindle condition information needs to correspond to the
sampling frequency of the temperature field to determine the speed of the spindle at the
current moment, as does the signal processing of the rotational speed. Data dimension cor-
respondence is first needed to ensure that the spindle speed sampling time is aligned with
the temperature field sampling time. The data are then normalized, and the dimensionless
numbers obtained from the normalization are used as features of the speed signal.

The current signal collected through RS232 is a continuous sinusoidal quantity, so
the spindle motor current feature extraction must first carry out a Fourier-transform (FFT)
on the continuous current flow. Spectral analysis of the current is performed to find the
statistical characterization of the current signal in the frequency domain, that is, the center of
gravity frequency; the calculation is shown in Equation (1). The center of gravity frequency
and the effective value of the motor current are used as current signal characteristics.

fc =
∑n

i=1 fi pi

∑n
i=1 pi

(1)

where qi is the frequency domain signal of the current, the center of gravity frequency is fc,
and n is the number of points of spectral data obtained after FFT.

In order to improve the performance of the thermal-error sensing model, the tempera-
ture features, operating condition features, and current features from different data sources
are fused in the feature layer to construct a collection of evidence bodies in the feature space.
Then, the RBF neural network is used to initially fuse the body of evidence in each feature
space separately; the specific steps are shown in Figure 5. The number of hidden nodes
is first estimated based on an empirical formula, and the number of data centers is deter-
mined using the trial-and-error method. The K-means clustering algorithm determines the
primary function’s data centers and expansion constants. Then, the pseudo-inverse method
is utilized to calculate the output layer weights, the model error is calculated, and the
training is completed after reaching the standard. When the trained RBF neural network is
modeled and saved, the preliminary fusion results of a thermal error are recorded, as well
as the accuracy of each neural network for decision-making layer fusion.

The RBF neural network obtains the preliminary fusion result set after fusing the fea-
ture layers of the body of evidence in each feature space, which reduces the dimensionality
of the interest and extracts the effective features in it. In order to improve the accuracy
of the model and make the final fusion result closer to the actual situation, this paper
introduces evidence fusion at the decision-making layer; the degrees of contribution of
different sources of information can be more accurately reflected through evidence fusion
of different evidence.

Since the spindle mechanism speed, motor current, and temperature field of a CNC
machine tool are interrelated with each other, the signals related to each thermal error
cannot be independent of each other. Classical D-S evidence theory is sensitive to the
basic probability assignment function and lacks robustness [34]. It suffers from fusion
failure in the face of conflicting evidence. This paper employs a weighted evidence fusion
theory at the decision level to address this issue. By introducing weight parameters to
weight different evidence, the evidence with higher credibility or more importance has
more influence in the fusion process, thus effectively solving the problem of conflicting
evidence. The weighted evidence fusion is calculated as follows.
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It is assumed that the set of independent possible conclusions of a problem is the
identification framework Θ = {A1, A2, . . . An}, Ai is the basic-element of Θ, and 2Θ is the
power set of Θ. If the set function mapping m : 2Θ → [0, 1] satisfies{

m(∅) = 0
∑

A⊆Θ
m(A) = 1, A ̸= ∅ (2)

then the mapping m : 2Θ → [0, 1] is called the basic probability distribution function on
the identification framework Θ. ∀A ⊆ Θ, m(A) is called the basic probability assignment
of A. The identification framework Θ is defined by

Bel(A) = ∑
B⊆A

m(B)

Pl(A) = 1 − Bel(A) = ∑
B∩A=∅

m(B)
(3)
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The mapping Bel : 2Θ → [0, 1] is the belief function on the identification framework Θ.
Mapping Pl : 2Θ → [0, 1] is the plausibility function of Bel. For ∀A ⊆ Θ, [Bel(A), Pl(A)] is
called the belief interval of A. The belief interval describes the upper and lower bounds on
the degree of confidence that the current evidence holds in proposition A.

When two pieces of evidence are combined, m1 and m2 are the basic probability
distribution functions on the same identification framework Θ. The basic-elements are
E1, E2, . . . Ek and F1, F2, . . . Fn, respectively. If ∀A ⊆ Θ and

N = ∑
E∩F ̸=∅

m1(E)·m2(F) > 0 (4)

then, the synthesized basic probability distribution function m : 2Θ → [0, 1] is{
m(∅) = 0
m(A) = 1

N ∑
E∩F=A

m1(E)·m2(F), A ̸= ∅ (5)

In the above formula, N is a normal number. The function is to assign the lost reliability
on the empty set to the non-empty set, in proportion, to meet the requirements of the
probability assignment. The N value can reflect the degree of evidence conflict; the greater
the evidence conflict, the smaller the N value. The above formula is called the orthogonal
sum, denoted by m1 ⊕ m2. Moreover, the combination of evidence is independent of the
order of operation. Therefore, the calculation of multiple evidence combinations can be
recursively derived from the calculation of two evidence combinations to obtain

m = {[(m1 ⊕ m2)⊕ m3]⊕ . . .} ⊕ mn (6)

In the weighted evidence theory, the evidence weight factor is determined by the
degree to which that evidence conflicts with other evidence. For the same identification
framework Θ, let the reliability of each body of evidence for identifying n propositions in
the identification framework be R(A) → [0, 1], ∀A ⊂ Θ, then by

W(A) =
n·Rk(A)

∑A⊂Θ Rk(A)
(7)

The mapping W (·) is a weight coefficient assignment function on the identification
framework Θ. ∀A ⊆ Θ, W(A) is referred to as the weight coefficient assignment of the body
of evidence to A; in the formula, and when the data on the reliability of the evidence for
the identification of each proposition is more reliable, k takes a larger value. The weight
coefficient W(A) of the evidence reflects that the evidence has different degrees of reliability
in identifying the propositions in the identification framework.

The basic probability assignment function m:2ˆΘ→[0,1] is weighted to take full account
of the weight of each piece of evidence for each proposition when the evidence is combined.
∀A ⊆ Θ, and then there are 

Wm(A) = W(A)·m(A)
m(Θ)+ ∑

A⊂Θ
W(A)·m(A)

Wm(Θ) = 1 − ∑
A⊂Θ

Wm(A)
(8)

The mapping Wm : 2Θ → [0, 1] is a weighted probability assignment function on the
identification framework Θ. ∀A ⊆ Θ, Wm(A) is called the weighted probability assignment
of A.

Therefore, the weighted synthesis rule for multiple evidence is

Wm = {[(Wm1 ⊕ Wm2)⊕ Wm3]⊕ . . .} ⊕ Wmn (9)
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As a result of the weighting of the basic probability assignment function, rational
evidence is strengthened, irrational evidence is weakened, and conflicts between evidence
are significantly reduced. Therefore, the improved weighted evidence theory can more
widely meet various practical applications. The improved weighted evidence theory fully
utilizes the information from the evidence sources and eliminates the incompleteness and
uncertainty of the information contained in a single data source.

3. Thermal-Error Perception Experiment Setup

3.1. CNC Machine Tool Spindle Thermal-Error Perception Experiment

A large number of scholars’ experimental research has found that the spindle, in
the X and Y directions, does not produce significant thermal error [35]. In contrast, the
Z-direction thermal error is very obvious. So the spindle thermal error is generally es-
tablished as a mapping relationship between the spindle temperature measuring points
and the Z-direction thermal error. This paper’s intelligent-sensing model of thermal error
mainly establishes the relationship between the temperature field at the corresponding
moment, the working conditions, the spindle motor current and thermal deformation mea-
surement point data. Therefore, the data to be measured in the thermal-error experiment are
the temperature field, spindle speed, spindle current, and Z-direction thermal deformation.

The experiment takes the Yunnan Machine Tool Factory VMC850 vertical machining
center as the perceived object. This paper’s experiments select an eddy current displacement
sensor to measure the thermal error of the spindle system. The contact temperature
sensor has many installation elements and cumbersome wiring is employed in the actual
measurement, leading to inaccurate measurement results. So, in this paper, we select an
infrared thermal imager to collect the temperature data from the temperature measurement
points of the spindle system of the vertical machining centers. Then, the data is transmitted
to the computer through USB transmission. Speed and motor current can be monitored
and collected in real time by connecting the spindle’s built-in sensor to the PC through the
RS232 transmission bus. The eddy current displacement sensor can realize the real-time
measurement of thermal deformation of the spindle under the idle state of the machine
tool through non-contact measurement. The experimental platform built for each device is
shown in Figure 6.
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Considering the huge structure of the machine tool and the large number of sensors
required, this paper adopts an infrared imager to take pictures of the spindle system. The
thermal image and its temperature measuring points are arranged as shown in Figure 7.
Points a, b, c, g, h, and i are the spindle box shell temperatures; points d, e, and f are the
points for the spindle motor shell temperature; points j and k are for the temperature of
spindle bearing; l is the temperature of the spindle claw disc; and the m and n points will
not produce noticeable temperature changes with the extension of the spindle working
time, so they are used to represent the workbench and the ambient temperature.
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In order to simulate the change of spindle speed during the actual machining process,
the experiment was carried out in no-load mode. We edited the working procedure of the
vertical machining center according to the set working conditions, collected data every
1 min, and produced four groups of data in total. Constant speed and ISO-variable-speed
experimental data were used for modelling, and stepped variable speed data were used to
validate the model’s predictive accuracy.

3.2. Experimental Conditions Design

In order to simulate the thermal drift of the spindle under actual processing condi-
tions through no-load experiments, this project carried out thermal-error test experiments.
ISO [36] testing standards identified three no-load experiments at different speeds. The
temperature, spindle motor current, spindle speed, and thermal-error data were collected
under different speed conditions to provide basic data for intelligent-perception modelling
and model verification of thermal error. The three groups of no-load test conditions are
composed of one group at constant speed conditions, and two groups at variable speed
conditions. The constant speed idling was 2000 r/min for 2 h and 4000 r/min for 2 h,
respectively. The two sets of variable speed conditions comprised ISO-standard variable
speed conditions and stepped variable speed conditions, as shown in Figures 8 and 9.
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The two working conditions of constant speed and ISO-standard variable speed
were used for model training, and the stepped variable speed condition was used for
model testing.

4. Results of the Experiment and Discussion

4.1. Results of the Experiment and Data Analysis

The thermal characteristic experiment was carried out at the two sets of off-line speeds
described in Section 3.2; the temperature rises for the measured points in the temperature
field of the spindle at a constant speed of 2000 r/min, a constant speed of 4000 r/min, and
a variable speed of ISO are shown in Figure 10.
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The figure shows that under a constant speed of 2000 r/min, the temperature field no
longer produces apparent changes after the spindle is run for 95 min. Point l (temperature
measuring point of spindle claw disc) has the most drastic temperature change, with an
eventual stable temperature rise of about 7.8 ◦C. Under the conditions of 4000 r/min con-
stant speed, the spindle bearing and claw disc at first produced a significant temperature
rise; it then dropped back to normal temperature as the cooling air conditioning started
working. The spindle bearing and claw disc reached a stable temperature rise after 80 min
of operation, within which the temperature rise at point l was the most obvious, rising to
about 34.8 ◦C. After 100 min, the other temperature measuring points no longer produced
significant temperature rises, and reached a stable state. Under ISO variable speed condi-
tions, the spindle temperature field produced different temperature rises with speed, and
the stable thermal equilibrium time is no longer apparent. The temperature change at point
g (the temperature measuring point of the spindle bearing) is most drastic under variable
speed conditions. This proves that the temperature field variation of the spindle is closely
related to the speed. Between 0 and 20 min, the rotation speed of the spindle is small,
and the temperatures of the relevant measuring points also change little in this period.
Between 20 and 40 min, the speed of the spindle is larger, and the temperature rise of the
measuring point is also larger. Between 40 and 100 min, the speed of the spindle decreases,
and the temperature rise of the measuring point does not change significantly. Between
100 and 120 min, the spindle speed increases, so the measuring point has a significant
temperature rise. After 120 min, the speed of the spindle decreases, and the temperature of
the measuring point slowly falls back and tends to be stable.

In the off-line experiment of spindle thermal characteristics, the Z-direction thermal
deformations produced by the spindle at 2000 r/min constant speed, 4000 r/min constant
speed, and ISO variable speed are shown in Figure 11. As can be seen from the figure, the
maximum change in thermal error when the spindle is running at constant speed occurs
between 10 min and 20 min; the main reason is that the temperature of the machine tool is
low after the tool is switched on, and the heat only begins to gather. The machine tool then
works for a period of time, producing temperature field changes, and thus causing thermal
deformation of the spindle. After 80 min, the machine reaches thermal equilibrium, and
the thermal error reaches a stable value. Moreover, according to the graph for the variable
speed, it can be seen that due to its lower speed, the change of thermal error in the initial
state is much smaller than that in the constant speed state. It can be seen that the thermal
error of the spindle is positively correlated with the speed of the spindle, and the thermal
error is generated with a certain lag.
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4.2. Comparison and Analyses of Prediction Performance of Thermal Error Intelligent
Perception Models

The BP neural network is the most widely used network in thermal-error modeling,
one which has good results for thermal-error prediction and is universal across different
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machine tools [37]. Moreover, the combination of wavelet analysis and BP neural networks
can solve artificial neural networks’ slow-convergence problems and transition fitting.
The wavelet neural network optimized with the genetic algorithm has higher accuracy
and faster convergence. Therefore, this paper uses two thermal-error modeling methods,
the traditional BP neural network and the wavelet neural network optimized by genetic
algorithm, for the thermal-error comparison model.

The performance of the three models is compared for thermal-error prediction under
three different operating conditions, namely, 2000 r/min constant speed, 4000 r/min
constant speed, and ISO variable speed, respectively, as shown in Figures 12–14. In order to
verify the robustness of the model proposed in this paper, the experimental data measured
under the working conditions of a stepped variable speed are input into the thermal-error
prediction model as test data and compared with the measured Z-axis thermal-error, as
shown in Figure 15.
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As can be seen from the figure, the maximum residuals of the thermal error intelligent-
sensing method based on multi-source information fusion, BP neural network and wavelet
neural network optimized by genetic algorithm are 0.49 µm, 1.26 µm, and 0.96 µm, re-
spectively, under the idling at a constant rotational speed of 2000 r/min. The maximum
residuals of the thermal error intelligent-sensing method based on multi-source information
fusion, BP neural network, and wavelet neural network optimized by genetic algorithm
are 0.47 µm, 2.41 µm, and 0.99 µm, respectively, under idling at a constant rotational speed
of 4000 r/min. The maximum residuals of thermal errors of the main shaft based on
the intelligent-sensing method of thermal error with multi-source information fusion, BP
neural network, and wavelet neural network optimized by genetic algorithm, under online
prediction of step-variable rotational speed conditions, are 0.57 µm, 2.09 µm, and 1.52 µm,
respectively. The model’s superiority under complex working conditions is further verified.
The intelligent-sensing model performs well under a variety of operating conditions, prov-
ing that it is robust and able to adapt to different operating conditions and environmental
changes, which reduces the need for model retraining and parameter tuning.

The results of the comparison of these three models are shown in Table 1, which
com-pares and analyses the effectiveness of thermal-error prediction of the spindle under
constant speed, standard variable speed, and stepped variable speed conditions. We found
that the prediction accuracy of the intelligent-perception model based on multi-source
in-formation fusion reaches 98.8%, which is 6.6% higher than the traditional BP neural
network perception model. The traditional BP neural network has low prediction accuracy
under high and variable speed conditions, is easily affected by noise and non-linearity, and
has poor robustness. The intelligent-perception model based on the fusion of multi-source
information improved by 4.3% over the wavelet neural network optimized by genetic
algorithm. Although the optimization effect of the wavelet neural network optimized
by genetic algorithm is significant, there is still room for improvement under dynamic
and complex working conditions. The maximum residual errors of the thermal error
intelligent-sensing model based on multi-source information fusion proposed in this paper
are generally smaller than those of the traditional thermal-error prediction model. The
stepped variable speed as test data in the intelligent-perception model obtained good
prediction results with small maximum residual errors and high accuracy.
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Table 1. Comparison of the prediction-effectiveness of the three models.

Model

BP Neural Network Model Wavelet Neural Network Model Intelligent-Perception Model

Maximum Residual
Error (µm) Fitting Accuracy

Maximum
Residual Error

(µm)
Fitting Accuracy

Maximum
Residual Error

(µm)
Fitting Accuracy

2000 r/min
off-line detection 1.26 94.7% 0.96 96.3% 0.49 98.1%

4000 r/min
off-line detection 2.41 96.2% 0.99 98.5% 0.47 99.3%

ISO variable speed off-line
detection 2.97 85.2% 1.79 91.4% 0.48 98.6%

Stepped variable speed online
prediction 2.09 92.6% 1.52 94.5% 0.57 98.8%

5. Conclusions

The spindle system is an essential core component of CNC machine tools, and its
operational status plays a vital role in machining quality. The main idea of realizing the
intelligent sensing of thermal error in the spindle system is to utilize multiple sensors to
monitor the relevant information of spindle thermal errors. Through suitable mathematical
models, these pieces of information are comprehensively analyzed, modeled, and processed
in order to make decisions, resulting in an intelligent perception of thermal error. The
decision given is the result of intelligent sensing of thermal error. The realization of
intelligent spindle autonomous perception plays a vital role in its subsequent active control
and predictive reasoning. This paper introduces the evidence theory, based on a neural
network, establishes the intelligent-sensing model of spindle thermal error, and adopts
the feature layer–decision layer approach to realize the fusion of multi-source information
at different levels, which further improves the accuracy and robustness of the thermal-
error sensing.

(1) Aiming at the shortcomings of single-sensor-based information, namely, characteriza-
tion ability, high contingency, and susceptibility to being interfered with by external
environmental factors, this paper proposes a multi-source and multi-level informa-
tion fusion intelligent-sensing method. A multi-source and multi-layer thermal error
intelligent-sensing model is established by feature extraction and fusion of multiple
related signals affecting the thermal error of the spindle. In the model construction,
the RBF neural network is used for the initial fusion of feature layers to improve the
model’s generalizing ability. At the same time, the weighted evidence fusion theory
is introduced, which can more accurately reflect the contribution degree of different
information sources by weighted fusion of varying evidence, making the final fu-
sion results closer to the actual value. Thus, the intelligent-perception model has a
higher prediction accuracy and lays a specific theoretical foundation for developing
intelligent spindles.

(2) This project conducted thermal-error perception experiments on the spindle system of
the VMC850 vertical machining center manufactured by Yunnan Machine Tool Factory,
under the conditions of constant speed, standard variable speed, and stepped variable
speed. Then we compared the effectiveness of the traditional thermal-error sensing
model and the intelligent-sensing model with multi-source information fusion. The
experiment’s results show that the prediction accuracy of the multi-source and multi-
level information fusion intelligent-sensing model proposed in this paper can reach
98.8%, which is significantly better than the traditional model. This shows that the
method proposed in this paper has significant advantages and application potential
in solving the thermal-error sensing problem of the CNC machine tool spindle.

(3) This paper summarizes and analyzes the signals related to thermal error inside and
outside the machine tool and finally selects three signals for multi-source information
fusion to obtain the thermal-error model. The amount of data is increased compared
with the traditional thermal-error model. However, because the thermal-error influ-
encing factors of the machine tool under complex working conditions are multifarious,
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the number and types of training samples can be gradually increased in the next study
to further train and optimize the model’s parameters.

(4) In addition, in order to obtain a more comprehensive thermal-error model under
the various working conditions of the machine tool, it is necessary to measure the
thermal error changes under different working conditions, especially under the cutting
working condition. However, due to the limitations of the experimental conditions,
this paper simulates the thermal error changes of the spindle under different working
conditions only through the spindle’s different rotational speeds. It does not take into
account the effect of the cutting heat on the thermal error. Therefore, the experiments,
as to the working-condition information, can be further enriched, and a more complete
thermal-error model can be obtained.
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