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Abstract: Ultrasound imaging is an essential tool in anesthesiology, particularly for ultrasound-
guided peripheral nerve blocks (US-PNBs). However, challenges such as speckle noise, acoustic
shadows, and variability in nerve appearance complicate the accurate localization of nerve tissues. To
address this issue, this study introduces a deep convolutional neural network (DCNN), specifically
Scaled-YOLOv4, and investigates an appropriate network model and input image scaling for nerve
detection on ultrasound images. Utilizing two datasets, a public dataset and an original dataset, we
evaluated the effects of model scale and input image size on detection performance. Our findings
reveal that smaller input images and larger model scales significantly improve detection accuracy.
The optimal configuration of model size and input image size not only achieved high detection
accuracy but also demonstrated real-time processing capabilities.

Keywords: ultrasound image sensing; nerve detection; convolutional neural networks; ultrasound-
guided nerve block anesthesia

1. Introduction

Ultrasound imaging is a crucial modality in medical sensing which is widely utilized
for visualizing organs, tissues, and lesions within the body. Its ability to achieve real-time,
continuous, and noninvasive imaging is invaluable not only for diagnostic purposes but
also for guiding medical procedures such as anesthesia administration, biopsies, and surg-
eries. In anesthesiology, ultrasound plays a pivotal role in various applications, including
regional anesthesia, chronic pain interventions, vascular access, airway assessments, pneu-
monic and gastric ultrasounds, and neuromonitoring [1]. Particularly, ultrasound-guided
peripheral nerve blocks for regional anesthesia have emerged as a prominent applica-
tion, offering direct visualizations of nerves and their surrounding anatomical structures,
thereby enhancing the accuracy and efficacy of anesthesia. Despite its benefits, ultrasound
imaging encounters challenges such as speckle noise and acoustic shadows that can de-
grade image quality and obscure anatomical boundaries. Additionally, nerve regions in
ultrasound images are typically small and exhibit considerable variability in shape across
different patients. The appearance of ultrasound images can also vary with patient-specific
characteristics and probe-manipulation techniques. These complexities make it difficult
for even experienced anesthesiologists to accurately identify nerve regions in ultrasound
images [2]. Consequently, there is a pressing need for tools that assist anesthesiologists in
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accurately localizing nerve tissues while performing ultrasound-guided peripheral nerve
blocks (US-PNBs).

Numerous studies have explored the automated detection and segmentation of nerve
tissues from ultrasound images [3]. To address noise and variability, Hadjerci et al. [4,5]
proposed combined approaches involving denoising preprocessing, machine learning, and
active contour techniques for nerve segmentation in ultrasound images. In recent years,
deep convolutional neural networks (DCNNs) have gained traction for their ability to
automatically extract relevant image features and capture intricate patterns, surpassing
conventional machine learning techniques in nerve detection and segmentation from
ultrasound images [6]. Many studies have employed DCNNs, which delineate nerves
through pixel-wise labeling to help doctors not only localize nerves but also diagnose
nerve disorders, for segmentation [2,7–20]. Encoder–decoder networks based on U-Net [21]
or two-stage networks based on Mask R-CNN [22] are popular and have demonstrated
strong performance in ultrasound image segmentation tasks. Tian et al. [16] conducted a
comparative study of various DCNN models for brachial plexus nerve trunk segmentation
from ultrasound images, revealing that U-Net achieved the best segmentation performance.
Ding et al. [2] developed a multi-object assistance-based brachial plexus segmentation
network (MallesNet) derived from Mask R-CNN to achieve better segmentation accuracy
than U-Net and other variants. On the other hand, some studies have utilized DCNNs
for object detection which output the position coordinates and sizes of bounding boxes as
well as their classes to localize anatomical structures of interest using rectangles [23,24].
Alkhatib et al. [24] combined a 2D DCNN for object detection with a 1D DCNN functioning
as a texture descriptor to improve nerve detection performance in ultrasound images.

This study focuses on assisting anesthesiologists in accurately localizing nerve tissues
during US-PNB, a task achievable even with DCNNs designed for object detection. Since
DCNNs for segmentation can delineate more detailed shapes of anatomical structures
but require a large computational cost to output pixel-wise labeled results, we employ a
DCNN for object detection that eliminates the computational cost of pixel-wise labeling
and spends it on extracting and refining multi-scale image features. Hence, this study
presents automatic and accurate nerve detection from ultrasound images using Scaled-
YOLOv4 [25], a more scalable DCNN model that provides a superior trade-off between
speed and accuracy for real-time object detection compared to the DCNN models used
in previous studies [21–24]. Furthermore, although it is known that the choice of model
size (i.e., the number of convolutional layers and filters) and input image size significantly
affect detection accuracy in DCNN-based object detection [25,26], the appropriate model
size and image size for ultrasound images remain unclear. In particular, for ultrasound
images containing speckle noise and acoustic shadows, the receptive field size and input
image size of the DCNN might cause it to be strongly affected by such noise, making
it challenging to train and capture critical image features necessary for detecting target
anatomical structures. To minimize the negative effects of noise and accurately capture
the image features of the target anatomical structures, model scaling and image scaling
are crucial elements. Therefore, this study also investigates appropriate model scaling and
input image scaling for DCNN-based nerve detection from ultrasound images.

The contributions of this study include applying a one-stage DCNN detector with
adjustable accuracy and speed through model scaling and image scaling to nerve detection
in ultrasound images, evaluating its performance and feasibility for real-time US-PNB
support, and identifying the optimal combination of model scaling and image scaling for
nerve detection in ultrasound images.

2. Materials and Methods
2.1. Dataset

In this study, we utilized two datasets to investigate the efficacy of DCNN-based nerve
detection in ultrasound images for supporting US-PNB procedures.



Sensors 2024, 24, 3696 3 of 15

The first dataset, referred to as the “Public dataset”, is a publicly available dataset for
nerve segmentation in ultrasound images accessible through Kaggle datasets [27]. This
dataset consists of 619 ultrasound images, including images of the sciatic nerve (287 cases),
ulnar nerve (221 cases), femoral nerve (70 cases), and median nerve (41 cases), along
with their corresponding labeled images. Each labeled image contains only one nerve.
The images, acquired with a resolution of 640 × 480 pixels using a SONOSITE Nano-
Maxx device (FUJIFILM Sonosite, Inc., Bothell, WA, USA) by the Universidad Tecnológica
de Pereira and Santa Mónica Hospital, Dosquebradas, Colombia, were annotated by an
anesthesiologist from the Santa Mónica Hospital. The ultrasound images and labeled
images were subsequently cropped to a region of interest measuring 360 × 279 pixels after
improving the annotation using morphological operations of dilation and erosion [12].
Figure 1a shows an example from the Public dataset.
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Figure 1. Examples of ultrasound images and their corresponding labeled images in (a) Public dataset
and (b) Original dataset.

The second dataset, referred to as the “Original dataset”, comprised 993 ultrasound
images of the brachial plexus and their corresponding labeled images; these images were ob-
tained from 101 healthy volunteers. The ultrasound images were collected using a SonoSite
Edge (FUJIFILM Medical Co., Ltd., Tokyo, Japan) with a resolution of 1024 × 768 pixels
by experienced anesthesiologists from Fukushima Medical University during ultrasound
procedures for the interscalene approach to brachial plexus block. The labeled images
included not only nerves but also surrounding structures such as blood vessels (carotid
artery, internal jugular vein, and vertebral artery) and muscles (middle scalene muscle,
sternocleidomastoid muscle, and anterior scalene muscle) to enhance the discrimination
performance of DCNNs for nerve tissues by providing contextual information about the
surrounding tissues. Unlike the Public dataset, this dataset includes ultrasound images
that contain multiple anatomical structures or multiple instances of the same anatomical
structure. Annotations were manually performed on the ultrasound images by the anesthe-
siologists using proprietary annotation software, which is not publicly available, developed
by IOT SOFT Co., Ltd. to facilitate the annotation process. Similar to the Public dataset, the
images in the Original dataset were cropped to regions of interest with sizes of 540 × 753,
600 × 800, and 605 × 710 pixels. Figure 1b shows an example from the Original dataset.
Ethical approval for the use of the Original dataset was granted by the Ethical Review
Boards of both Fukushima Medical University and Tokyo Medical and Dental University,
and written informed consent was obtained from all subjects.

2.2. Deep Convolutional Neural Network-Based Nerve Detection

The aim of this study is to assist anesthesiologists in identifying nerves on ultrasound
images for safe US-PNB procedures. Given this objective, a detailed pixel-wise segmenta-
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tion of the target regions is unnecessary. It is sufficient to indicate the approximate locations
of the target regions using bounding boxes. Therefore, we focused on DCNNs for object
detection based on bounding box regression.

2.2.1. Network Architecture

In this study, we utilized Scaled-YOLOv4 [25], which was designed to balance speed
and accuracy, for the real-time detection of anatomical structures in ultrasound images.
Scaled-YOLOv4 is an improved version of YOLOv4 [28], a derivative of the one-stage
detector YOLO [29]. Scaled-YOLOv4 models include network architectures with different
scaling factors to allow for the selection of the appropriate model based on speed and accu-
racy requirements. Model scaling, which involves adjusting the number of convolutional
layers and the filters in a convolutional layer, is crucial for enhancing DCNN performance.
Thus, we used Scaled-YOLOv4 models with different scaling factors, YOLOv4-CSP, -P5,
-P6, and -P7, to determine the appropriate model architecture. These models have deeper
scaling in the order of YOLOv4-CSP, -P5, -P6, and -P7. Figure 2 presents an overview of
the network architectures used in this study. The DCNNs for object detection consist of
a backbone for extracting essential image features, a neck for refining the features, and a
head for predicting bounding boxes based on the refined features. Final predictions are
obtained using non-maximum suppression, which eliminates redundant bounding boxes.
The Scaled-YOLOv4 models incorporate cross-stage partial (CSP) [30] architectures in both
the backbone and the neck. This configuration reduces computational complexity while
preserving accuracy and supports extensive model scaling. Figure 3 depicts the computa-
tional blocks in the backbones and necks of the Scaled-YOLOv4 models. CSP architectures,
which bifurcate the image feature maps and perform convolutional processing on one of
them, are used in all computational blocks.
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arrows indicate replacing the corresponding CSPUp block with a CSPSPP block for YOLOv4-P5 and
-P6, respectively.
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2.2.2. Training and Prediction

For DCNN-based nerve detection, we generated circumscribed rectangles around
labeled anatomical structures from annotated data which served as label data for train-
ing. Additionally, since image scaling influences detection performance, as with model
scaling [25,26], we resized the input images to 384 × 384, 640 × 640, 896 × 896, and
1152 × 1152 pixels with zero padding to preserve their aspect ratios, investigating the
appropriate input image size. For training, DCNNs with different scaling factors were
initialized with pre-trained weights on ImageNet [31] and trained using the resized im-
ages. The loss function, similar to YOLOv4 [28], included CIoU loss [32] for bounding box
regression and cross-entropy loss for classification and confidence. Data augmentation
techniques, such as translation, scaling, left–right flip, and mix-up techniques [33], were
employed to train DCNNs with increased image variations. During testing, bounding
boxes were predicted by processing unknown ultrasound images through the trained
DCNNs. A confidence score threshold of 0.20 was empirically set, with predicted bounding
boxes below this threshold excluded from the results.

3. Experiments

For the validation of DCNN-based nerve detection, nerve detection experiments were
conducted on the Public and Original datasets.

3.1. Experimental Setup

To evaluate the effects of model scaling and input image size scaling, we utilized
DCNN models with different scales (i.e., YOLOv4-CSP, -P5, -P6, and -P7) and ultrasound
images of varying sizes (i.e., 384 × 384, 640 × 640, 896 × 896, and 1152 × 1152 pixels). In
each of the Public and Original datasets, a 20-fold cross validation was performed on images
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with each size for each DCNN model. In each fold, for the Public dataset, 600 ultrasound
images, excluding 19 images (validation sub-dataset), were divided into 569–572 images
(training sub-dataset) and 28–31 images (test sub-dataset) to encompass all types of nerves
(i.e., the sciatic, ulnar, femoral, and median nerves) in the training, validation, and test
sub-datasets. For the Original dataset, 939 images from 95 cases, excluding 54 images
from 6 cases (validation sub-dataset), were divided into 871–911 images from 90–91 cases
(training sub-dataset) and 28–68 images from 4–5 cases (test sub-dataset). The validation
sub-datasets were empirically set to the minimum number of cases (3–5% of all cases)
because we preliminarily confirmed that no significant overfitting occurred in the Public
and Original datasets, where the imaging targets were somewhat limited. Although the
test sub-dataset was reserved and the remaining data were allocated to the training and
validation sub-datasets in a normal cross-validation, in this study, the validation sub-dataset
was reserved, and the remaining data were allocated to training and test sub-datasets in
each dataset to maximize the amount of training and test data available for evaluating the
DCNN models.

In each dataset, the DCNN models were trained on the training sub-datasets with a
batch size of 32 for up to 100 epochs. Following training, the best trained models were
selected based on their performance on the validation sub-dataset and used to predict
bounding boxes in the test sub-datasets. In the Original dataset, although the DCNN
models were trained with seven classes, including nerves, blood vessels, and muscles, we
evaluated the detection performance of the DCNNs focusing only on nerves and blood
vessels, which are more critical detection targets.

The DCNN models were implemented using Python 3.8.0, OpenCV 4.6.0, and Pytorch
1.8.0 on Ubuntu 20.04.4 LTS. The experiments were conducted using NVIDIA CUDA
11.1.1 and cuDNN 8.0.5 on a workstation computer with dual AMD EPYC 7413 24-Core
Processors, 1TB RAM, and eight NVIDIA A100 GPUs. The training of the DCNNs was
performed on the eight GPUs, while the inference of the DCNNs was carried out on one of
the GPUs.

3.2. Evaluation Metrics

The detection performance of the DCNN models was evaluated by analyzing overlaps
between target tissues (ground-truth regions) and predicted bounding box regions. Initially,
we employed the intersection over ground truth (IoGT) and intersection over bounding
box (IoBB) metrics to categorize and count predicted bounding boxes as either successful
or unsuccessful detections. The IoGT and IoBB are defined as follows:

IoGT =
|G ∩ P|
|G| , IoBB =

|G ∩ P|
|P| (1)

where G and P denote pixels in the ground-truth region and the predicted bounding
box region, respectively. The IoGT threshold was set at 0.5, indicating that a predicted
bounding box contains the centroid of a ground-truth region. The IoBB threshold was
set at 0.15, based on the minimal IoBB value observed between ground-truth regions
and their corresponding bounding boxes, to identify if any bounding box predominantly
encompasses the background. Consequently, predicted bounding boxes with IoGT ≥ 0.5
and IoBB ≥ 0.15 were counted as successful detections (i.e., true positives), while others
were counted as unsuccessful detections (i.e., false positives). However, the Original dataset
covers the brachial plexus, which has a network of nerves. In some instances, the nerve
tissues are annotated separately, while in others, they are annotated as a coupled nerve
region when in close proximity since it is difficult to establish a consistent criterion for
annotating nerve tissues as a coupled nerve region or as separate nerve regions. The
nerve tissues annotated as separate nerve regions by a physician may be predicted as a
coupled nerve region by DCNNs and vice versa. In such cases, DCNN predictions should
be considered correct. Therefore, as shown in Figure 4, when a predicted bounding box
P overlapped multiple ground-truth regions Gi(i = 1, 2, . . . , n) (i.e., when the DCNNs
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predicted separately annotated nerve tissues as a coupled nerve region), its detection
success or failure was determined using the following IoGTi(i = 1, 2, . . . , n) and IoBB:

IoGTi =
|Gi ∩ P|
|Gi|

, IoBB =
|(
⋃n

i=1 Gi) ∩ P|
|P| . (2)

A predicted bounding box P with IoBB ≥ 0.15 and IoGTi ≥ 0.5 for at least one ground-
truth region Gi was counted as a true positive, while ground-truth regions Gi with
IoGTi < 0.5 were counted as false negatives. Additionally, when multiple bounding
boxes Pj(j = 1, 2, . . . , m) overlapped the same ground-truth region G (i.e., when DCNNs
predicted conjointly annotated nerve tissues as separate nerve regions), their detection
success or failure was determined using the following IoGT and IoBBj(j = 1, 2, . . . , m):

IoGT =

∣∣∣G ∩
(⋃m

j=1 Pj

)∣∣∣
|G| , IoBBj =

∣∣G ∩ Pj
∣∣∣∣Pj

∣∣ . (3)

Even if each predicted bounding box Pj(j = 1, 2, . . . , m) with an IoBBj ≥ 0.15 had an
overlap of less than 50% of the ground-truth region G, the bounding boxes Pj were counted
as a true positive if IoGT ≥ 0.5 (i.e., the total overlapped region for the bounding boxes
was greater than or equal to 50% of the ground-truth region), and they were all counted
as false positives if the IoGT < 0.5. Finally, to quantify the detection accuracy based on
the number of successful and unsuccessful detections, we used Recall, Precision, and the
F1-measure, which were defined as follows:

Recall[%] =
TP

TP + FN
× 100, (4)

Precision[%] =
TP

TP + FP
× 100, (5)

F1-measure =
2 × Precision × Recall

Precision + Recall
, (6)

where TP, FP, and FN indicate true positives, false positives, and false negatives, respectively.
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Furthermore, we measured the processing time from the input of ultrasound images
to the inference and final output of bounding boxes, evaluating the feasibility of real-time
DCNN-based nerve detection under US-PNB.

3.3. Results

We compared anatomical structure detection results among DCNN models with
different scales (i.e., YOLOv4-CSP, -P5, -P6, and -P7), trained on input images of varying
sizes (i.e., 384 × 384, 640 × 640, 896 × 896, and 1152 × 1152 pixels), used on both the Public
and Original datasets. Tables 1 and 2 summarize the anatomical structure detection results
(Recall and Precision) obtained on the Public and Original datasets, respectively. Figure 5
shows the anatomical detection results for the F1-measure as bar graphs. First, focusing on
the detection results from DCNNs with different network scales, we found that networks
with deeper scales achieved higher detection accuracies in both datasets; notably, the larger
models, YOLOv4-P5, -P6, and -P7, tended to reduce over-detections and improve Precision
compared to YOLOv4-CSP. Second, focusing on the detection results for different input
image sizes, we noted that in both datasets, the use of smaller input images improved
detection accuracy across all networks; specifically, it tended to decrease oversights and
enhance Recall in nerve tissues. Consequently, YOLOv4-P7 trained on 384×384-pixel input
images showed the highest F1-measure, achieving 94.7% for four types of nerve tissue in
the Public dataset and 80.8% for anatomical structures including nerve and vascular tissues
in the Original dataset.

Table 1. Detection results (Recall [%] and Precision [%]) for nerve tissues with YOLOv4-CSP, -P5, -P6,
and -P7 trained on input images of 384 × 384, 640 × 640, 896 × 896, and 1152×1152 pixels on the
Public dataset. The best result for each class is shown in bold.

Network Image Size [Pixels]

Class

Sciatic Nerve Ulnar Nerve Femoral Nerve Median Nerve All

Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision

CSP

384 × 384 96.4 93.1 86.0 79.0 92.6 87.5 90.0 78.3 91.8 86.2

640 × 640 88.5 94.6 74.3 81.1 80.9 94.8 77.5 77.5 81.8 88.6

896 × 896 66.2 91.1 59.8 82.6 48.5 97.1 80.0 82.1 62.8 87.7

1152 × 1152 53.6 87.6 51.4 84.0 10.3 63.6 67.5 84.4 48.8 85.2

P5

384 × 384 97.5 97.5 87.4 89.5 95.6 95.6 87.5 97.2 93.0 94.4

640 × 640 96.0 97.8 81.8 84.1 88.2 93.8 87.5 89.7 89.5 92.0

896 × 896 91.4 95.1 75.7 90.0 88.2 92.3 87.5 92.1 85.2 92.9

1152 × 1152 82.7 93.1 74.3 88.8 77.9 96.4 85.0 81.0 79.3 91.0

P6

384 × 384 97.8 98.6 88.3 90.9 95.6 95.6 87.5 97.2 93.5 95.4

640 × 640 95.7 97.4 80.8 89.2 92.6 94.0 85.0 94.4 89.3 94.0

896 × 896 95.0 97.8 81.8 86.2 89.7 93.8 87.5 94.6 89.2 93.0

1152 × 1152 94.2 98.1 79.4 89.5 89.7 93.8 82.5 91.7 87.7 94.3

P7

384 × 384 99.3 99.6 87.4 89.9 94.1 95.5 90.0 97.3 93.8 95.6

640 × 640 98.9 98.9 83.6 89.9 94.1 98.5 85.0 97.1 92.0 95.7

896 × 896 98.2 99.3 84.6 88.3 94.1 100.0 87.5 92.1 92.2 95.0

1152 × 1152 93.9 97.8 83.2 89.4 94.1 98.5 82.5 94.3 89.3 94.7
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Table 2. Detection results (Recall [%] and Precision [%]) for nerve and vascular tissues with YOLOv4-
CSP, -P5, -P6, and -P7 trained on input images of 384 × 384, 640 × 640, 896 × 896, and 1152 × 1152
pixels on the Original dataset. The best result for each class is shown in bold.

Network Image Size [Pixels]

Class

Nerve Carotid Artery Internal Jugular Vein Vertebral Artery All

Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision

CSP

384 × 384 82.9 81.6 94.6 81.7 78.9 64.0 60.9 47.3 81.5 75.5

640 × 640 81.9 80.6 93.4 81.5 81.3 64.1 64.8 48.3 81.2 74.8

896 × 896 76.8 80.0 94.3 79.3 77.8 55.4 63.5 46.1 77.4 72.7

1152 × 1152 74.3 75.1 93.7 76.5 78.4 59.3 64.8 44.6 75.8 69.3

P5

384 × 384 80.4 86.1 93.4 86.5 76.6 68.2 57.3 57.7 79.0 81.4

640 × 640 78.0 82.5 92.7 86.5 73.7 73.3 57.7 55.0 77.1 78.9

896 × 896 75.1 84.1 93.1 84.0 76.6 69.7 60.6 54.2 75.7 78.9

1152 × 1152 73.8 82.8 92.4 86.7 72.5 71.7 58.3 56.3 74.2 79.1

P6

384 × 384 80.8 85.7 91.8 88.4 80.1 66.2 58.3 58.7 79.4 81.2

640 × 640 79.5 84.0 93.1 87.0 73.7 68.9 59.3 56.0 78.4 79.8

896 × 896 77.6 83.6 93.4 85.5 76.6 67.5 57.0 57.0 77.0 79.4

1152 × 1152 76.6 84.1 94.0 85.1 77.8 62.4 59.6 54.8 76.8 78.6

P7

384 × 384 82.4 84.6 95.3 86.0 80.7 69.7 61.2 57.8 81.3 80.4

640 × 640 80.1 83.9 91.2 88.4 77.2 69.5 56.7 56.5 78.5 80.1

896 × 896 77.3 86.0 91.8 87.4 77.8 68.6 53.1 57.8 76.2 81.5

1152 × 1152 77.4 84.0 90.5 85.4 80.1 65.2 58.0 54.8 76.9 78.9
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Figure 5. Detection results (F1-measure [%]) for anatomical structures identified with YOLOv4-CSP,
-P5, -P6, and -P7 trained on input images of 384 × 384, 640 × 640, 896 × 896, and 1152 × 1152 pixels
on the Public and Original datasets.

For visual comparisons, Figure 6 illustrates the detection results from DCNN models
of different scales trained on 384 × 384-pixel input images, while Figure 7 visualizes the
detection results from the YOLOv4-P7 model trained on input images of varying sizes.
These figures present images with relatively low positive detection rates in sixteen patterns
of detection results consisting of combinations of four different model sizes and four
different image sizes. As depicted in Figure 6, we noted that the larger DCNN models
improved the over-detection of structures confusable with tubular structures and the
oversight of anatomical structures, which occurred when the smaller DCNN models were
used. Additionally, as illustrated in Figure 7, we observed instances in which the use
of smaller input images enabled the DCNNs to capture anatomical structures that were
overlooked when larger input images were used.
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Figure 7. Visual comparison of detection results among YOLO-P7 models trained on input images of
384 × 384, 640 × 640, 896 × 896, and 1152 × 1152 pixels in Public and Original datasets.

Table 3 indicates the inference times for DCNN models of varying scales and input
image sizes in the Original dataset. As expected, the inference time correlated positively
with both the scale of the DCNN models and the size of the input images. Specifically,
the inference time for YOLOv4-P7, which had the most parameters, was approximately
2–3 times longer than that for YOLOv4-CSP, which had the fewest parameters. Similarly,
the inference time for the largest input images, which measured 1152 × 1152 pixels, was
about 5–8 times longer than for the smallest input images, measuring 384 × 384 pixels.
The combination of YOLOv4-P7 and 384 × 384-pixel input images, which achieved the
highest detection accuracy, resulted in an inference time of 5.2 milliseconds (ms), which is
equivalent to 192.4 frames per second (fps), inclusive of the time for maximum suppression
post processing.
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Table 3. Lengths of inference time of YOLOv4-CSP, -P5, -P6, and -P7 with input images of 384 × 384,
640 × 640, 896 × 896, and 1152 × 1152 pixels in Original dataset. Total time includes inference time
and non-maximum suppression post processing time. ms: millisecond and fps: frame per second.

Network Parameters Image Size [Pixels] Inference Time Total Time

CSP 52.5 M

384 × 384 1.5 ms (687.2 fps) 2.0 ms (497.3 fps)

640 × 640 3.8 ms (265.2 fps) 4.3 ms (231.2 fps)

896 × 896 6.6 ms (152.6 fps) 7.1 ms (140.6 fps)

1152 × 1152 12.0 ms (83.5 fps) 12.6 ms (79.7 fps)

P5 70.3 M

384 × 384 2.0 ms (507.7 fps) 2.5 ms (395.3 fps)

640 × 640 4.8 ms (207.5 fps) 5.4 ms (185.1 fps)

896 × 896 9.3 ms (107.9 fps) 9.8 ms (101.7 fps)

1152 × 1152 14.3 ms (70.2 fps) 14.8 ms (67.4 fps)

P6 126.7 M

384 × 384 2.6 ms (385.2 fps) 3.2 ms (316.6 fps)

640 × 640 5.7 ms (175.8 fps) 6.3 ms (159.9 fps)

896 × 896 9.7 ms (103.5 fps) 10.2 ms (97.7 fps)

1152 × 1152 15.3 ms (65.2 fps) 15.9 ms (62.7 fps)

P7 286.1 M

384 × 384 4.6 ms (216.4 fps) 5.2 ms (192.4 fps)

640 × 640 10.5 ms (95.1 fps) 11.1 ms (90.1 fps)

896 × 896 16.4 ms (61.1 fps) 17.0 ms (59.0 fps)

1152 × 1152 25.6 ms (39.1 fps) 26.2 ms (38.2 fps)

4. Discussion

We verified the feasibility of DCNN-based nerve detection for US-PNB, evaluating
the effects of DCNN model size and input image size on the detection of nerves and their
surrounding blood vessels. Regarding model size, the largest DCNN model (i.e., YOLOv4-
P7) demonstrated superior detection performance, as reported in a previous study on
general object detection tasks [25]. Scaling up the DCNN model size resulted in fewer over-
detections and a marked improvement in Precision. This enhancement is likely attributable
to the larger models’ capacity to discern more complex and abstract image features across
multiple scales. Although over-detection often occurs on ultrasound images due to the
appearance of tube-like structures resembling nerve and vascular tissues, a larger model
with advanced feature extraction capabilities is expected to mitigate this issue. Conversely,
concerning input image size, the smallest input images (i.e., 384 × 384-pixel input images)
yielded the best detection performance, despite a previous study [25] suggesting that larger
input images with larger models enhance detection accuracy. This discrepancy may stem
from the unique characteristics of ultrasound images, which often contain speckle noise
that becomes more pronounced at higher resolutions, thereby hindering accurate structure
detection. By reducing the resolution, the fine noise is smoothed, diminishing its impact
and consequently enhancing detection performance. Experimental results indicate that
reducing resolution improves Recall, suggesting that fine noise in ultrasound images may
lead to overlooked nerve and vascular tissues and that image downscaling can help reduce
such oversights.

The combination of YOLOv4-P7 and 384 × 384-pixel input images exhibited the
highest nerve-detection performance among the tested model and image size configura-
tions, achieving detection accuracies exceeding 90% for the Public dataset and 80% for the
Original dataset. As detailed in Table 3, this combination also had an inference time of
5.2 ms (192.4 fps). Although this time does not account for pre-processing tasks such as
image loading and resizing, detection speeds of 30–60 fps, inclusive of pre-processing, are
generally sufficient for real-time display during US-PNB. Thus, the real-time detection of
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anatomical structures appears feasible with this optimal model and image size configura-
tion, supporting the use of DCNN-based nerve detection to aid anesthesiologists during
US-PNB.

However, this study has some limitations. First, despite utilizing ultrasound images
from two datasets, the sample size was still small and may not adequately cover the
variability inherent in ultrasound images influenced by factors such as patient variability,
probe manipulations, and device settings. Thus, we will need to use more ultrasound
images acquired under various conditions to enhance the generalization performance of
DCNNs and ensure more rigorous validation. Specifically, as the ultrasound images in
each of the Public and Original datasets were collected using a single ultrasound device
at one medical facility, we will need to examine the effect of different devices or different
probe techniques based on images acquired with multiple ultrasound devices by more
anesthesiologists across different facilities. Second, this study focused solely on detecting
anatomical structures from ultrasound images. Since anesthesiologists need to identify not
only anatomical structures but also the needle on ultrasound images during procedures,
it would be desirable to automatically detect both the needle and anatomical structures
to enhance the safety of US-PNB. Third, while this study successfully elucidated the
performance of a one-stage DCNN in detecting nerve tissues from ultrasound images along
with optimal combinations of model scaling and input image scaling, it does not provide
a comparative evaluation of different DCNN architectures. As indicated in previous
studies [2,24], integrating custom modules designed for the specific task of detecting
nerves from ultrasound images can significantly enhance detection performance. Similarly,
YOLO-based DCNNs continue to evolve, incorporating various module improvements to
boost both accuracy and speed [34]. Hence, although our findings suggest that a larger
DCNN model with smaller input images improves the performance of nerve detection
in ultrasound images, which is an important insight likely applicable to other DCNN
models, it will be crucial to compare the performance of different DCNN model structures
to investigate effective modules for nerve detection in ultrasound images. Additionally,
this study focused on input image scaling, demonstrating that reducing input image scale
can potentially mitigate the impact of speckle noise and improve detection performance.
However, denoising techniques, such as despeckle filtering [5] or deep learning-based
denoising [19], are also reported in the literature as effective approaches. Therefore, it
is important to investigate whether input image scaling or denoising is more effective
for performance enhancement or if a combination of both methods could lead to further
improvements in detection accuracy.

5. Conclusions

This paper presents DCNN-based nerve detection in ultrasound images, aiming to as-
sist anesthesiologists in localizing nerve tissues during US-PNB. Utilizing Scaled-YOLOv4,
a scalable DCNN model for object detection, we explored various configurations of DCNN
model sizes and input image sizes. Our findings indicate that larger models paired with
smaller input images offer the best balance between accuracy and speed, achieving high
detection performance with real-time processing capabilities. The experimental results
demonstrated that the optimal configuration, YOLOv4-P7 with 384 × 384-pixel input im-
ages, could detect nerve tissues with a high F1-measure of over 80% and an inference speed
of 192.4 fps, underscoring the feasibility of real-time DCNN-based nerve detection for
US-PNB. Future work will focus on expanding the datasets to encompass greater variability,
investigating more effective DCNN modules or denoising methods through comparative
studies, and implementing the concurrent detection of both anatomical structures and
procedural instruments, such as needles, to further enhance the safety and efficacy of
US-PNB procedures.



Sensors 2024, 24, 3696 14 of 15

Author Contributions: Conceptualization, T.S., S.O., S.I. (Shinjiro Ishida), N.O. and Y.N.; methodol-
ogy, T.S., S.O. and Y.N.; software, T.S. and Y.Y.; validation, T.S.; formal analysis, T.S.; investigation, T.S.
and S.I. (Shinjiro Ishida); resources, N.O., M.M. and Y.N.; data curation, R.O., C.H., S.I. (Satoki Inoue)
and M.M.; writing—original draft preparation, T.S.; writing—review and editing, S.O., R.O. and Y.N.;
visualization, T.S.; supervision, M.M. and Y.N.; project administration, S.O., S.I. (Shinjiro Ishida),
M.M. and Y.N.; funding acquisition, T.S., S.O., S.I. (Shinjiro Ishida), N.O. and Y.N. All authors have
read and agreed to the published version of the manuscript.

Funding: Parts of this work were supported by JSPS KAKENHI Grant Number JP23K11867, by
the “Subsidy for operating cost to promote practical development for area rehabilitation” by METI
and Fukushima Prefecture, and by a Cooperative Research Project from the Research Center for
Biomedical Engineering.

Institutional Review Board Statement: This study was conducted in accordance with the Declaration
of Helsinki and approved by the Institutional Review Boards of Tokyo Medical and Dental University
(protocol code M2023-026) and Fukushima Medical University (protocol code 2020-241).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author. The data are not publicly available because of ethical restrictions.

Conflicts of Interest: Authors Shinjiro Ishida and Nobuhiro Ogasawara were employed by the
company TCC Media Lab Co., Ltd., and author Yuhang Yao was employed by the company IOT
SOFT Co., Ltd. The remaining authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.

References
1. Terkawi, A.S.; Karakitsos, D.; Elbarbary, M.; Blaivas, M.; Durieux, M.E. Ultrasound for the anesthesiologists: Present and future.

Sci. World J. 2013, 2013, 683685. [CrossRef] [PubMed]
2. Ding, Y.; Yang, Q.; Wang, Y.; Chen, D.; Qin, Z.; Zhang, J. MallesNet: A multi-object assistance based network for brachial plexus

segmentation in ultrasound images. Med. Image Anal. 2022, 80, 102511. [CrossRef]
3. Bowness, J.S.; Metcalfe, D.; El-Boghdadly, K.; Thurley, N.; Morecroft, M.; Hartley, T.; Krawczyk, J.; Noble, J.A.; Higham, H.

Artificial intelligence for ultrasound scanning in regional anaesthesia: A scoping review of the evidence from multiple disciplines.
Br. J. Anaesth. 2024, 132, 1049–1062. [CrossRef] [PubMed]

4. Hadjerci, O.; Hafiane, A.; Morette, N.; Novales, C.; Vieyres, P.; Delbos, A. Assistive system based on nerve detection and needle
navigation in ultrasound images for regional anesthesia. Expert Syst. Appl. 2016, 61, 64–77. [CrossRef]

5. Hadjerci, O.; Halfiane, A.; Conte, D.; Makris, P.; Vieyres, P.; Delbos, A. Computer-aided detection system for nerve identification
using ultrasound images: A comparative study. Inform. Med. Unlocked 2016, 3, 29–43. [CrossRef]

6. Masoumi, N.; Rivaz, H.; Hacihaliloglu, I.; Ahmad, M.O.; Reinertsen, I.; Xiao, Y. The big bang of deep learning in ultrasound-guided
surgery: A review. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2023, 70, 909–919. [CrossRef] [PubMed]

7. Baby, M.; Jereesh, A.S. Automatic nerve segmentation of ultrasound images. In Proceedings of the International Conference of
Electronics, Communication and Aerospace Technology, Coimbatore, India, 20–22 April 2017; pp. 107–112. [CrossRef]

8. Smistad, E.; Johansen, K.F.; Iversen, D.H.; Reinertsen, I. Highlighting nerves and blood vessels for ultrasound-guided axillary
nerve block procedures using neural networks. J. Med. Imaging 2018, 5, 044004. [CrossRef] [PubMed]

9. Huang, C.; Zhou, Y.; Tan, W.; Qui, Z.; Zhow, H.; Song, Y.; Zhao, Y.; Gao, S. Applying deep learning in recognizing the femoral
nerve block region on ultrasound images. Ann. Transl. Med. 2019, 7, 453. [CrossRef]

10. Rubasinghe, I.; Meedeniya, D. Ultrasound nerve segmentation using deep probabilistic programming. J. ICT Res. Appl. 2019, 13,
241–256. [CrossRef]

11. Horng, M.H.; Yang, C.W.; Sun, Y.N.; Yang, T.H. DeepNerve: A new convolutional neural network for the localization and
segmentation of the median nerve in ultrasound image sequences. Ultrasound Med. Biol. 2020, 46, 2439–2452. [CrossRef]

12. Jimenez-Castaño, C.A.; Álvarez-Meza, A.M.; Aguirre-Ospina, O.D.; Cárdenas-Peña, D.A.; Orozco-Gutiérrez, Á.A. Random
fourier features-based deep learning improvement with class activation interpretability for nerve structure segmentation. Sensors
2021, 21, 7741. [CrossRef] [PubMed]

13. Gungor, I.; Gunaydin, B.; Oktar, S.O.; Buyukgebiz, B.M.; Bagcaz, S.; Ozdemir, M.G.; Inan, G. A real-time anatomy identification
via tool based on artificial intelligence for ultrasound-guided peripheral nerve block procedures: An accuracy study. J. Anesth.
2021, 35, 591–594. [CrossRef] [PubMed]

14. Bowness, J.; Varsou, O.; Turbitt, L.; Burkett-St Laurent, D. Identifying anatomical structures on ultrasound: Assistive artificial
intelligence in ultrasound-guided regional anesthesia. Clin. Anat. 2021, 34, 802–809. [CrossRef] [PubMed]

https://doi.org/10.1155/2013/683685
https://www.ncbi.nlm.nih.gov/pubmed/24348179
https://doi.org/10.1016/j.media.2022.102511
https://doi.org/10.1016/j.bja.2024.01.036
https://www.ncbi.nlm.nih.gov/pubmed/38448269
https://doi.org/10.1016/j.eswa.2016.05.002
https://doi.org/10.1016/j.imu.2016.06.003
https://doi.org/10.1109/TUFFC.2023.3255843
https://www.ncbi.nlm.nih.gov/pubmed/37028313
https://doi.org/10.1109/ICECA.2017.8203654
https://doi.org/10.1117/1.JMI.5.4.044004
https://www.ncbi.nlm.nih.gov/pubmed/30840734
https://doi.org/10.21037/atm.2019.08.61
https://doi.org/10.5614/itbj.ict.res.appl.2019.13.3.5
https://doi.org/10.1016/j.ultrasmedbio.2020.03.017
https://doi.org/10.3390/s21227741
https://www.ncbi.nlm.nih.gov/pubmed/34833817
https://doi.org/10.1007/s00540-021-02947-3
https://www.ncbi.nlm.nih.gov/pubmed/34008072
https://doi.org/10.1002/ca.23742
https://www.ncbi.nlm.nih.gov/pubmed/33904628


Sensors 2024, 24, 3696 15 of 15

15. Smerilli, G.; Cipolletta, E.; Sartini, G.; Moscioni, E.; Di Cosmo, M.; Fiorentino, M.C.; Moccia, S.; Frontoni, E.; Grassi, W.; Filippucci,
E. Development of a convolutional neural network for the identification and the measurement of the median nerve on ultrasound
images acquired at carpal tunnel level. Arthritis Res. Ther. 2022, 24, 38. [CrossRef] [PubMed]

16. Tian, D.; Zhu, B.; Wang, J.; Kong, L.; Gao, B.; Wang, Y.; Xu, D.; Zhang, R.; Yao, Y. Brachial plexus nerve trunk recognition from
ultrasound images: A comparative study of deep learning models. IEEE Access 2022, 10, 82003–82014. [CrossRef]

17. Kim, B.S.; Yu, M.; Kim, S.; Yoon, J.S.; Baek, S. Scale-attentional U-Net for the segmentation of the median nerve in ultrasound
images. Ultrasonography 2022, 41, 706–717. [CrossRef] [PubMed]

18. Berggreen, J.; Johansson, A.; Jahr, J.; Möller, S.; Jansson, T. Deep learning on ultrasound images visualizes the femoral nerve with
good precision. Healthcare 2023, 11, 184. [CrossRef] [PubMed]

19. Zhang, T.T.; Shu, H.; Lam, K.Y.; Chow, C.Y.; Li, A. Feature decomposition and enhancement for unsupervised medical ultrasound
image denoising and instance segmentation. Appl. Intell. 2023, 53, 9548–9561. [CrossRef]

20. Wang, Y.; Zhu, B.; Kong, L.; Wang, J.; Gao, B.; Wang, J.; Tian, D.; Yao, Y. BPSegSys: A brachial plexus nerve trunk segmentation
system using deep learning. Ultrasound Med. Biol. 2024, 50, 374–383. [CrossRef]

21. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. Med. Image Comput.
Comput.-Assist. Interv. 2015, 9351, 234–241. [CrossRef]

22. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer
Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [CrossRef]

23. Alkhatib, M.; Hafiane, A.; Vieyres, P.; Delbos, A. Deep visual nerve tracking in ultrasound images. Comput. Med. Imaging Graph.
2019, 76, 101639. [CrossRef] [PubMed]

24. Alkhatib, M.; Hafiane, A.; Vieyres, P. Merged 1D-2D deep convolutional neural networks for nerve detection in ultrasound images.
In Proceedings of the 25th International Conference on Pattern Recognition, Milan, Italy, 10–15 January 2021; pp. 4774–4780.
[CrossRef]

25. Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. Scaled-YOLOv4: Scaling cross stage partial network. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 13029–13038. [CrossRef]

26. Tan, M.; Le, Q. EfficientNet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International
Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. Available online: http://proceedings.
mlr.press/v97/tan19a.html (accessed on 22 April 2024).

27. Kaggle: Nerve-UTP. Available online: https://www.kaggle.com/datasets/craljimenez/nerveutp (accessed on 22 April 2024).
28. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLOv4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.

[CrossRef]
29. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [CrossRef]
30. Wang, C.Y.; Liao, H.Y.M.; Wu, Y.H.; Chen, P.Y.; Hsieh, J.W.; Yeh, I.H. CSPNet: A new backbone that can enhance learning

capability of CNN. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle,
WA, USA, 14–19 June 2020; pp. 390–391. [CrossRef]

31. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.
ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]

32. Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-IoU loss: Faster and better learning for bounding box regression. Proc.
AAAI Conf. Artif. Intell. 2020, 34, 12993–13000. [CrossRef]

33. Zhang, H.; Cisse, M.; Dauphin, Y.N.; Lopez-Paz, D. mixup: Beyond empirical risk minimization. arXiv 2017, arXiv:1710.09412.
[CrossRef]

34. Terven, J.; Córdova-Esparza, D.M.; Romero-González, J.A. A comprehensive review of YOLO architectures in computer vision:
From YOLOv1 to YOLOv8 and YOLO-NAS. Mach. Learn. Knowl. Extr. 2023, 5, 1680–1716. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1186/s13075-022-02729-6
https://www.ncbi.nlm.nih.gov/pubmed/35135598
https://doi.org/10.1109/ACCESS.2022.3196356
https://doi.org/10.14366/usg.21214
https://www.ncbi.nlm.nih.gov/pubmed/35754116
https://doi.org/10.3390/healthcare11020184
https://www.ncbi.nlm.nih.gov/pubmed/36673552
https://doi.org/10.1007/s10489-022-03857-x
https://doi.org/10.1016/j.ultrasmedbio.2023.11.009
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1016/j.compmedimag.2019.05.007
https://www.ncbi.nlm.nih.gov/pubmed/31349184
https://doi.org/10.1109/ICPR48806.2021.9412988
https://doi.org/10.1109/CVPR46437.2021.01283
http://proceedings.mlr.press/v97/tan19a.html
http://proceedings.mlr.press/v97/tan19a.html
https://www.kaggle.com/datasets/craljimenez/nerveutp
https://doi.org/10.48550/arXiv.2004.10934
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPRW50498.2020.00203
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1609/aaai.v34i07.6999
https://doi.org/10.48550/arXiv.1710.09412
https://doi.org/10.3390/make5040083

	Introduction 
	Materials and Methods 
	Dataset 
	Deep Convolutional Neural Network-Based Nerve Detection 
	Network Architecture 
	Training and Prediction 


	Experiments 
	Experimental Setup 
	Evaluation Metrics 
	Results 

	Discussion 
	Conclusions 
	References

