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Abstract: Measuring pilot mental workload (MWL) is crucial for enhancing aviation safety. However,
MWL is a multi-dimensional construct that could be affected by multiple factors. Particularly, in the
context of a more automated cockpit setting, the traditional methods of assessing pilot MWL may
face challenges. Heart rate variability (HRV) has emerged as a potential tool for detecting pilot MWL
during real-flight operations. This review aims to investigate the relationship between HRV and pilot
MWL and to assess the performance of machine-learning-based MWL detection systems using HRV
parameters. A total of 29 relevant papers were extracted from three databases for review based on
rigorous eligibility criteria. We observed significant variability across the reviewed studies, including
study designs and measurement methods, as well as machine-learning techniques. Inconsistent
results were observed regarding the differences in HRV measures between pilots under varying levels
of MWL. Furthermore, for studies that developed HRV-based MWL detection systems, we examined
the diverse model settings and discovered that several advanced techniques could be used to address
specific challenges. This review serves as a practical guide for researchers and practitioners who are
interested in employing HRV indicators for evaluating MWL and wish to incorporate cutting-edge
techniques into their MWL measurement approaches.
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1. Introduction

Mental workload (MWL) is a key concern for all safety-critical industries as elevated
levels of MWL can impair human performance, potentially leading to fatal accidents [1–3].
Conversely, extremely low MWL due to low arousal levels can cause boredom and lack of
attention, also jeopardizing operational safety [4]. Aircraft piloting operations are typically
complex sociotechnical systems, demanding the processing of diverse information from
various sources, including visual and auditory cues, along with environmental inputs
both within and outside the aircraft [5]. Thus, piloting an aircraft demands a high level
of information processing and mental effort. The inability of pilots to effectively manage
excessive MWL can jeopardize safety and operational efficacy, potentially resulting in
catastrophic outcomes [6].

Safety statistics indicate that human errors, which are primarily related to aberrant
MWL levels, contribute to approximately 70% of aircraft accidents [7]. A real-world ex-
ample is the Turkish Airlines Flight TK1951 crash during its approach and landing, which
tragically resulted in 9 fatalities, 120 injuries, and severe cockpit damage. The subsequent ac-
cident investigation revealed that a malfunctioning radio altimeter automatically activated
the auto throttle, and the pilot failed to realize this due to an elevated MWL. Moreover, mod-
ern aircraft cockpits incorporate varying levels of automated systems, which could have a
significant effect on pilot MWL. Lower-level automation can potentially elevate MWL as
pilots may need to engage in various basic operations, while higher-level automation could
diminish pilot situational awareness (SA), potentially resulting in “mental underload” [8].
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In these contexts, the integration of accurate MWL measurement and prediction systems
within the contemporary cockpit plays a crucial role in enhancing safety and proactively,
mitigating aviation accidents [5]. This multi-faceted issue suggests the critical importance
of ongoing research and technological development in effectively measuring and managing
pilot MWL.

Despite the intuitive appeal of the concept of MWL across numerous domains, the lack
of standardized terminology remains a persistent issue in the literature [9,10]. It is widely
acknowledged that MWL is a multidimensional construct influenced by task demands,
individual characteristics, and the surrounding environment. For the purpose of this review,
we have adopted the following definition of MWL, which is relatively comprehensive and
covers the terms previously mentioned: “the level of attentional resources required to
meet both objective and subjective performance criteria, which may be mediated by task
demands, external support, and past experience” [11]. It is important to note that although
this review does not aim to establish a new definition of MWL, there exists a critical need
to distinguish between taskload and MWL. Taskload is a highly task-dependent concept
that can be simply defined as the work undertaken by an operator. The primary difference
between these two closely related terms is that MWL is further mediated by a number
of additional factors, including past experience, individual personality traits, and the
environment context [12]. For example, a seemingly simple task may not inherently be
mentally demanding, but a high level of MWL can be induced if an operator repeatedly
performs such a task under additional time constraints. Conversely, a highly complex task
may involve a high taskload, but the MWL level experienced may be low if the operator
is well-experienced in that particular domain. In summary, while it may be reasonable to
use taskload as a proxy for MWL in some contexts, it is critical to recognize that these are
fundamentally different, not interchangeable, terms and cannot be equally defined.

Numerous techniques are available to measure MWL in human factors and ergonomics
research. Typically, there are three groups of measures: subjective, performance-based,
and physiological [13]. Subjective measures rely on self-reported perceptions and are exten-
sively used in practice due to their cost-effectiveness, ease of implementation, and wide
acceptance among users [14,15]. However, subjective measures have several drawbacks.
For example, some participants may struggle to differentiate between task demands and the
mental effort, which can result in underreporting [16]. Furthermore, the subjective measures
can be affected by time-delay effects, as information is typically collected post-operation,
requiring operators to recall their prior sensations and map them onto a rating scale.
Performance-based measures define specific performance metrics to evaluate task effec-
tiveness, such as flight-path deviations in the context of aircraft pilots [17]. Performance
degradation serves as an indicator of high MWL, but this method primarily operates reac-
tively and may not meet the requirements of proactively foreseeing potential precursors of
increasing MWL to prevent performance deterioration. Advancements in sensing technolo-
gies have made it feasible to continuously monitor MWL and detect potential operational
risks by measuring human physiological signals using relevant devices [18]. A range of
physiological signals, including electrocardiogram (ECG), electroencephalogram (EEG),
and electrodermal activity (EDA), have been used in previous studies [19,20]. The main
advantage of physiological measures over traditional techniques is their capacity to mea-
sure MWL in a continuous manner [21]. This attribute is highly valuable in practical
applications wherein instantaneous information about an operator’s MWL is necessary to
monitor their mental state in real-time. Additionally, physiological measures provide an
objective measurement, which complements the subjectivity inherent in self-reported-based
measures. Objectivity is a desirable characteristic for MWL assessment, as it is reasonable
to suspect that not all individuals may be able to accurately report their MWL, as noted
previously. Furthermore, physiological measures are non-intrusive and require minimal
behavioral responses, which are less likely to intervene in primary tasks. Given these
advantages, the potential of using real-time physiological signals to measure an operator’s
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MWL has gained considerable attention from researchers across various fields, including
psychology, human factors, and ergonomics.

Several recent reviews have conducted comprehensive investigations into a range of
physiological signals for assessing MWL across various domains. For example, ref. [12]
investigated the measurement of MWL using multiple physiological signals and provided
the evidence base for deploying each measure in practice [22], and also, on the other hand,
focused on the multimodal fusion of physiological measures, identifying several potential
opportunities for the development of more effective fusion systems for MWL detection.
However, the use of various physiological signals poses challenges and may prove imprac-
tical to implement in real-flight scenarios due to the potential intrusive effects on pilots
and the potential to disturb aircraft instruments [22,23]. Heart rate (HR) and heart rate
variability (HRV), primarily derived from ECG, are particularly promising physiological
indicators for measuring mental status due to their reliability in detecting changes in au-
tonomous nervous system (ANS) activity, which is strongly linked to elevated MWL [24].
HRV parameters are derived from the oscillations in the intervals between heartbeats,
representing the interactions between the ANS and the cardiovascular system [25]. This
variability can be either analyzed by change over time or in terms of power spectral density,
namely time-domain HRV and frequency-domain HRV [26]. These HRV indicators can
detect specific variations in ANS activity when operators are under fatigue, stress, vigi-
lance, or high MWL states. Such alteration, as indicated by HRV indicators, could reflect
the brain–heart interaction. The successful application of HRV for MWL measurement
has been reported across a range of safety-critical domains, such as pilot [27], air traffic
control [28], driving [29], and nuclear plant operation [30]. HRV indicators have also
demonstrated correlations with time-on-task effects and the mental resources demanded by
specific tasks [31]. Recent systematic reviews of HRV-based driver fatigue and drowsiness
detection systems have concluded that HRV indices are promising in detecting these critical
mental states [32,33].

Although a large body of research has shown the effectiveness of several HRV indices
in the detection of fatigue and drowsiness, there is a lack of agreement on how these
measures respond to varying MWL levels, especially within the context of complex pilot
operations. Furthermore, most existing studies have focused on drivers, with only a limited
number of studies conducted in the domain of aviation piloting [5,34]. Although it might
be argued that both driving and piloting share similarities in terms of the attentional
resources required and mental demands, they inherently differ in several key aspects.
The configuration of instruments inside a cockpit make them more challenging to operate
compared to the instrumentation within a car. From an acoustic perspective, pilots are
subject to a higher level of attentional demand than normal drivers as they engage in
frequent communication with the air traffic management system. Additionally, fatigue,
drowsiness, and MWL are essentially different psychological constructs with different
underlying mechanisms, making it inappropriate to treat them as interchangeable terms.
Another key aspect of pilot MWL measurement is the establishment of MWL prediction
models. An accurate MWL prediction is of critical importance due to its role in developing
real-time MWL monitor systems, capable of anticipating abnormal mental states of pilots
and thus mitigating the risk of human error-related accidents. Traditional statistical-based
methods prove inadequate in capturing the intricate and nonlinear relationship between
MWL and HRV signals. In contrast, machine-learning-based algorithms have shown
promising performance in detecting different levels of MWL based on HRV features.
Despite these advancements, there does not yet exist a systematic review covering the
application of machine-learning techniques for pilot MWL prediction.

In order to address the aforementioned research gaps, the primary objective of this
paper is to provide a comprehensive synthesis of the current literature related to the as-
sessment of pilot MWL using HRV. This review concentrates on the linear HRV metrics
in the time and frequency domains due to their simplicity and common usage in existing
research, while non-linear metrics are excluded because they are less frequently employed.
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In particular, this synthesis is intended to achieve the following key aims: (1) systemat-
ically explore the various experimental designs employed in prior studies and discuss
their potential influence on the resulting HRV responses; (2) provide a comprehensive
summary of the responses exhibited by different HRV indices under varying levels of
MWL among aircraft pilots; (3) undertake an in-depth review of the recent advancements
in machine-learning-based models for predicting pilot MWL, thereby shedding light on
the potential for enhancing the performance of MWL assessment through technology;
(4) provide valuable insights into the directions for future research endeavors within this
domain by synthesizing existing knowledge and identifying potential gaps. Ultimately,
this systematic review not only seeks to advance our understanding of pilot MWL measure-
ment but also to pave the way for the development of more efficient automation systems
designed to detect fluctuations in pilot MWL.

2. Materials and Methods
2.1. Literature Search Strategy

The literature search was performed on three databases, namely PubMed, Scopus,
and Web of Science Core Collection, to extract the relevant literature. The final database
search was performed on 18 May 2023 and the search results were limited to publications
from the year 2000 until May 2023, given the rapid advancements in computing and wear-
able technology. To focus on the specific areas of interest, the following search algorithm
was employed for all three chosen databases: “(mental workload OR cognitive workload
OR workload OR load) AND (physio* OR ECG OR electrocardiogram OR heart rate OR
HR OR HRV OR cardiovascular) AND (flight OR aviation OR aircraft)”. The terms were
searched for in the fields of title, abstract, and keywords. The search terms were applied to
the fields of title, abstract, and keywords.

2.2. Procedure and Eligibility Criteria

The search and selection process adhered to the guidelines established by the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework [35].
A flow diagram adapted from PRISMA, as shown in Figure 1, demonstrates the full search
and selection process. The initial search across three selected databases yielded a total of
990 papers. After removing duplicate entries, 665 distinct records remained for further con-
sideration. Subsequently, a rigorous evaluation of the titles and abstracts of these records
led to the identification of 56 articles for further in-depth, full-text examination. After care-
fully reviewing the full texts of these potentially relevant papers, a total of 29 papers were
included in this review, and 27 articles were excluded from the full-text assessment based
on the defined inclusion and exclusion criteria shown in Table 1. Among the 27 excluded
articles, 12 did not focus on flight-related tasks, 7 did not use ECG-based devices to measure
heart activity, 3 primarily studied the relationship between HRV indices and performance,
4 were review studies, and 1 article included subjects with health issues. Note that out of
the total of 85 references cited in this paper, the remaining references were used to support
the introduction and other sections and not for the purpose of the systematic review.

Table 1. Inclusion and Exclusion Criteria.

Inclusion Criteria Exclusion Criteria

(1) Written in English. (1) Review papers or meta-analysis.
(2) Peer-reviewed journals. (2) Targeted physical workload.
(3) Examined HR or at least one HRV
for MWL.

(3) Conducted on subjects with health
conditions or diseases affecting HRV.

(4) Included a flight-related task. (4) Did not use ECG-based device.
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Figure 1. PRISMA flow chart of the literature selection process.

2.3. Data Extraction

In our study, we extracted data from a total of 29 relevant research articles. Specifically,
the extracted data cover the following aspects: (1) subject characteristics, including infor-
mation about the number of subjects, their demographic details, and their level of flight
experience; (2) flight task settings, which included the type of flight tasks (i.e., simulated or
real flight), flight task settings, and the methods used to manipulate MWL; (3) measurement
methods, consisting of devices to measure heart activity, and reference MWL measurement
approaches; (4) the reported variations in HRV measures in response to elevated MWL;
and (5) the machine-learning techniques employed (if applicable) and features used, model
selection, and the corresponding model performance. Table 2 presents an overview of the
HRV measures included in this review, along with their brief descriptions and investigated
frequency in the selected articles. All these measures are standard HRV features that
comply with the Task Force guidelines for HRV-related metrics and have been extensively
employed in MWL studies and other relevant domains [36].

Table 2. Summary of the HRV indices examined in the review.

Domain Index Unit Description Frequency

Time

HR 1/min The number of beats over a given time period 15
NN ms Normal to normal interval. Also known as the RR interval or the interbeat interval (IBI) 5
SDNN ms Standard deviation of normal-to-normal intervals 7
RMSSD ms The square root of the mean squared differences of successive NN intervals 3
NN50 count The number of pairs of successive NN intervals that differ by more than 50 ms 1
pNN50 % The percentage of NN50 divided by the total number of NN intervals 1

Frequency

VLF ms2 The power of the very low frequency band (less than 0.04 Hz) 1
LF ms2 The power of the low frequency band (0.04 to 0.15 Hz) 3
HF ms2 The power of the high frequency band (0.15 to 0.4 Hz) 6
LF/HF ratio The ratio of LF to HF power 6

Count refers to the number occurrences and ratio refers to dimensionless. Abbreviations: HRV, Heart Rate
Variability; HR, Heart Rate; NN, Normal to Normal; SDNN, Standard Deviation of the Normal to Normal;
RMSSD, Root Mean Square of Successive Differences; VLF, Very Low Frequency; LF, Low Frequency; HF,
High Frequency.
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3. Results

Table 3 presents the details of the 29 studies included in this systematic review.
The main findings summarized from the literature are organized as follows: First, Section 3.1
examines the diverse experiment designs across the literature. To be specific, we discuss
the characteristics of the subjects, flight task settings, and approaches used to manipulate
different MWL levels. In Section 3.2, we review the measurements, including the devices
used to measure heart activity and the subjective measures used to measure perceived
MWL. Then, the findings of the HRV indices used in the pilot MWL assessment are pre-
sented in Section 3.3. Finally, Section 3.4 summarizes and discusses the machine-learning
techniques used in the included studies and their performance.

3.1. Experimental Design
3.1.1. Subjects Characteristics

The sample sizes used included articles ranging from 7 to 35. Approximately one-third
of reviewed studies had sample sizes less than or equal to 10. Only two studies used a
relatively large study sample with more than 30 participants [37,38]. Age has long been
reported as a major contributing factor to heart activity and thus could influence the
majority of the HRV results [39]. Among the 29 included studies, there were only three
studies that used samples with a wide age range [40–42]. No reviewed article compared
the difference in HRV responses between different age groups. Another important factor
that might influence HRV responses is the experience level of the pilot. Most reviewed
studies used professional pilots, and only 3 studies selected participants with no flight
experience [38,43,44]. The experience levels of the subjects significantly differ in terms
of flight hours, which is a metric to quantify the experience level used by the majority
of the studies. In addition, several studies have shown that subjects with different flight
experiences can show different physiological responses when performing the same task.
Ref. [43] investigated the difference in HR changes between novice and experienced pilots
in a simulated environment, and the results showed that the less experienced group had
higher HR when compared to pilots with more flight experience. A similar result was also
obtained in [45], but it was only significant in the takeoff phase, which has been considered
as one of the most information-loaded flight segments. Ref. [46] found the variation of
HR was not significant between experienced and less experienced pilots, which is not
consistent with previous studies, although a larger sample size is needed to further confirm
this finding.

3.1.2. Flight Task Settings

Over two-thirds of the reviewed studies were conducted in a flight simulator, and only
nine reviewed articles were performed in a real-flight environment [27,45,47–53]. Notably,
there were two studies conducted in both scenarios and they empirically compared the
difference between simulator and real flight [47,52]. Although most studies were performed
based on simulation, the flight simulators they used significantly differed in their levels
of fidelity, which indicates to what extent the simulation can be comparable to the real
world [54]. The type of simulator can be categorized into five groups, ranging from
computer screen-based simulators to full motion flight simulators according to previous
studies [9]. Only two studies [17,41] used a full motion simulator with six degrees of
freedom, which is characterized as the highest level of fidelity. MATB, which was used by
four reviewed studies, is a simple, multi-tasking test battery, consisting of four subtasks,
namely communication, resource management, tracking, and monitoring. It has been
widely used in studying the MWL of non-pilot subjects and multi-tasking [55,56], but may
not be sufficiently comparable to real piloting operations.

3.1.3. Mental Workload Manipulation

Significantly different methods have been employed to manipulate MWL levels. Most
of the reviewed studies used task load as a close proxy to MWL and manipulated workload
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by introducing different task difficulties (e.g., high task difficulty is associated with a
high MWL level). It is generally assumed that different brain states will be activated by
changing the task difficulties, and consequently eliciting different MWL conditions. In the
context of flight, the task difficulty levels can be naturally represented by different flight
segments. For example, take-off and landing operations are typically considered as more
demanding maneuvers than others [57]. The majority of the studies used this approach
without explicitly defining different MWL scenarios, where the flight can be divided into
several segments, each consisting of several flight maneuvers, and each flight segment can
be assigned to a certain MWL level. Additionally, a total of nine studies manipulated MWL
conditions by introducing one or more subtasks to increase the mental resources demanded
by the tasks.

Different MWL levels can be induced by adjusting the number of subtasks required
to complete simultaneously [44], the difficulty of the subtask [43,56,58,59], the occur-
rence frequency of the subtasks [42,60], or the combination of the subtask with other
factors [43,52,61]. The subtasks used in different studies also significantly differ. Several
studies opted to use flight-related subtasks. For example, in [52], participants were re-
quired to change the responder settings in the cockpit in addition to the primary flight task.
Ref. [59] asked subjects to monitor several flight indicators presented on the screen during
the cruise phase. Refs. [43,61] employed traditional psychological tasks, such as n-back
and mental arithmetic, as additional cognitive tasks. Several studies induced higher MWL
levels by generating several events to increase the stimuli, such as engine failure and pump
failure [38,47,62,63]. In addition, there were studies that introduced environmental factors,
such as low visibility, crosswind, and turbulence, to accelerate the development of high
MWL [41,46,61–63].

3.2. Measurement
3.2.1. Heart Measurement Devices

Different types of devices to measure heart activity have been used in the reviewed
studies. Traditional EEG with a number of gel electrodes was used by the majority of the
studies. With the advances in wearable and sensing technologies, wearable ECG-based de-
vice provides another solution, which was used by six of the reviewed
studies [38,41,44,45,61,62].

3.2.2. Reference MWL Measurement

Different measurements were used to obtain the MWL level as the reference. Subjective
measure is the most frequently used approach among all included studies. The increased
subjective score indicates that an elevated level of MWL experienced by the subject during
task execution is elicited successfully. The NASA-Task Load Index (NASA-TLX) [64], which
is a well-validated subjective questionnaire, was the most-used subjective measure in the
reviewed studies. It is a multidimensional measuring scale that can reflect the overall
MWL as well as six subscales, namely mental demand, physical demand, temporal de-
mand, frustration, effort, and performance, and thus it can diagnose the source of elevated
MWL [64,65]. Unidimensional scales, such as the Rating Scale of Mental Effort (RSME)
and Modified Cooper–Harper Workload Rating Scale (MCH), were also used by several
studies due to their simplicity and effectiveness. Seven studies used expert ratings, where
experts assessed the participants’ MWL based on their observations and predefined criteria,
instead of relying on participants’ self-reports [37,41,46,49,50,66,67]. It was observed that
there were several discrepancies between the expert rating and the subjective measures.
These discrepancies may be because different groups may have distinct understandings of
the MWL, and it could be difficult for some participants to discriminate task difficulty and
their MWL, which may result in bias. Notably, [62] used a third-party software that can
map the EEG signals to numerical MWL ranging from 0 to 100. This technique provides a
solution to continuously obtain the reference MWL level in an extremely short time period.
However, the validity of such an approach needs to be tested in the future.
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Table 3. Overview of reviewed studies.

Reference Subjects Flight Task Settings Measurements HRV Indicator

[57]

Size: 19.
Age: range 17–27.
Experience: had prior
experience in a simulator,
but had not yet started their
military flight training.

Type: Flight simulator.
Task: Six flight segments
consisting of 37 elements, IFR
with simulated meteorological
conditions.
Manipulation: different flight
maneuvers.

Device: Conventional ECG.
Reference: RSME.

HR+
MF−
HF−

[53]

Size: 10.
Age: mean age 43, range 30–64.
Experience: mean flight hours
1317, range 158–5400.

Type: Real flight.
Task: Twenty-two flight
segments, VFR, IFR,
and high-speed IFR (pilots
wore goggles that restricted
their vision to simulate IFR).
Manipulation: different flight
maneuvers.

Device: Conventional ECG.
Reference: Bespoke measure.

HR+
MF n.s
HF n.s

[52]

Size: 20.
Age: mean age 23.3.
Experience: candidates of the
air force.

Type: Real flight and
fixed-base flight simulator.
Task: Six segments with
increasing levels of difficulty,
19 timed instructions.
Manipulation: different flight
maneuvers and subtask.

Device: Conventional ECG.
Reference: RSME.

HR+
MF−
HF−

[43]
Size: 12.
Age: mean age 25.
Experience: no experience.

Type: Computer screen-based
simulator.
Task: Follow a dynamic target
with the piloted aircraft, four
experimental sessions
resulting from the
manipulation of two levels
within two factors.
Manipulation: the difficulty
of control and subtask.

Device: Conventional ECG.
Reference: NASA-TLX. LF/HF−

[46]

Size: 15.
Age: range 25–34.
Experience: Set 1: less
experienced (<300 flight
hours); Set 2: well experienced
(>300 flight hours).

Type: Flight simulator.
Task: Combat flight mission
consisting of 13 phases,
including beyond visual range
interceptions with multiple
enemy aircraft and
interception of enemy aircraft
formation, ILS approach and
landing were performed in
minimal weather conditions,
with no takeoff operation.
Manipulation: different flight
maneuvers.

Device: Conventional ECG.
Reference: Expert rating.

HR+
∆HR+

[17]

Size: 23.
Age: mean age 31.8.
Experience: mean flight hours
633.1.

Type: Full motion simulator.
Task: Two segments:
(1) take-off and climb (2) ILS
approach and landing phase.
Manipulation: different flight
maneuvers.

Device: Conventional ECG
Reference: NASA-TLX.

LF/HF+
SDNN−
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Table 3. Cont.

Reference Subjects Flight Task Settings Measurements HRV Indicator

[41]

Size: 7.
Age: mean age 48.7,
range 35–61.
Experience: well-experienced.

Type: Flight simulator.
Task: Three segments (take-off
phase, in-flight phase,
approach, and landing phase)
consisting of 18 sessions, each
session lasting for 5 min.
Manipulation: different flight
maneuvers and environmental
factors.

Device: Wearable ECG.
Reference: NASA-TLX. and
expert rating.

HF−
LF−
LF/HF+
SDNN+
NN−

[48]

Set 1 (experienced):
Size: 4.
Age: mean age 47.8.
Set 2 (novice):
Size: 8.
Age: mean age 33.1.

Type: Real flight.
Task: Preflight check, take-off,
three standard traffic patterns
each followed by a
touch-and-go landing and
takeoff, and final approach
and landing.
Manipulation: different flight
maneuvers.

Device: Conventional ECG.
Reference: Unknown. HR+

[40]

Size: 10.
Age: mean age 44.5,
range 28–58.
Experience: mean flight hours
9025, range 1000–25,000.

Type: Flight simulator.
Task: Four segments (take-off,
cruise, ILS approach,
and landing) consisting of 24
flight activities, 25–30 min
each segment.
Manipulation: different flight
maneuvers.

Device: Conventional ECG.
Reference: NASA-TLX.

HR+
∆HR+
RMSSD−

[59]

Size: 12.
Age: range 23–25.
Experience: highly trained but
no real-flight experience.

Type: Flight simulator.
Task: Three segments (take-off,
cruise, and landing); subjects
were required to continuously
monitor the flight indicators
presented on the head-up
display during the cruise
phase.
Manipulation: the difficulty
of the subtask.

Device: Conventional ECG.
Reference: NASA-TLX. HR n.s

[44]

Size: 26.
Age: mean age 20.5.
Experience: no flight
experience.

Type: Computer screen-based
simulator.
Task: Simulate multitasking
during flight, including the
flight target tracking task,
the meter monitoring task,
the emergency handling task,
and the residual capacity task.
The residual capacity task is a
secondary task, and the other
three tasks are primary tasks.
Manipulation: the number of
subtasks.

Device: Wearable ECG.
Reference: NASA-TLX.

HR+
SDNN n.s
RMSSD n.s
LF/HF n.s
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Table 3. Cont.

Reference Subjects Flight Task Settings Measurements HRV Indicator

[58]

Size: 20.
Age: mean age 22.7.
Experience: mean flight hours
141.3.

Type: Fixed-base flight
simulator.
Task: From take-off to landing;
the established flight paths
required various changes in
heading, speed, and altitude
specifications to vary the
course. During the cruise
phase, subtasks were
introduced.
Manipulation: the difficulty
of the subtasks.

Device: Conventional ECG.
Reference: None.

HR+
SDNN n.s
RMSSD n.s
pNN50 n.s

[38]

Size: 30.
Age: mean age 34.3.
Experience: not professional
pilots; 4 participants had some
flying experience.

Type: MATB simulator.
Task: Four subtasks (the
resource management task,
the tracking task, the system
monitoring task, and the
communication task) with two
MWL levels.
Manipulation: the number of
events in each task.

Device: Wearable ECG.
Reference: NASA-TLX.

HR+
SDNN n.s
VLF n.s
LF n.s
HF n.s

[68]

Set 1 (experienced):
Size: 4.
Age: mean age 47.8.
Set 2 (novice):
Size: 8.
Age: mean age 33.1.

Type: Computer screen-based
simulator.
Task: Preflight check, take-of,
three standard traffic patterns
each followed by a
touch-and-go landing and
takeoff, and final approach
and landing.
Manipulation: different flight
maneuvers.

Device: Conventional ECG.
Reference: SOAP. HR n.s

[66]

Size: 14.
Age: 25–34.
Experience: mean flight
hours 885.

Same settings as [46] Device: Conventional ECG.
Reference: Expert rating.

[61] Size: 16.
Age: 25–34.

Type: Fixed-base flight
simulator.
Task: Three phases, including
take-off, cruise, and landing,
with four MWL conditions.
Manipulation: visibility and
subtasks.

Device: Wearable ECG.
Reference: None.

[62]

Size: 13.
Age: mean age 36.
Experience: mean flight hours
605.

Type: Computer screen-based
simulator.
Task: Only takeoff phase.
Manipulation: different
events and environmental
factors (visibility, weather,
wind).

Device: Wearable ECG.
Reference: None.

[51]

Size: 11.
Age: mean age 21.4.
Experience: mean flight
hours 68.

Type: Real flight.
Task: Three phases (takeoff,
downwind, landing) with
2 runs.
Manipulation: different flight
maneuvers.

Device: Conventional ECG.
Reference: NASA-TLX.
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Table 3. Cont.

Reference Subjects Flight Task Settings Measurements HRV Indicator

[60]

Size: 15.
Age: range 22–25.
Experience: no flight
experience.

Type: MATB simulator.
Task: Four subtasks (the
resource management task,
the tracking task, the system
monitoring task, and the
communication task) with two
MWL levels.
Manipulation: occurrence
frequency of subtasks.

Device: Conventional ECG.
Reference: None.

[49] Size: 10.

Type: Real flight
Task: Twenty-two flight
segments with three MWL
levels.
Manipulation: different flight
maneuvers.

Device: Conventional ECG.
Reference: Bespoke measure
and expert rating.

[50] Same as [49]

[67]
Size: 27.
Experience: mean flight hours
627.

Type: Fixed-base flight
simulator.
Task: A number of instrument
landing system approaches
with a set of subtasks
Manipulation: temporal
demands.

Device: Conventional ECG.
Reference: Expert rating,
NASA-TLX, MCH.

NN−

[37]
Size: 35.
Experience: mean flight hours
598.

Type: Fixed-base high-fidelity
flight simulator.
Task: ILS approach and
additional flying-related
subtasks.
Manipulation: Increasing the
load on the subjects by
reducing the range at which
they commenced the
approach.

Device: Conventional ECG.
Reference: Performance.

HR+
NN−
SDNN−
NN50−
pNN50−

[45]

Set 1 (experienced):
Size: 9.
Age: mean age 33.8.
Experience: flight hours
487–2883.
Set 2 (novice):
Size: 9.
Age: mean age 23.1.
Experience: flight hours
220–240.

Type: Real flight.
Task: Preflight check, take-off,
three standard traffic patterns
each followed by a
touch-and-go landing and
takeoff, and final approach
and landing.
Manipulation: different flight
maneuvers.

Device: Wearable ECG.
Reference: None. HR+

[27] Size: 17.

Type: Real flight.
Task: One basic airland
portion (transporting cargo
from one airstrip to another
with a high cruise altitude)
and one tactical airland part
(transporting cargo at low
altitudes to an assault landing
strip with simulated threats).
Manipulation: different flight
maneuvers.

Device: Conventional ECG.
Reference: MCH. HR+
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Table 3. Cont.

Reference Subjects Flight Task Settings Measurements HRV Indicator

[63]

Size: 10.
Age: mean age 37.8.
Experience: mean flight hours
115.8.

Type: Flight simulator
Task: Eight segments
including takeoff, 3
touch-and-go landings,
high-speed approach,
instrument flight sequence,
rerouting, and 3 simulated
failures multi-leg
cross-country flight.
Manipulation: different flight
maneuvers with flight failure
and low visibility conditions.

Device: Conventional ECG.
Reference: Mackworth’ clock
test and KSS.

NN−
SDNN−
LF/HF+

[47]

Size: 11.
Age: mean age 24.8, range
23–28.
Experience: mean flight hours
156.

Type: Real flight and
Fixed-based flight simulator.
Task: Fifteen segments
including takeoff, rejected
takeoff, engine failure, cruise,
instrument approach, and
landing.
Manipulation: different flight
maneuvers with engine
failure.

Device: Conventional ECG.
Reference: Likert scale. HR+

[56]

Size: 15.
Age: mean age 21.1, range
18–24.
Experience: no flight
experience.

Type: MATB simulator.
Task: One-dimensional
tracking, system monitoring,
and resource management.
Manipulation: the amplitude
of the tracking task.

Device: Conventional ECG.
Reference: NASA-TLX.

LF−
HF−
LF/HF n.s

[42]

Size: 7.
Age: range 19–26.
Experience: no flight
experience.

Type: MATB simulator.
Task: Four subtasks (the
resource management task,
the tracking task, the system
monitoring task, and the
communication task) with two
MWL levels.
Manipulation: occurrence
frequency of subtasks.

Device: Conventional ECG.
Reference: None. NN−

For HRV indicator, ‘+’ and ‘−’ denote higher and lower values under elevated mental workload, ‘n.s.’ denotes
non-significant result, and fields left empty indicate that they were not investigated in the study. Abbreviations:
HRV, Heart Rate Variability; ECG, Electrocardiography; RSME, Rated Scale of Mental Effort; HR, Heart Rate;
VLF, Very Low Frequency; LF, Low Frequency; MF, Middle Frequency; HF, High Frequency; VFR, Visual Flight
Rules; IFR, Instrument Flight Rules; NASA-TLX, National Aeronautics and Space Agency-Task Load Index;
ILS, Instrument Landing System; NN, Normal Normal; SDNN, Standard Deviation of the Normal Normal;
RMSSD, Root Mean Square Standard Deviation; MATB, Multi-Attribute Task Battery; SOAP, Sustained Operations
Assessment Profile; MWL, Mental Workload; MCH, Modified Cooper–Harper Workload Rating Scale; KSS,
Karolinska Sleepiness Scale.

3.3. HRV Responses

The majority of the reviewed studies investigated how HR or HRV indices were
correlated with increased MWL levels, i.e., the direction of movement in various variables
when MWL became higher. In total, 22 studies reported differences in HR or HRV indices in
response to varying MWL levels. We commence with an examination of HR in Section 3.3.1,
followed by the presentation of HRV results in Section 3.3.2.
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3.3.1. Heart Rate

Among all of the measures derived from the ECG, HR is the simplest to obtain and
analyze. It is a well-known and long-established metric that has been used to study a
variety of human information processing activities in both laboratory and operational
environments [69]. Indeed, HR was the most widely investigated index in assessing pilot
MWL found during the search of the literature. In total, 15 reviewed studies investigated
how HR correlates with elevated MWL levels. Incremental heart rate (∆HR), defined as
the change in heart rate from a baseline or resting state to a specific period during flight
operations, was also considered a useful index of pilot MWL. Unlike absolute HR, which
provides a measure of the heart’s beats per minute, ∆HR specifically captures the variations
in HR that occur in response to increased cognitive demands during different flight phases.
It was widely agreed that increased MWL leads to an increase in HR (or decrease in NN
interval), which has been confirmed both in simulated studies and in real flight, indicating
a globally stronger sympathetic activity. Similar to HR, an increase in ∆HR was observed to
be associated with increased MWL experienced by the pilot. However, two studies reported
inconsistent findings, where the effect of MWL on HR was not statistically significant [59,68].
With respect to different phases of flight, the highest value in HR was observed during
the takeoff and landing phase [40,45,48,53]. Furthermore, with the introduction of more
demanding elements, such as rejected takeoff, a significant increase in ∆HR was observed,
confirming the sensitivity of HR to the varied mental demands [47]. Ref. [53] observed
there was inconsistency between HR and the MWL perceived by pilots using subjective
measures. The highest MWL self-rating score appeared in the IFR (Instrument Flight Rules)
tracking segment rather than the takeoff and landing phase. Similar results have been
obtained by [27], where HR showed subtle variations in the simulated emergency segment,
whereas the subjective ratings showed it is the most demanding phase of all segments.
However, when the mental demands were extremely high, during the touch and go on
the icy runway, the HR and subjective ratings were highly correlated [27]. It was also
concluded that HR is the unique HRV metric that could distinguish between rest period
and task execution [57]. Ref. [46] also found a significant change in HR between different
phases of flight during a simulated flight task. HR was reported to be able to differentiate
ANS response variations between different flight segments instead of only between the
rest and trial periods [37], which replicated the previous study. Ref. [44] observed that
HR can discriminate between different flight segments but only between the highest and
lowest task demand scenarios. However, there were no significant differences observed
in the mean HR between phases in [40,52,68]. Ref. [38] observed that HR can discriminate
between different levels of MWL but not task types during a MATB-based simulation.

3.3.2. Heart Rate Variability

Regarding frequency-domain HRV indices, the LF/HF ratio and HF were the most
investigated, with a total of 10 reviewed studies, along with other related research [70,71],
considering them to be important physiological indicators of MWL. Additionally, other
frequency-based HRV metrics, such as LF, MF, and HF, have been extensively investigated.
Notably, one study used VLF analysis as a means to evaluate pilot MWL but obtained
non-significant results [38]. These diverse frequency HRV components are associated with
different branches of ANS activity. For example, LF is considered a joint reflection of
both sympathetic and parasympathetic activities, while HF is primarily associated with
parasympathetic activity. The LF/HF ratio is typically considered an indicator of the balance
between sympathetic and parasympathetic ANS activities. However, the physiological
basis for this interpretation of the LF/HF ratio has been challenged [72]. In the context
of time-domain HRV, SDNN was the most investigated measure within the reviewed
studies as its simplicity in calculation compared to other metrics, directly derived from
the NN interval. Ref. [37] tested several time-domain indices and they observed that
NN was the only indicator that could differentiate the high-performance group from the
sub-standard-performance group. However, it is noteworthy that, overall, time-domain



Sensors 2024, 24, 3723 14 of 27

HRV received relatively less attention in studies related to pilot MWL when compared to
frequency-domain HRV.

Typically, increased MWL levels induce lower HRV values [73]. However, contradic-
tory findings exist across the literature, especially for the LF/HF ratio (e.g., the direction of
change in HRV with elevated MWL was not consistent). For example, a lower LF/HF ratio
at the highest level of MWL was only observed in [43], while all other studies reported
higher ratios, and two studies did not find significant results [44,56]. Ref. [56] observed
significant inter-individual differences in terms of the LF/HF ratios. With increasing mental
demands, parasympathetic activity tends to decrease, resulting in concurrent reductions
in both LF and HF components. Consequently, the direction of change in the LF/HF ratio
becomes less distinct.

Several studies examined HR and HRV parameters simultaneously, and the results
consistently demonstrated that HR exhibits greater sensitivity in response to varying
mental demands in comparison to HRV. Ref. [53] observed that the changes in HRV were
not significant during different flight segments, while HR demonstrated a strong correlation
with varying mental demands. Similarly, ref. [58] observed an immediate increase in HR
as MWL increases, whereas HRV failed to show significant differences across various
MWL conditions. The discriminative power of HR in detecting MWL changes was also
confirmed by [38], where HR proved effective while HRV did not. During actual flight
scenarios, ref. [51] conducted a comparative analysis of ECG changes across two flight runs.
Their findings indicated that HR was the sole indicator sensitive to the “run effect”, with
the first run displaying higher HR values compared to the subsequent run. In comparing
simulated and real-flight scenarios, HR exhibited significant variations between simulations
and real flights, whereas HRV did not exhibit such distinctions. However, regarding the
momentary changes, both HR and HRV were identified as responsive indicators to short-
term fluctuations in MWL, with the HF band of HRV displaying greater sensitivity [57].
Additionally, ref. [63] revealed a temporal aspect within HRV parameters, with elevated
LF/HF ratios persisting for over two hours post-flight, and decreased NN intervals and
SD1 values enduring for up to five hours after the flight.

3.4. Pilot MWL Detection Using Machine Learning

In total, eight studies developed HRV-based MWL systems to discriminate between dif-
ferent pilot MWL situations, using a range of machine-learning techniques. Table 4 provides
a comprehensive summary of the details of these studies. It should be noted that the direct
comparison of algorithm performance across these studies is not feasible due to variations in
experimental designs. As discussed in the preceding sections, factors such as the utilization of
different subjects, variations in flight task configurations, and the specific sensors employed
can significantly impact model performance. To ensure a comprehensive 406 overview,
we present the review from the following three aspects: problem definition (Section 3.4.1),
feature selection (Section 3.4.2), and model performance (Section 3.4.3).

3.4.1. Problem Definition

Most of the reviewed detection systems were defined as a classification problem,
where each data sample, comprising the physiological signals measured within a defined
time window, was labeled with a numerical representation corresponding to the MWL level
(e.g., low MWL designated as 0 and high MWL as 1). However, it is noteworthy that two
studies departed from this classification paradigm and instead treated MWL assessment as
a regression problem, employing a quantified numerical range to represent MWL levels.
Overall, in the case of binary classification, these systems have demonstrated promising
classification performance, with the highest reported accuracy exceeding 90% [60]. Notably,
in the context of multi-class classification, ref. [61] built multi-class MWL classifiers using
a support vector machine (SVM), but the results were not satisfactory, with the highest
accuracy falling below 50% for three-class classification and even lower for four-class
classification. Similarly, ref. [49] reported the inherent difficulty of classifying MWL into
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multiple classes compared to binary classification. Nevertheless, they argued that the
primary objective of the MWL detection system lies in the accurate identification of high
MWL levels, and thus it is not practically meaningful to detect moderate MWL conditions.
This statement should be questioned because multi-class classification has the potential
to anticipate a rising trend in pilot MWL. This capability allows for timely and tailored
adaptative aiding to prevent MWL from going beyond the “high MWL” class. In essence,
multi-class classification can facilitate a more proactive approach to MWL management.

Table 4. Summary of studies using machine-learning techniques with details.

Reference Problem Data/Measures/Features Model Selection Best Performance

[66] Regression

Ground truth: Observer
rating.
Measure(s): ECG.
Feature: NN

Model(s): MLP and multiple
regression model.
Train and validation: 8
participants for train, 6
participants for validation

MAE: 9.9 (MLP)

[61]
Binary,
multi-class
classification

Ground truth: Low and high
MWL induced by different
events and environmental
factors.
Measure(s): ECG, EEG.
Feature: Top 3 HRV measures
and top 20 EEG measures
obtained by PCA

Model(s): LDA, SVM, KNN.
Train and validation:
personalized model

Accuracy: 2-class: 75% (SVM)
3-class: 48.21% (KNN)
4-class: 37.2% (LDA)

[62] Regression

Ground truth: EEG-based
MWL scoring system
(ranging from 0–100).
Measure(s): ECG, EEG, eye
tracker.
Feature: Top 10 features
obtained by Pearson
correlation analysis

Model(s): Ridge regression,
SVM, MLP, CNN, Bi-LSTM,
Stacked-LSTM

MAE: 5.28 (Stacked-LSTM),
MSE: 44.09 (Stacked-LSTM),
RMSE: 6.64 (Stacked-LSTM)

[51] Trinary
classification

Ground truth: Low, medium,
and high MWL induced by
different flight phases.
Measure(s): ECG, eye tracker.
Feature: HR, SDNN, fixation
duration, saccadic rate, visual
entropy

Model(s): LDA with all
features, LDA with HR, LDA
with saccadic rate.
Train and validation: trained
on the first run and tested on
the second one using a leave
one out cross-validation

Accuracy: 75% (LDA with
saccadic and LDA with all
features)

[60] Binary
classification

Ground truth: Low and high
MWL induced by the
occurrence frequency of
subtasks.
Measure(s): ECG.
Feature: NN, Total Power,
QRS wave power, Sample
Entropy

Model(s): SVM with linear
kernel, SVM with RBF kernel,
RF, Adaboost.
Train and validation: K-fold
cross validation; personalized
model

Precision and recall: 90.88%
and 91.86% (SVM with all
features trained on
individual)

[50] Binary
classification

Ground truth: Low and high
MWL derived from subjective
measure.
Measure(s): ECG, EEG,
eye-related measure,
respiration.
Feature: Features obtained
from the combination and
calibration scheme with three
moving averages

Model(s): MLP.
Train and validation:
Leave-one-in strategy

Accuracy: 80% (MLP with
feature combination and
calibration)
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Table 4. Cont.

Reference Problem Data/Measures/Features Model Selection Best Performance

[49] Binary
classification

Ground truth: Low and high
MWL derived from subjective
measure.
Measure(s): ECG, EEG,
eye-related measure,
respiration.
Feature: Features obtained
from statistical stepwise
screening and signal-to-noise
ratio saliency

Model(s): MLP, quadratic
discriminant model, linear
discriminant model.
train and validation:
personalized model

Accuracy: 82% (MLP)

[42] Trinary
classification

Ground truth: Low and high
MWL induced by the
occurrence frequency of
subtasks, plus the baseline
scenario.
Measure(s): ECG, EEG, EOG,
respiration.
Feature: 43 features
consisting of 30 EEG channels
and 10 EOG channels with
five bands each, plus the
interbeat, interblink,
and respiration intervals.

Model(s): MLP.
Train and validation: 10s
window size with 50%
overlap; 75% train, 25% test.

Accuracy: 85.0% for baseline
82.0% for low MWL
86.0% for high MWL

Abbreviations: ECG, Electrocardiography; NN, Normal Normal; MLP, Multilayer Perceptron; MAE, Mean
Absolute Error; MSE, Mean Square Error; RMSE, Root Mean Square Error; MWL, Mental Workload; EEG, Elec-
troencephalography; HRV, Heart Rate Variability; PCA, Principal Component Analysis; LDA, Linear Discriminant
Analysis; SVM, Support Vector Machine; KNN; K-Nearest Neighbors; CNN, Convolutional Neural Network;
LSTM, Long Short-Term Memory; SDNN, Standard Deviation of Normal Normal; RBF, Radial Basis Function;
RF, Random Forest; EOG, Electrooculographic.

3.4.2. Feature Selection

Using a single-signal approach to construct machine-learning models was typically
regarded as less reliable, primarily due to the likelihood of these encoded features failing
to capture sophisticated relationships. However, ref. [66] achieved acceptable results using
only one HRV measure. In contrast, ref. [60] highlighted the importance of leveraging
multiple HRV features to develop a MWL classifier with high accuracy. In studies adopt-
ing a poly-signal approach, EEG and eye-related measures were the most used, together
with ECG. Using a poly-signal approach can consistently yield robust model performance,
as demonstrated by [51], where the introduction of eye-related features substantially en-
hanced classifier accuracy. Ref. [61] used principal component analysis (PCA) to identify
the most significant features within an extensive set, including 623 features derived from
ECG and EEG, and results showed PCA can significantly improve the performance while
reducing the computational demands. Alternatively, ref. [50] proposed a feature combi-
nation strategy to linearly fuse HR and eye-related signals into one single measure. This
feature combination has demonstrated the potential to significantly improve learning per-
formance, from approximately 50% to 80% in terms of classification accuracy. However, this
reconstruction may sacrifice the interpretability of the original features in further feature
analysis [74].

3.4.3. Model Performance

It is important to note that there does not exist a universal model capable of con-
sistently outperforming others across all scenarios. The performance of these models is
largely dependent on a range of factors, including data quality, the nature of input fea-
tures, and the strategies employed for training and validation. The primary objective
of this section is to summarize the diverse models employed in previous research and
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provide insights into future research directions concerning model selection. Regarding
traditional machine-learning techniques, SVM has emerged as a widely utilized model.
It has been reported that SVM consistently achieves superior model performance when
compared to other machine-learning methods [60,61]. However, these promising outcomes
have predominantly been observed in binary classification scenarios, specifically in the
discrimination of low and high MWL states. Regarding deep-learning models, multilayer
perceptron (MLP), characterized by three layers of neurons, has also demonstrated substan-
tial promise in MWL classification tasks [42,49,50]. The inherent strength of MLP lies in
its capacity to adeptly approximate complex and multidimensional non-linear functions,
attributable to its parallel architecture [75]. However, neural networks, including MLP, are
often characterized as ’black-box’ models, which are less interpretable when compared to
traditional statistical-based, machine-learning models. One included research developed
a personalized model to classify different MWL levels, and the results suggested that the
model trained at an individual level can consistently realize better performance than the
collective model trained at the whole population level [60].

4. Discussion
4.1. Primary Findings

Table 5 summarizes the key insights derived from the reviewed literature, categorized
according to each respective section.

Table 5. Summary of Primary Findings.

Section Findings

Experiment design

• Significant variations in study design complicate quantitative
interpretation and comparison across studies.

• Small sample sizes in reviewed articles may compromise reli-
ability.

• Flight experience correlated with lower MWL levels but was
potentially confounded by age.

Use of HRV in a
real-world scenario

• Majority of studies used flight simulators, which provide con-
trolled environments but may not fully replicate real-world
mental demands.

• Findings from simulator studies may not generalize well to
real-world flight scenarios due to the absence of real-world
consequences and physical conditions.

Considerations of
simulator fidelity

• Simulator fidelity impacts physiological responses and MWL.
• High-fidelity simulators are preferred for ensuring data qual-

ity while maintaining safety.

Measurements

• Traditional ECG devices provide accurate measurements but
are less practical in occupational settings.

• Wearable ECG devices offer convenience and applicability in
real-world scenarios but require further validation.

Physiological responses

• HR increases with higher MWL, though responses can vary
by task and individual.

• HRV offers detailed insights into ANS activity but shows
inconsistent results due to experimental variability.

HRV-based MWL
detection system

• Multi-class classification of MWL provides nuanced under-
standing but is challenging.

• Advanced deep-learning techniques and personalized models
show promise for improved detection accuracy.
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4.1.1. Experiment Design

Significant variations in study design were observed across all the articles under
review. These diverse experimental designs introduce complexities when attempting to
quantitatively interpret and compare results across different studies. Notably, concerning
the study populations, the sample sizes in the reviewed articles appeared relatively small
compared to other similar research, such as studies on driver fatigue. For instance, a recent
review by [32] reported sample sizes ranging from 2 to 86 in studies related to driver fatigue
detection using HRV indices. This discrepancy in sample size may be attributed to the
inherent challenges of recruiting participants from the professional or well-experienced
pilot population. In contrast, the driver’s operating environment is generally less complex
than that of a pilot, enabling more convenient data collection on a larger scale. Nevertheless,
the limited sample size reported in the reviewed articles may compromise the reliability
of the results. To enhance the robustness of the experimental findings, it is necessary to
conduct more extensive studies involving larger and more diverse participant cohorts. Age
potentially constitutes a significant confounding factor in the examination of the causal
relationship between elevated MWL and various time and frequency domain HRV indices.
Remarkably, none of the studies included in our review explicitly addressed the influence of
age on HRV measures. Furthermore, empirical evidence indicates that flight experience is
correlated with HRV responses, as more experienced operators tend to exhibit lower MWL
levels when performing the same tasks. Nevertheless, it is worth noting that the age of the
subjects could serve as a confounding variable, given that more experienced pilots typically
have a higher age profile than their less experienced counterparts. Thus, the reported
relationship between experience level and HRV responses should be interpreted with
caution, and future research should undertake a more comprehensive validation of previous
results by considering potential confounders such as age.

Regarding the ECG devices used, unlike conventional ECG, which typically requires
professional assistance, the wearable ECG can offer additional usability and convenience
for operators as they can be easily operated by the participants themselves [45,76]. It can
also reduce the underlying gap between laboratory settings and real-world applications.
In addition to ECG, photoplethysmogram (PPG)-based solutions can also be used to
measure HR-related signals. PPG-based measures are relatively simple and convenient as
they can be integrated into wristbands [77]. However, the signal quality is highly likely to
be contaminated by motion artifacts, which can result in incorrect beat intervals and reduce
the detection performance [65]. Thus, studies that used PPG-based devices were excluded
from this review.

4.1.2. Use of HRV in a Real-World Scenario

The majority of the included studies employed flight simulators rather than real flights.
Using a simulator is more convenient and effective for organizing large-scale experiments to
obtain a large amount of data. The simulator can provide a more controllable environment
as different levels of task difficulty can be easily and systematically set in the simulator,
and the real-world task can be affected by uncertain factors and confounds [52]. In contrast,
real-flight tasks are inherently influenced by a multitude of uncertain environmental factors
and confounding variables. Given these advantages of simulators, however, the findings
from these studies may face challenges when applied in real-world setups. This is because a
simulated flight task may inherently involve lower mental demands compared to real-flight
operations due to the absence of real-world consequences, such as the risk of collision and
injury, even when emergency scenarios are intentionally introduced [37]. Furthermore, it
is essential to recognize that the physical conditions within a real cockpit add additional
complexities. Factors like extreme cockpit temperatures and high gravitational forces can
exert significant effects on physiological responses during real flights, as highlighted by [67].
Thus, the results obtained from simulated studies may lead to potentially misleading
conclusions and may offer insufficient insights into the physiological responses associated
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with elevated MWL. Therefore, it is essential to further investigate the actual applicability
and validity of these physiological measures in real-world flight scenarios.

4.1.3. Considerations of Simulator Fidelity

The fidelity of a flight simulator is also a crucial consideration, as varying levels of
fidelity can influence physiological responses, MWL, and flight performance. To obtain a
comprehensive understanding of how HRV responds to heightened MWL, it is important
to investigate the impact of simulator fidelity on MWL. Directly quantifying fidelity from
the simulator poses significant challenges. A practical approach involves comparing
real-world flight experiences with similar task settings conducted within a simulator using
both subjective assessments and objective metrics to infer simulator fidelity. Given it is
challenging for researchers to collect data from real flights as it is essential to ensure that
data collection does not have a negative impact on safety [78], a favorable approach is
to use high-fidelity flight simulators that can simultaneously ensure safety and maintain
data quality. Furthermore, a significant challenge in cross-study comparisons lies in the
heterogeneity of MWL manipulation methods. Most reviewed studies employed different
task difficulties to induce distinct MWL scenarios. However, it is essential to recognize
that increased task difficulties may not always lead to increased MWL correspondingly.
For instance, in situations where participants experience low SA, they may struggle to
gather sufficient information, potentially failing to engage in high-level mental processing.
In such cases, even with high task demands, participants may still contend with lower
MWL levels [67].

4.1.4. Measurements

Regarding the heart monitor devices, traditional ECG was the most used, while several
studies opted to use wearable ECG devices such as ECG chest straps or ECG shirts. Tradi-
tional ECG devices with multiple leads and high-quality sensors might be more accurate in
capturing electrical signals regarding cardiac electrical activity. Additionally, these devices
have long established their reliability and validity in clinical settings for diagnosing a range
of cardiac conditions compared to wearable ECG. Nevertheless, traditional ECG-based
devices normally rely on wet gel electrodes, which operate by incorporating a conductive
gel layer between the electrode and the skin. This method can result in a messy application
and lacks practicality for routine use in occupational settings. In contrast, wearable ECG
devices offer a desirable feature: the potential ability to measure HRV in real-world avia-
tion scenarios, providing crucial insights into pilots’ physiological responses during actual
flight operations. Moreover, these wearable devices are characterized by their compactness,
lightweight design, and comfort during extended flights. These features ensure that pilots
can wear them without distraction, discomfort, or interference with their duties. Thus,
future research should undertake more validations and explorations of the applicability of
wearable ECG devices within real-world flight settings, particularly in assessing elevated
MWL and its interaction with diverse environmental factors affecting the ANS.

Regarding the measurement of reference MWL, multidimensional questionnaires,
such as NASA-TLX, were the most widely used due to their established validity, reliability,
sensitivity, and diagnostic capacity. However, in practical flight scenarios, the adoption
of unidimensional scales may prove advantageous, offering instantaneous MWL informa-
tion. Ref. [38], for example, employed a single-scale version of NASA-TLX, focusing on
the “mental demand” dimension. They pointed out that given the nature of the piloting
tasks is primarily mental rather than physical, it is sufficient to capture a pilot’s work-
load without using the full six-dimensional version. Nevertheless, the sensitivity of the
unidimensional measures is suspected by some studies as they may fail to capture the
complex cognitive information processing of humans and may lack the capacity to diagnose
demands on different cognitive modalities. It is important to acknowledge that subjective
MWL measurements inherently lack objectivity, potentially resulting in dissociation from
objective measures. Furthermore, it is challenging to balance between the intrusiveness
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of real-time implementation and the retrospective bias introduced by post-task evalua-
tion, as highlighted by [10]. To address the limitations of subjective measures, alternative,
more objective approaches have been introduced, such as expert ratings, where trained
individuals or experts assess a pilot’s workload. However, the presence of inter-rater
variability among different experts evaluating the same flight or task can compromise the
reliability and consistency of expert ratings. Therefore, future research endeavors should
strongly consider adopting a multimodal approach in assessing MWL to provide a more
comprehensive perspective.

4.1.5. Physiological Responses

Regarding the physiological measures, HR was the most commonly used in these
studies. This predominant use of HR can be attributed to its simplicity in measurement and
interpretation. In contrast, HRV indices typically either involve analyzing the variations
in the time intervals between successive heartbeats or assessing the distribution of HRV
across specific frequency bands, which can be more complex and may require specialized
equipment and expertise. The majority of the studies found that an increase in HR corre-
sponds to higher levels of MWL, a pattern that aligns with previous research. Nonetheless,
it is noteworthy that several studies have observed that the direction of HR change is not
always predictable, and it appears to depend on the particular task at hand. This variability
in HR response is consistent with findings in traditional psychology and cognition research.
For example, HR may decrease during certain tasks, like visual illusionor mental rotation,
while it may increase during tasks involving multitasking or additional memory load [79].
HR is known to be influenced by factors such as muscular activity and psychological stress.
This can account for the inconsistent HR results observed in two specific studies, where
the experiments primarily involved monitoring tasks with a mouse rather than simulating
actual piloting. This setup likely resulted in reduced physical exertion and possibly lower
levels of anxiety compared to more immersive piloting scenarios, which typically incor-
porate comprehensive physical and cognitive challenges. The lack of these stimuli in the
reviewed studies may explain the deviation in HR results from those seen in studies that
involve actual aircraft control [5,59,68].

Regarding the different phases of flight, the highest HR values were observed during
the take-off and landing stages, indicating elevated information processing demands during
these critical phases and thus elevated MWL. However, it is noteworthy that some studies
found that these observations did not consistently align with the self-reported MWL scores
provided by the pilots. In other words, the phases of flight that are perceived as the most
mentally demanding do not consistently correspond to the phases where the highest HR
values are recorded. This discrepancy may arise from scenarios that are not encountered
frequently by pilots, while take-off and landing represent more routine flight operations.
This suggests that HR may be more sensitive to the actual mental demands placed on the
pilot, whereas subjective responses may reflect perceived mental demands. Furthermore,
several studies have explored using HR to distinguish between different phases of flight.
However, the findings in this regard have been somewhat inconclusive. Ref. [40] suggested
that this inconsistency could be due to the heterogeneous physiological responses exhibited
by individuals during specific flight tasks. Additionally, the inherent nature of the task itself
may contribute to this inconsistency. Highly demanding flight tasks may elicit a greater
degree of variation in ANS activity, leading to more obvious fluctuations in HR values.

It is important to note that while HR can provide valuable information about physio-
logical responses to mental workload, HRV indices can offer more detailed insights into
ANS activity and mental states. It was found that frequency-domain HRV has gained
greater attention when compared to time-domain HRV. This relatively less investigation
may be attributed to the inherent limitations of time-domain analysis. This approach, which
is based on simple statistics, may be considered insufficient in providing a comprehensive
understanding of the temporal structure and periodicity within the data. In contrast, using
spectral analysis has been advocated by researchers as it can offer a more sophisticated ap-
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proach. It decomposes HRV into components, representing the signal series as a summation
of sinusoidal components of different amplitudes, frequencies, and phase values [26,80].
This spectral analysis approach provides a more insightful examination of HRV patterns,
potentially explaining its greater utilization in the study of pilot MWL.

Although HRV has been considered an important indicator of MWL, several stud-
ies have reported contradictory results with bidirectional changes and non-significant
results. This inconsistency can be attributed to the heterogeneity of experimental settings.
For example, small sample sizes may not adequately represent the broader population,
introducing potential biases that limit generalizability. Additionally, HRV has also been
reported to increase during monotonous or repetitive tasks [81]. Tasks involving speech
present another dimension of complexity, as they can induce changes in blood pressure,
which, in turn, influence the MF component of HRV. Neglecting the individual differences
in physiological responses may also contribute to these inconsistent results. Furthermore,
HRV, particularly its spectral components, can be influenced by respiratory activity, rep-
resenting a confounding factor that can contaminate HRV measurements. For example,
during continuous execution, participants typically engage in deeper and slower breathing,
which enhances vagal tone and results in an increase in the HF band of HRV. This is because
the HF band is primarily associated with parasympathetic nervous system activity, which
is modulated by respiratory patterns [16,82]. Notably, ref. [52] observed substantial HRV
fluctuations over time, attributing these unexpected variations to respiratory activity. They
demonstrated that as respiratory frequency decreases and amplitude increases, there is a
pronounced rise in both the MF and HF bands. Addressing this issue can be approached
in several ways. One straightforward method involves excluding HRV values when res-
piratory frequency falls below or exceeds certain thresholds [52]. However, determining
precise and universally applicable threshold remains a challenge. Another approach is to
synchronize the respiration rate of participants. Nevertheless, enforcing constant breathing
is often impractical in real-world scenarios, such as piloting or driving. In future research
endeavors, more robust techniques are desirable, even if the HRV changes were influenced
by respiratory activity, as long as they exhibit temporal correlations.

When comparing the sensitivity of HR and HRV during flight scenarios, HR appears
to exhibit greater sensitivity to variations in mental demands compared to HRV in both
simulated and actual flight situations. This result is in alignment with a previous review
on HRV and MWL, concluding that spectral HRV displays limited sensitivity to increased
task complexity [21]. This reduced sensitivity of HRV might be attributed to its intricate
relationship with respiratory activity, as we discussed earlier. In a comprehensive study
examining ten measures, both HR and HRV demonstrated promising results in distinguish-
ing between various levels of MWL, even when task demand variations were subtle and
performance scores remained stable [83]. Nevertheless, it is crucial to acknowledge that
no single HRV variable consistently serves as a reliable MWL indicator. Several studies
have found that HR is a more favorable measure compared to HRV, primarily due to its
ease of acquisition, heightened sensitivity to MWL, and a more established validation
of the direction of change associated with increased MWL. However, HRV, particularly
when analyzed in the frequency domain, can capture unique information about MWL.
Furthermore, it should be noted that no measure is reliable at an average level as there
is a strong individual difference between MWL and those measures. Therefore, a single
HR or HRV measure cannot comprehensively capture the intricate cognitive processing
that occurs during flight, emphasizing the need for a combination of HR and HRV in
future research. Additionally, investigating these measures at the individual level is of
great significance.

4.1.6. HRV-Based MWL Detection System

Multi-classification of MWL is inherently more challenging than binary classification
due to the increased complexity introduced by the presence of multiple MWL levels. In bi-
nary classification, the task revolves around distinguishing between two clearly defined
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states, typically low and high MWL. In contrast, multi-class classification necessitates the
discernment of MWL across multiple levels, where the distinctions between these MWL
levels may be subtler, making it more challenging to establish distinct decision boundaries.
Moreover, with an expanded number of classes, the potential for class imbalances and
overlapping feature distributions increases, further complicating the classification task.
Nevertheless, multi-class classification is valuable as it can provide a more nuanced un-
derstanding of MWL variations and enable proactive mitigations to operators under high
MWL effectively. It is worth noting that all the models were developed with supervised
learning techniques. However, traditional supervised learning requires labeling all the
collected data, which is cumbersome and not cost-effective. In light of this, unsupervised or
semi-supervised learning techniques with anomaly detection techniques could be explored
in future research. One possible strategy for model training is first training the model on
data representative of normal MWL or the entire dataset, with a predominant proportion
being normal state. Then, these models can be used to identify anomalies within the data,
specifically targeting instances representing high MWL scenarios. This type of approach
alleviates the labeling burden and facilitates the efficient detection of abnormal MWL states.

In machine-learning algorithm implementation, feature selection is a critical consider-
ation, and different feature selection methods have been used across studies. Regarding
the single-signal approach, using multiple HRV indices as input features has the potential
to capture more complex relationships compared to using a single HRV. Nevertheless,
there are several inherent challenges. First, a strong correlation exists between tradi-
tional time-domain and frequency-domain HRV measures, potentially leading to reduced
interpretability and generalization performance. Furthermore, HR and HRV can only
reflect holistic cardiac rhythm information but cannot capture nuances in ECG wave shape.
Non-linear metrics such as total power, sample entropy, and maximum Lyapunov exponent
were considered to provide complementary insights, as these capture different aspects of
heart rate variability that are not reflected in traditional HR-based features. Employing
multiple physiological signals also introduces potential risks, including data sparsity in
high-dimensional space, which can hinder model performance and have the risk of overfit-
ting when using an excessive number of features. Dimensionality reduction techniques,
such as PCA, are powerful tools to mitigate these issues by effectively reducing the di-
mensionality of the feature space and preserving essential information while eliminating
redundant or noisy features.

The prevailing models employed in prior studies have primarily focused on tradi-
tional machine-learning algorithms and fundamental deep-learning architectures. Further
exploration could focus on the use of advanced deep-learning tools, such as attention-based
mechanisms, and the design of hybrid models with more complex architecture designed
specifically for addressing the challenges inherent in MWL detection tasks. Whether these
advanced techniques outperform traditional machine-learning models in the context of
pilot MWL detection remains an open research question. It is noteworthy that variability in
physiological responses to diverse mental states among individuals is well-documented
and can be attributed to multiple factors, including personality traits, emotional disposition,
prior experiences, sleep quality, etc., [84]. For example, different individuals may employ
distinct strategies when confronted with identical scenarios. Differences in skills and past
experiences among operators facing the same situations could also potentially lead to
varying physiological reactions; what one person might perceive as highly demanding,
another might view as a manageable challenge [85]. In order to address the inter-individual
differences, several studies have advocated personalized models, which are specifically
trained using data from a person. Ref. [86] utilized personalized baseline data to construct
a tailored feature set, considering the intrinsic personal difference in HRV measures. Fur-
thermore, one study categorized participants into two distinct age groups and the results
implied that a model tailored for a specific age group may not be adequately applicable
to another age group. Consequently, the development of personalized MWL detection
systems is of great importance, especially in the context of adaptive cockpit design. Such
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systems have the potential to autonomously monitor pilot MWL fluctuations and provide
timely adaptive assistance, such as during periods of extremely low or high workload.
However, the practicality of individual training models for each pilot is challenging. Col-
lecting a substantial amount of data for each pilot is not only time-intensive but is also not
cost-effective. An alternative approach to enhance the transferability of MWL detection sys-
tems across individuals is through the application of transfer learning techniques. With this
approach, once a foundational model is established, minimal recalibration is required to
adapt it to individual differences. In light of these considerations, future research should
delve into comprehensively understanding how individual pilots uniquely respond to
varying mental demands. Furthermore, the exploration of transfer learning techniques
holds promise in the pursuit of realizing personalized pilot MWL detection systems that
are both effective and operationally viable.

4.2. Future Considerations

It should be noted that MWL is a multi-dimensional construct in nature and thus it is
complex to measure and analyze pilot MWL. This systematic review does not allow us to
definitively establish a solid association between HRV and pilot MWL. Nevertheless, HRV
exhibits the potential to serve as a promising physiological indicator for assessing pilot
MWL in real cockpit settings. To comprehensively understand the relationship between
these measures and pilot MWL, further investigations are needed to explore the impact of
various factors, including experimental design, measurement methods, and inter-individual
differences, on physiological responses.

In practice, it is challenging and vague to establish certain thresholds to determine
whether a pilot is experiencing high MWL. Thus, the development of machine-learning
models to implicitly predict or classify pilot MWL based on HRV features is a feasible
solution. However, as highlighted in previous sections, relying solely on HRV measures
may inadequately capture the complex mental processes during flight. It would be more
holistic if multiple physiological signals could be recorded simultaneously in a nonintrusive
and effective manner. Even with multiple measures, capturing the intricate relationship
between pilot MWL and physiological signals can remain a huge challenge. For example,
MWL may also be influenced by other psychological constructs, such as anxiety and SA.
While these constructs were not the central focus of this review, future studies could explore
their interconnectedness with MWL and assess their potential as supplementary measures
of MWL.

It is essential to monitor HRV signals in ecologically valid environments before the
MWL can be effectively measured using HRV in real flight. Recent technological advance-
ments in virtual reality (VR) have provided such an opportunity for measuring pilot MWL
in an ecologically valid scenario. VR enables highly immersive flight simulations closely
mimicking real-world scenarios, and it is more cost-effective than traditional flight simula-
tors. This area of investigation holds particular promise, as VR-based flight simulators are
still in the early stages of design and implementation. Consequently, questions regarding
their effectiveness and assessment of the degree of fidelity required in VR simulations to
accurately replicate real-flight conditions necessitate further investigations.

5. Conclusions and Future Research Directions
5.1. Conclusions

In conclusion, the reviewed studies proved that HRV indices hold the potential to serve
as a valuable indicator for the measurement of pilot MWL. However, inconsistent relation-
ships between HRV measures and varying levels of MWL were observed. This variability
could be attributed to discrepancies in the underlying study designs and measurement
methods employed across different studies. Therefore, future studies are encouraged to
develop consistent experiment design protocols and provide more transparent experiment
configurations. Furthermore, significant advancements are still needed before HRV-based
MWL assessment can be effectively applied in real-flight scenarios, and it is crucial to
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validate current findings from simulator and controlled flight studies through real-life
flight studies for greater generalizability. Additionally, the pursuit of more accurate MWL
detection systems may involve unsupervised learning techniques, alternative personaliza-
tion strategies, and the integration of diverse signals from multiple sources. Future research
could also examine the potential of VR-based flight simulators in pilot MWL studies.

5.2. Future Research Directions

Based on the results of this review, we suggest the following directions for future research:

1. Standardization of HRV Measurement Protocols: Future research should aim to
establish standardized HRV measurement protocols to ensure consistency and compa-
rability across studies. This includes standardizing the devices used, the specific HRV
metrics measured, and the experimental conditions under which data are collected.

2. Integration of Multimodal Data: Combining HRV data with other physiological
and behavioral measures (e.g., EEG, eye tracking, and subjective assessments) could
provide a more holistic understanding of MWL. Future studies should explore mul-
timodal data integration to enhance the accuracy and reliability of MWL assess-
ment models.

3. Longitudinal Studies: Conducting longitudinal studies to examine the temporal
dynamics of HRV and MWL over extended periods is crucial. This will help in
understanding how MWL fluctuates over time and in different flight conditions.

4. Real-World Applications: While many studies have used flight simulators, there
is a need for more research in real-world flight conditions. Future studies should
validate the findings from simulators in actual flight scenarios to ensure the practical
applicability of HRV-based, MWL assessment tools.

5. Advanced Machine Learning Techniques: Exploring advanced machine-learning
techniques, such as deep-learning and ensemble methods, could further improve MWL
detection accuracy. Additionally, developing personalized models that account for indi-
vidual differences in physiological responses to MWL is another promising direction.

By addressing these directions, future research can build upon the findings of this re-
view and contribute to the development of robust, reliable, and practical tools for assessing
pilot MWL in aviation.
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