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Abstract: Investigating aircraft flight dynamics often requires dynamic wind tunnel testing. This
paper proposes a non-contact, off-board instrumentation method using vision-based techniques. The
method utilises a sequential process of Harris corner detection, Kanade–Lucas–Tomasi tracking, and
quaternions to identify the Euler angles from a pair of cameras, one with a side view and the other
with a top view. The method validation involves simulating a 3D CAD model for rotational motion
with a single degree-of-freedom. The numerical analysis quantifies the results, while the proposed
approach is analysed analytically. This approach results in a 45.41% enhancement in accuracy over
an earlier direction cosine matrix method. Specifically, the quaternion-based method achieves root
mean square errors of 0.0101 rad/s, 0.0361 rad/s, and 0.0036 rad/s for the dynamic measurements
of roll rate, pitch rate, and yaw rate, respectively. Notably, the method exhibits a 98.08% accuracy
for the pitch rate. These results highlight the performance of quaternion-based attitude estimation
in dynamic wind tunnel testing. Furthermore, an extended Kalman filter is applied to integrate
the generated on-board instrumentation data (inertial measurement unit, potentiometer gimbal)
and the results of the proposed vision-based method. The extended Kalman filter state estimation
achieves root mean square errors of 0.0090 rad/s, 0.0262 rad/s, and 0.0034 rad/s for the dynamic
measurements of roll rate, pitch rate, and yaw rate, respectively. This method exhibits an improved
accuracy of 98.61% for the estimation of pitch rate, indicating its higher efficiency over the standalone
implementation of the direction cosine method for dynamic wind tunnel testing.

Keywords: computer vision; extended Kalman filter; inertial measurement unit; quaternions; Euler
angles; computer-aided design; dynamic wind tunnel testing; flight dynamics

1. Introduction

Flight dynamics models are essential for designing new aircraft, as they are used
for assessing handling qualities, designing flight control systems, and conducting flight
simulations. These tasks are crucially performed during the early stages of aircraft design.
Additionally, the construction of sub-scale flight demonstrators offers an invaluable means
to evaluate designs early in the design cycle, as well as to validate models and facilitate
model development [1]. Furthermore, they can be used for model parameter identification.
Approaches to flight dynamics identification encompass theoretical and numerical analyses,
wind tunnel testing, and flight testing. In the initial design phase, theoretical parameter
estimation is common but may have limited accuracy, necessitating wind tunnel testing.
This method is comparatively lower in cost and requires less time to manufacture than
a proof-of-concept sub-scale flying vehicle. Sub-scale models can also be tested in wind
tunnels to extract aerodynamic and flight dynamics data.

While static wind tunnel testing suffices for identifying the main parameters such
as lift and drag, non-linear flight regimes involving high angles of attack demand inves-
tigation into non-steady aerodynamics. Dynamic wind tunnel (DWT) testing serves this
purpose [2]. Although dynamic wind tunnel testing is not yet widespread, advances in
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model construction methods such as 3D printing and instrumentation are making dynamic
wind tunnel experiments more accessible and affordable, thus enriching the design process.

Several DWT testing techniques have been developed to determine the forces acting
on the model, including captive tests (such as forced oscillation and rotary balance tests),
single-degree-of-freedom (DOF) tests (like free-to-pitch or free-to-yaw, and free-to-roll tests),
and free-flying tests. Captive tests aim to measure damping and rotary derivatives but
involve a support mechanism that restricts free motion, differing from real flight conditions.
One-DOF tests, on the other hand, are utilised to measure dynamic stability derivatives
and free-motion modes, as well as evaluate unsteady aerodynamic effects on the model
motion. These tests involve the model being supported with an initial condition allowing
for free motion. Free-flying tests are further categorised into low-speed tests with a power
system and high-speed tests without a power system [3,4].

The preferred choice for conducting free-flying testing is typically a 3-DOF rotational
motion rig, enabling force measurement either via a balance positioned at the rig mount or
the attachment point of the model. At Cranfield University, the available DWT testing rig
features an open-section tunnel with a 1.5 × 1.1 m working section and a maximum speed
capability of 40 m/s, facilitating investigation into four degrees of freedom (roll, pitch, yaw,
and heave) of motion. This setup allows for a roll and pitch motion range of ±30◦, a yaw
motion range of 360◦, and a maximum translation motion range of 0.75 m in heave [5,6].
Figure 1 depicts the Cranfield University DWT rig, featuring a 1/12 scale model of the
BAE Hawk, enabling 3-DOF motion with a bottom rig mount. Another configuration is the
DWT testing rig at the University of Bristol, which has a maximum 5-DOF capability by
incorporating a 2-DOF gimbal at the pendulum attachment and a 3-DOF gimbal mounted
at the model’s centre of gravity [7–9]. Another 4-DOF dynamic wind tunnel pitch, roll, yaw,
and heave has been developed [10].

Figure 1. 3-DOF aircraft model in DWT.

On-board instrumentation plays a crucial role in aircraft model testing, with inertial
measurement units (IMUs) being a popular choice for measuring rotation rates and dis-
placement accelerations. IMUs, consisting of three gyroscopes and accelerometers mounted
in orthogonal axes, provide measurements in all three dimensions. Despite their effec-
tiveness, IMUs exhibit varying bias performances, with micro-electro-mechanical systems
(MEMSs) and ring laser gyro (RLG)-based IMUs from Honeywell ranging from 0.25 deg/h
to 7 deg/h and 0.25 deg/h to 0.0006 deg/h, respectively [11]. However, high-accuracy
IMUs are often expensive and bulky, posing limitations for DWT testing models. Alterna-
tively, low-cost MEMS sensors can be employed for scaled model testing, although with
reduced accuracy due to inherent errors such as bias error, repeatability, stability, drift,
sensor noise, misalignment, and latency. To mitigate these errors, sensor fusion techniques
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including, for example, multiple IMUs and model-based filters such as extended Kalman
and Sage-Husa adaptive Kalman filters [12] are widely used. On the contrary, off-board
sensors like high-speed cameras offer real-time data acquisition capabilities, presenting an
advantage in dynamic wind tunnel testing for identifying flight dynamic models. However,
their performance can be hindered by factors like lighting and background settings. The
continuous advances in computer vision techniques present an opportunity to enhance the
accuracy of data obtained in dynamic wind tunnel experiments.

Computer vision techniques for attitude estimation are often reliant on visual markers
placed on the model. However, the absence of markers allows for the implementation
of the algorithm across diverse aircraft wing configurations, including high, low, and
mid-wing designs. This versatility highlights the potential applicability of the computer
vision algorithm without markers, making it adaptable for various aircraft models without
being limited to specific configurations.

Moreover, the absence of markers broadens the research application to various fields
where computer vision is essential, such as air traffic control tower surveillance [13] and
marine operations [14]. While traditional applications focus more on target positions rather
than attitudes, this research lays a foundation for incorporating attitude estimation in such
scenarios. Additionally, as the use of drones expands across sectors like rescue operations,
surveillance, and agriculture, the need for drone identification and classification becomes
crucial [15]. The findings of this research can potentially be effectively applied in state
estimations for drones, as well as for advanced techniques aimed at accurately identifying,
tracking, and estimating missile dynamics for military purposes.

In this paper, we propose a method for accurately acquiring dynamic wind tunnel data
for a scaled rigid-body aircraft model without visual markers on the model. The method
employs a sequential process involving Harris corner detection and Kanade–Lucas–Tomasi
tracking. From this, an aircraft skeleton position is obtained. Then, the Euler angles and
Euler rates may be estimated to capture the attitude of the aircraft model. Validation of
this approach is conducted by simulating a 3D CAD model of a 1/12 sub-scale BAE Hawk
fighter aircraft model using MATLAB Simscape. Note that an early version of this work
was previously presented in [16] and this paper improves and extends the previous study in
several key areas. Quaternions for the attitude estimation are used instead of the direction
cosine matrix and this improves the accuracy of the results. Notably, a detailed sensitivity
analysis on the use of quaternions is conducted. The analysis identifies first-order changes
in the estimated angles resulting from small changes in the identified position of the
aircraft axes. Furthermore, this paper adds sensor fusion between on-board and off-board
instrumentation by implementing an extended Kalman filter, as suggested in [16].

The contributions of this paper include the following: (i) A sequence of established
computer vision techniques is proposed for solving a new problem. These include feature
detection, specifically corner detection and feature tracking to obtain an aircraft skeleton.
(ii) A customised transformation method from 2D to 3D coordinates tailored for a stereo
orthogonal setup is presented. Furthermore, it adapts well-established Euler angles, com-
monly used in aerospace for attitude estimation, to estimate Euler angles from the aircraft
skeleton points by employing quaternions and transforming them to Euler angles. (iii) A
sensitivity analysis is performed; this determines first-order changes in the Euler angles
resulting from alterations in the positioning of the aircraft skeleton points. This analysis
serves to pinpoint the aircraft skeleton points that exert the most significant impact on the
Euler angles, enhancing the accuracy and precision of the estimation process. (iv) Finally, by
combining these advances, this interdisciplinary research proposes a complete framework
for accurate attitude estimation in dynamic wind tunnel applications, with a focus on
identifying and mitigating potential sources of error.

The rest of this paper is structured as follows. Section 2 discusses the related work
pertinent to the innovation presented in this paper, namely the application of computer
vision techniques for estimating the attitude of an aircraft model during dynamic wind
tunnel testing. Section 3 discusses attitude estimation using our proposed method. Section 4
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details the 3D CAD model simulation. Section 5 discusses the conducted sensitivity analysis.
Section 6 elaborates on the extended Kalman filter utilised for sensor fusion, integrating
data from both the off-board and on-board sensors. Section 7 discusses the results. Our
conclusions are presented in Section 8.

2. Related Work

Various object detection techniques utilising laser and self-luminous markers [17], as
well as multiple line marks on the sides of train models [18] and markers [19], have been
employed for pose measurements in wind tunnels. Additionally, object-tracking techniques,
including particle filtering [20], saliency combined particle filtering [21], and background
subtraction [22], have been utilised for aerial UAV tracking.

Extensive research has been conducted on using photogrammetry for various appli-
cations, including obtaining aerodynamic parameters from wind tunnel experiments. At
NASA’s Langley Research Center, a digital photogrammetry technique has been employed
to measure model deformation, and sting bending using a single camera [23]. This method
allows for the extraction of 2D or 3D spatial measurements, which are then transformed
into engineering variables such as attitude and deformation. By leveraging the capabilities
of computer vision to perform autonomous algorithms, the accuracy and speed of these
measurements are significantly improved. Specifically, computer vision was utilised to
monitor model deformation. The primary goal of this work was to enhance the deformation
measurement capability, which also holds potential for measuring model attitude.

A binocular vision method using a photogrammetry model based on multi-layer
refraction and laser strips has been proposed for measuring the position and attitude of
high-speed rolling targets in wind tunnel experiments [24]. Laser-aided vision technol-
ogy for high-precision pose measurement in wind tunnels has also been suggested for
rolling targets, though improvements could include speed measurement and increased
precision [17]. A monocular vision method using coloured images achieves accurate posi-
tioning through image differencing, accumulation, and marker position estimation, with
precision being less than 0.19 mm and 0.18◦ for the position and angle of pitch and yaw [25].

For supersonic wind tunnels, a pose measurement method employing ultrathin retro-
reflection markers and spatial coding achieves high accuracy, with precision values of less
than 0.16 mm, 0.132◦, and 0.712◦ for position, pitch, and yaw, respectively [26]. Additionally,
an attitude and position measurement system for slender models using two cameras, one
positioned to the side and the other looking up the model, achieves a maximal error of less
than 0.05◦ for attitude measurement [27].

A photogrammetry system using two video cameras has been proposed for measuring
the attitude of models in hypersonic wind tunnels, achieving an accuracy of 0.1◦ for pitch,
although these results have not been independently validated [28]. Another approach has
been suggested using a single camera, offering a flexible position and attitude measurement
method [29]. In this method, the focal length and camera orientation can be adjusted for
various measurement conditions without needing to recalibrate the camera. This technique
can achieve an accuracy of 0.2866 mm for displacement measurements of planar targets
and 0.2615◦ for attitude measurements of planar objects.

A remote sensing system using a motion capture camera for the position measurement
of a T-shaped object with visual markers has been proposed [30]. This method has been
compared with the commonly used laser displacement sensor (LDS) method, and the
results indicate that the motion capture method is equally accurate. Additionally, a pose
measurement technique for an aircraft model in a wire-driven parallel suspension system
(WDPSS) using monocular vision and visual markers, along with HALCON for data
processing, has been suggested [31]. While this method is feasible, further work is needed
to improve accuracy and achieve dynamic real-time measurement.

A method using two high-speed industrial cameras and high-contrast targets on
an aircraft model surface has been proposed for the angle of attack measurement, with
accuracy within 0.01◦ [32]. This method shows promise for effective measurement in high-
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speed wind tunnels. Another approach, employing monocular vision and visual markers
on the model along with HALCON for data processing, has been suggested, providing
accurate results with a relative error of less than 2% compared to three-axis turntable
measurements [33]. However, there is room for enhancement in this method.

For spin tests in vertical wind tunnels, a method utilising two CCD cameras and visual
markers achieves an accuracy of 0.1◦ for attitude angle measurement [34]. Another method
based on stereo vision, involving the projection of collimated laser beams onto screens,
demonstrates promising results with maximum deviations of less than 0.05◦ for pitch, roll,
and yaw angles, whilst validating in a controlled laboratory environment [35].

The only existing literature on estimating aircraft dynamics using computer vision
without markers conducted by [36], explores computer vision-based estimation of aircraft
dynamics, employing optical flow data captured by a downward-looking camera and
processed through an extended Kalman Filter, complemented by Monte Carlo simulations
for analysis. In contrast, our research adopts a novel approach utilising 3D CAD simulations
to replicate real-world conditions and environments, facilitating the reproduction of real-
world experiments, aiding in error identification and setting multiple degrees of freedom
for the model. MATLAB Simscape serves as a valuable tool for modelling, simulating,
and visualising the CAD model. While [36] utilise Monte Carlo simulations primarily
for statistical analysis and uncertainty assessment, our Simscape simulations concentrate
on the dynamic behaviour and performance analysis of physical systems, enabling the
examination of time-domain response, transient behaviour, steady-state characteristics,
and control of physical systems. Simscape proves particularly beneficial for designing
and testing control systems and assessing system performance under diverse conditions.
Compared to the approach by [36], our method offers a cost-effective alternative before
conducting dynamic wind tunnel testing, producing results comparable to real-world
experimental outcomes.

3. Attitude Estimation

This section elaborates on the methodology employed for attitude estimation of an
aircraft model using computer vision, without the need for visual markers on the model.
The approach follows a systematic process that involves several key steps:

1. Feature identification: Initially, key features representing the aircraft’s skeleton are
identified within image frames extracted from video footage. The video is captured
using an orthogonal stereo camera setup, which provides both top and side views
of the aircraft. This stereo vision is critical for accurate spatial analysis. Section 3.1
details feature identification and tracking in initial and consecutive frames.

2. Two-dimensional (2D) to 3D transformation: Once the key features are identified, their
coordinates in the 2D-pixel coordinates are transformed into 3D coordinates. This
transformation leverages the orthogonal views provided by the stereo camera setup
to accurately reconstruct the spatial configuration of the identified points. Section 3.2
discusses the theory of the pinhole camera model to transform the 2D pixel coordi-
nates to 3D coordinates. In addition, Section 3.3 details the tailored method for the
transformation of 2D pixel coordinates to complete (X,Y,Z) 3D coordinates.

3. Attitude estimation: With the 3D coordinates of the key features obtained, the next
step involves estimating the aircraft’s attitude. This is achieved by employing quater-
nions, a mathematical representation that facilitates smooth and continuous rotation
calculations. The Euler angles, which describe the aircraft’s orientation, are derived
from these quaternions. Sections 3.4 and 3.4.1 describe the widely applied Euler angles
for aerospace applications and our proposed method for estimating Euler angles from
aircraft skeleton points by employing quaternions.

This methodology demonstrates a robust and efficient approach to aircraft attitude
estimation using computer vision techniques, eliminating the need for physical markers
and leveraging computer vision techniques for accurate spatial analysis.
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3.1. Features Detection and Tracking

After acquiring the video and extracting initial frames from both top and side views,
the region of interest (ROI) is selected, encompassing the wingspan and fuselage length.
Subsequently, the focus shifts to detecting corner points within the image. Harris corner
and edge detection, as outlined by Harris [37], is a widely recognised approach for corner
detection. This method is crucially employed in the feature detection stage of the process as
shown in Figure 2 to identify corner points on the aircraft model. The corner points are ob-
tained in these ROIs using the MATLAB Computer Vision Toolbox detectHarrisFeatures
function. The details and methodology of Harris corner detection can be found in [37].

First Frame of 
the video

Automated 
Selection of 

Region of 
Interest (ROI)

Detection of 
Corner Points 

in ROI

Identify the 
features to 

obtain aircraft 
skeleton

Initialise, Track 
and identify 
the features

Estimate the 
attitude using 
Euler angles

Transform pixel 
to 3D 

coordinates

Figure 2. Flow chart showing the process for attitude estimation.

The aircraft skeleton is defined by key corner points, including the nose tip, midpoint
of the horizontal stabiliser, wingtips, and vertical stabiliser tip. The nose tip and midpoint
of the horizontal stabiliser represent the fuselage length along the X-axis of the aircraft.
The wingtips define the wingspan along the Y-axis, while the vertical stabiliser tip and an
intersecting point from this tip to the fuselage length in the side view define the Z-axis.

These corner points, which include fuselage length and wingspan, are visually identi-
fiable in the top view, while the fuselage length and vertical stabiliser length are easily seen
in the side view. The remaining corner points are identified using aircraft geometry and
the knowledge of the setup of the 1-DOF test as described in Section 4.

The corner points in the initial frame are used to track the feature point tracking stage
shown in Figure 2. The methodology adopted in this research involves the application
of the Kanade–Lucas–Tomasi [38,39] tracking technique to strategically monitor selected
points within the initial frame, which serve as pivotal landmarks on the model aircraft
skeleton. These key points include wing tip points, the nose tip in the top view, and
both the tail tip and nose tip in the side view. Subsequent frames are then analysed to
identify the remaining corner points of the aircraft skeleton by implementing the Harris
corner detection through a synthesis of aircraft geometry and insights gained from the
experimental test procedures conducted as described in Section 4. The operation of the
Kanade–Lucas–Tomasi tracking algorithm, which estimates the displacement between an
initialised point and the next frame to track the point across frames, is detailed in [38,39].
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This approach ensures precise and comprehensive tracking of the model aircraft movement,
facilitating a thorough analysis of its behaviour and performance characteristics.

3.2. Camera Parameters

The subsequent section delves into the camera parameters based on a widely known
pinhole camera model. The objective is to detect the location of corner points within a
3D space based on their corresponding image points, which result from projecting the 3D
points onto a plane. This is illustrated in Figure 3. The transformation is described in detail
here and serves as the penultimate stage within the process outlined in Figure 2.

Figure 3. Pinhole camera [16] (reprinted with permission from the American Institute of Aeronautics
and Astronautics, Inc.).

3.2.1. Extrinsic Parameters of the Simscape Model

The rotation matrix, RT , of body coordinates (Xb, Yb, Zb) to camera coordinates
(Xc, Yc, Zc) in Simscape for a top view is given by the following:

RT =

1 0 0
0 1 0
0 0 1

. (1)

Similarly, the rotation matrix, RS, of body coordinates to camera coordinates in Sim-
scape for a side view is as follows:

RS =

1 0 0
0 0 −1
0 1 0

. (2)

The translation matrices for both the views are as follows:

tT =
[
0 0 −50 cm

]
(3)

tS =
[
0 50 cm 0

]
. (4)

3.2.2. Transformation from 3D to 2D

The extrinsic parameters of rotation and translation are multiplied with a 3D point to
obtain the point in the camera coordinate system by the following:Xc

Yc
Zc

 =
[
R t

]
X
Y
Z
1

. (5)
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where R is a rotation matrix of body coordinates to camera coordinates, and t is a trans-
lation vector. Multiplying this with the camera’s intrinsic parameters of focal length, f ,
and principal points, cx, cy, we obtain the 3D point in the pixel coordinates given by
the following: u′

v′

w′

 =

 f 0 cx
0 f cy
0 0 1

Xc
Yc
Zc

. (6)

The 2D-pixel coordinates are then obtained by the following:

u =
u′

w′ , v =
v′

w′ . (7)

The camera projection parameters are chosen for this simulation as follows. The
principal point is positioned at the centre of gravity of the model in the top and side
views. By aligning the principal point with the centre of gravity of the aircraft model, a
common reference point is established for both the top and side views. This alignment
simplifies the geometric transformations required for 3D reconstruction, reducing parallax
errors and enhancing the accuracy of depth estimation. Moreover, this configuration
streamlines mathematical modelling and camera calibration processes. It also improves the
interpretability and visualisation of the aircraft model structure and dimensions, facilitating
more precise and consistent measurements. In addition, the focal length is set to 1, as
it does not affect the camera projection matrix in this simulation context. This approach
effectively removes any additional complexity that could arise from varying focal lengths
or scaling factors, thus streamlining the validation process.

3.2.3. Transformation from 2D to 3D

Transforming a corner point on a 2D plane (identified in Section 3.1) to a 3D point is
performed by the following method. The pixel coordinates (u, v) obtained from an image
are transformed into image coordinates by the following:

XI = dpx(u − cx), (8)

YI = dpy(v − cy), (9)

where cx, cy are the principal points and (dpx, dpy) are the metres/pixel scaling pair cho-
sen to be to (1,1) for simplicity. Since all the points lie on the image plane, the camera
coordinates are obtained by the following:Xc

Yc
Zc

 =

XI
YI
f

. (10)

The camera coordinates are transformed into 3D coordinates by the following:
X
Y
Z
1

 =
[
RT tT]Xc

Yc
Zc

. (11)

where R is a rotation matrix of body coordinates to camera coordinates, t is a translation
vector, and (·)T denotes the transpose. These transformations are applied to both the top
and side views.

3.2.4. Camera Pose Estimation and Triangulation

The relative pose of the side camera to the top camera can be estimated by using the
knowledge of the extrinsic parameters of both cameras by the following:

RR = R′
T RS (12)

tR = tS − tT (13)
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Using the above-known parameters and triangulating 3D points by the function
triangulate based on direct linear transformation [40] induces errors in identifying the
corresponding 3D points due to the sensitivity limitation to noise.

3.3. 3D Aircraft Model Skeleton

The transformation of identified 2D pixel coordinates from the top and side views
as described in Section 3.1 into 3D coordinates is achieved using the respective camera
projection matrices as described in Section 3.2. This process yields accurate (X, Y) 3D coor-
dinates from the top view and (X, Z) 3D coordinates from the side view. The complete 3D
coordinates of the aircraft skeleton are then obtained by averaging the shared X-coordinate
from both views, using the Y-coordinate from the top view and the Z-coordinate from the
side view. Integrating corner points from both camera perspectives by utilising this tailored
method for orthogonal stereo setup yields the complete aircraft skeleton, as depicted in
Figure 4.

Figure 4. Aircraft skeleton in 3D. Initial frame shown in green, next frame shown in red.

3.4. Euler Angles

The final stage of the process shown in Figure 2 is to extract the Euler or Tait–Bryan
angles (roll, pitch, yaw). The aircraft model is given the standard right-hand set body
axes used for aircraft dynamics [16] with the X-axis pointing forward, the Y-axis pointing
starboard, and the Z-axis pointing downward. The rotation matrices for roll, pitch, and
yaw are given next. The rotation matrix for a roll rotation around the X-axis through the
angle ϕ is given by the following:

RX =

1 0 0
0 cos ϕ sin ϕ
0 − sin ϕ cos ϕ

 (14)

The rotation matrix around the new Y-axis is a pitch rotation through the angle θ and
is given by the following:

RY =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 (15)

The final rotation is around the Earth frame Z-axis through a yawn angle ψ with a
rotation matrix

RZ =

 cos ψ sin ψ 0
− sin ψ cos ψ 0

0 0 1

 (16)

The rotation matrix (known as the direction cosine matrix) around the X-Y
′
-Z

′′
axes

through the angles ϕ, θ, ψ is given by the following:



Sensors 2024, 24, 3795 10 of 29

R =

 cos θ cos ψ cos θ sin ψ − sin θ
sin ϕ sin θ cos ψ − cos ϕ sin ψ sin ϕ sin θ sin ψ + cos ϕ cos ψ sin ϕ cos θ
cos ϕ sin θ cos ψ + sin ϕ sin ψ cos ϕ sin θ sin ψ − sin ϕ cos ψ cos ϕ cos θ

 (17)

The Euler angles can be extracted from the DCM, (R), and are given by the following:

θ = − arcsin(R13), (18)

ϕ = arctan
(

R23

R33

)
, (19)

ψ = arctan
(

R12

R11

)
. (20)

The Euler rates are computed to derive dynamic measurements for attitude estimation.
These rates provide crucial insights into the aircraft dynamics, aiding in the accurate
determination of its orientation over time. The Euler rates (ϕ̇, θ̇, ψ̇) from the body angular
rates (p, q, r) are given by the following:ϕ̇

θ̇
ψ̇

 =

1 sin ϕ tan θ cos ϕ tan θ
0 cos ϕ − sin ϕ
0 sin ϕ sec θ cos ϕ sec θ

p
q
r

 (21)

Since the body angular rate p is unknown, the Euler rate (ϕ̇) is obtained by backward
difference numerical differentiation as follows:

ϕ̇ =
ϕ(t)− ϕ(t − 1)

∆t
. (22)

Although this method causes a time shift, it is a feasible solution for implementation
in a real-time system. The angular rates θ̇ and ψ̇ are similarly obtained.

3.4.1. Euler Angles and Rates from Aircraft Skeleton

Let P0 represent a matrix containing the initial skeleton points on the aircraft model
before an Euler rotation in 3D coordinates and P3 represent the matrix containing corre-
sponding points on the aircraft model after an Euler rotation in 3D coordinates. These are
points obtained as described in Section 3.3. The matrix P3 obtained can have the expanded
equation as follows:

P3 =

X3(1,1) X3(1,2) · · · X3(1,6)
Y3(2,1) Y3(2,2) · · · Y3(2,6)
Z3(3,1) Z3(3,2) · · · Z3(3,6)

 (23)

The X-axis vector of the aircraft model is at P3(i,j), where i = 1, 2, 3 and j = 1, 2 are
the rows and columns of the matrix, respectively. The resultant vector and the normalised
vector are obtained by the following:

X(3) =

X3(1,2) − X3(1,1)
Y3(2,2) − Y3(2,1)
Z3(3,2) − Z3(3,1)

 (24)

To obtain the X-axis vector with unity magnitude and without changing its direction,
the unit vectors (i, j, and k) of the vector can be obtained by normalising the vector
as follows:

X̂(3) =
X(3)

∥X(3)∥
(25)

where ∥X(3)∥ denotes the Euclidean norm of X(3).
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Similarly, the Y-axis vector of the aircraft model is at P3(i,j), where i = 1, 2, 3 and
j = 3, 4 are the rows and columns of the matrix, respectively. The resultant vector and the
normalised vector are obtained by the following:

Y(3) =

X3(1,4) − X3(1,3)
Y3(2,4) − Y3(2,3)
Z3(3,4) − Z3(3,3)

, (26)

Ŷ(3) =
Y(3)

∥Y(3)∥
. (27)

Finally, the Z-axis vector of the aircraft model is at P3(i,j), where i = 1, 2, 3 and
j = 5, 6 are the rows and columns of the matrix, respectively. The resultant vector and the
normalised vector are obtained by the following:

Z(3) =

X3(1,6) − X3(1,5)
Y3(2,6) − Y3(2,5)
Z3(3,6) − Z3(3,5)

, (28)

Ẑ(3) =
Z(3)

∥Z(3)∥
. (29)

The rotation matrix for the orientation is given by the following:

QT
(3) =

[
X̂(3), Ŷ(3), Ẑ(3)

]
(30)

The matrix is used to extract the quaternion components (q(3)w
, q(3)x

, q(3)y
, q(3)z

) of

QT
(3) as follows:

q(3)w
=

1
2

√√√√(1 +
X3(1,2) − X3(1,1)

∥X(3)∥
+

Y3(2,4) − Y3(2,3)

∥Y(3)∥
+

Z3(3,6) − Z3(3,5)

∥Z(3)∥

)
(31)

q(3)x
=

1
4q(3)w

(
Y3(2,6) − Y3(2,5)

∥Z(3)∥
−

Z3(3,4) − Z3(3,3)

∥Y(3)∥

)
(32)

q(3)y
=

1
4q(3)w

(
Z3(3,2) − Z3(3,1)

∥X(3)∥
−

X3(1,6) − X3(1,5)

∥Z(3)∥

)
(33)

q(3)z
=

1
4q(3)w

(
X3(1,4) − X3(1,3)

∥Y(3)∥
−

Y3(2,2) − Y3(2,1)

∥X(3)∥

)
(34)

Since the aircraft model is trimmed in the initial frame and has no rotation, the initial
quaternion matrix obtained is an identity matrix. Therefore, the quaternion matrix and the
quaternion components are as follows:

QT
(0) =

1 0 0
0 1 0
0 0 1

 (35)

q(0)w
= 1, q(0)x

= 0, q(0)y
= 0, and q(0)z

= 0. (36)

The relative orientation between the two frames is obtained from the quaternions by
the following:

q(r) = q(3)q
−1
(0)

where q(.) is the quaternion, including the scalar and the unit vector components. The
inverse of a quaternion (q) is equal to the complex conjugate (q∗) of the quaternion when
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the quaternion is normalised; that is, |q|2 = q2
w + q2

x + q2
y + q2

z = 1. Therefore, q−1
(0) = q∗(0),

and the equation is modified as follows:

q(r) = q(3)q
∗
(0)

where the complex conjugate q∗(0) = q(0)w
− iq(0)x

− jq(0)y
−kq(0)z

. By using the quaternion
product rule, the relative orientation can be rewritten as follows:

q(r) = q(3)w
+ q(3) = q(3) (37)

where q(3)w
is the scalar component and q(3) is the unit vector component of the quaternion.

The quaternion components (q(3)w
, q(3)x

, q(3)y
, and q(3)z

) are used to obtain the Euler angles
(ϕ, θ, and ψ) using the following equations:

ϕ = arctan

QT
(3)(2,3)

QT
(3)(3,3)

 = arctan

(
2q(3)y

q(3)z
+ 2q(3)w

q(3)x

q(3)2
w
− q(3)2

x
− q(3)2

y
+ q(3)2

z

)
(38)

θ = − arcsin
(

QT
(3)(1,3)

)
= − arcsin

(
2q(3)x

q(3)z
− 2q(3)w

q(3)y

q(3)2
w
+ q(3)2

x
+ q(3)2

y
+ q(3)2

z

)
(39)

ψ = arctan

QT
(3)(1,2)

QT
(3)(1,1)

 = arctan

(
2q(3)x

q(3)y
+ 2q(3)w

q(3)z

q(3)2
w
+ q(3)2

x
− q(3)2

y
− q(3)2

z

)
(40)

4. 3D CAD Simulation

A 3D CAD rendition of a 1/12 scaled BAE Hawk is crafted using SolidWorks (Student
version 2021-22).This model is then imported into MATLAB Simscape (version R2023a) for
modelling and simulating the aircraft motion. Within the Simscape environment, a model
is constructed featuring gimbal joints to facilitate the Euler angle transformation of the
CAD model, alongside a transform sensor to extract the rotation matrix. Subsequently, the
angles ϕ, θ, and ψ are applied to the Simscape model.

The presented experiment tests just a single degree-of-freedom, whereby the pitch
angle undergoes sinusoidal variation and the roll and yaw are fixed at zero. This ex-
periment demonstrates the method using a longitudinal motion rig; additional work is
ongoing to develop a novel 3-DOF rig capable of testing both the short-period and phugoid
modes [41,42].

Figures 5 and 6 depict the applied pitch angle and rate. It is worth noting the presence
of numerical rounding noise in the roll and yaw angles.

Realistic data from an on-board sensor comprising an IMU and potentiometer gimbal
is generated to facilitate sensor fusion. This process is briefly outlined here. After acquiring
the Euler rates as described in Equation (22), we can determine (p, q, r) by taking the inverse
of Equation (21). Gyroscope measurements of body angular rates are typically subject
to noise. However, in this simulation, ideal (noise-free) measurements of body angular
rates (p, q, r) are utilised as ground truth data to validate the state estimates obtained from
the EKF. Similarly, the ideal measurements of an accelerometer can be derived using the
rotation matrix R as mentioned in Equation (17) from the Simscape transform sensor, as
outlined below: accx

accy
accz

 = RT

 0
0

9.81


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Figure 5. Simscape Euler angles [16].

Figure 6. Simscape Euler rates [16].

To introduce noise and uncertainty into the gyroscope, accelerometer, and potentiome-
ter measurements, zero-mean Gaussian noise is added as unbiased noise, along with a
linear drift rate to the gyroscope measurements. The unbiased noise is generated using
the normrnd function. The linear drift rate represents the accumulated bias drift over the
test duration.

The generated noisy data are filtered through a low-pass filter, effectively reducing
noise by attenuating high-frequency components while preserving low-frequency sig-
nals. This process also serves to smooth out fluctuations or jitter arising from mechanical
imperfections, resulting in a stable and consistent output signal.

5. Sensitivity Analysis

A sensitivity analysis is conducted to approximate the change in functions due to small
perturbations in its input variables. This is done by utilising Taylor’s first-order series. The
analysis is performed by calculating the Jacobian matrices ∂ϕ/∂P3, ∂θ/∂P3, ∂ψ/∂P3 with
respect to each of the 6 final frame world coordinates (X, Y, Z) of the aircraft skeleton as
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obtained in Section 3.3. Euler angle Equations (38)–(40) can be rewritten for the sensitivity
analysis as follows:

ϕ = arctan

(
2 num y num z + 8 num x q(3)w

2

16 q(3)w
4 − num x2 − num y2 + num z2

)
(41)

θ = − arcsin

(
2 num x num z − num y 8q(3)w

2

16q(3)w
4 + num x2 + num y2 + num z2

)
(42)

ψ = arctan

(
2 num x num y + 8 num z q(3)w

2

16 q(3)w
4 + num x2 − num y2 − num z2

)
(43)

where num x, num y, and num z are the numerators of the quaternion components q(3)x
,

q(3)y
, and q(3)z

given in Equations (32)–(34). The Taylor series functions can be given
as follows:

ϕ(P3 + δP3) ≈ ϕ(P3) + δP3

(
∂ϕ

∂P3

)
(44)

θ(P3 + δP3) ≈ θ(P3) + δP3

(
∂θ

∂P3

)
(45)

ψ(P3 + δP3) ≈ ψ(P3) + δP3

(
∂ψ

∂P3

)
(46)

6. Extended Kalman Filter

An extended Kalman filter is employed for sensor fusion of accelerometer, gyroscope,
potentiometer gimbal, and vision data. The EKF enables a comprehensive understanding
of the system’s behaviour. Through a process of prediction and correction, the filter refines
its estimates over time, providing a fused representation of the underlying system state.
This approach not only enhances accuracy but also improves robustness in scenarios where
individual sensors may be prone to noise, biases, or data loss. A standard approach is used
as follows:

x̂(k|k−1) = f
(

x̂(k−1|k−1), u(k−1)

)
+ wk (47)

P(k|k−1) = FkP(k−1|k−1)F
T
k + Q(k−1) (48)

zk = h
(

x̂(k|k−1)

)
+ vk (49)

ỹk = zk − h
(

x̂(k|k−1)

)
(50)

Sk = HkP(k|k−1)H
T
k + Rk (51)

Kk = P(k|k−1)H
T
k S−1

k (52)

x̂(k|k) = x̂(k|k−1) + Kkỹk (53)

P(k|k) = (I − KkHk)P(k|k−1) (54)

where

wk ∼ N (0, Q(k)) (55)

vk ∼ N (0, R(k)) (56)

the state transition matrix is given by the following:

Fk =
∂ f
∂x

∣∣∣∣
x̂(k−1|k−1),u(k−1)

(57)

and the observation transition matrix is given by the following:
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Hk =
∂h
∂x

∣∣∣∣
x̂(k|k−1)

(58)

Equations (47), (48) and (57) represent the discrete-time predicted state estimate,
covariance estimate, and the state transition matrix. Equations (49)–(54) and (58) represent
the measurement model, innovation or measurement residual, innovation covariance, near-
optimal Kalman gain, updated state estimate, updated covariance estimate, and observation
transition matrix, respectively. A loosely coupled EKF is implemented as this reduces the
computational complexity. The state vector (x) is the Euler angles and the biases of the
gyroscope and is described by the vector, as follows:

x =
[
ϕ θ ψ biasx biasy biasz

]T (59)

The state control vector (u) is the angular velocity from the gyroscope and is given
as follows:

u =
[
p q r

]T (60)

Given the state control vector, the Euler rates can be obtained by modifying (21)
as follows: ϕ̇

θ̇
ψ̇

 =

1 sin ϕ tan θ cos ϕ tan θ
0 cos ϕ − sin ϕ
0 sin ϕ sec θ cos ϕ sec θ

p − biasx
q − biasy
r − biasz

 (61)

The predicted state estimate (47) is obtained as follows:

x̂(k|k−1) = x̂(k−1|k−1) +



ϕ̇
θ̇
ψ̇
0
0
0

∆t (62)

The state transition matrix given in (57) is obtained as follows:

Fk(:,1) =



1 − ∆t(cos ϕ tan θ (biasy − q)− sin ϕ tan θ(biasz − r))
∆t(cos ϕ(biasz − r) + sin ϕ(biasy − q))

∆t((sin ϕ(biasz − r))/ cos θ − (cos ϕ(biasy − q))/ cos θ)
0
0
0

 (63)

Fk(:,2) =



−∆t(cos ϕ(biasz − r)(tan θ2 + 1) + sin ϕ(biasy − q)(tan θ2 + 1))
1

−∆t((cos ϕ sin θ(biasz − r))/ cos θ2 + (sin ϕ sin θ(biasy − q))/ cos θ2)
0
0
0

 (64)

Fk(:,(3:6)) =



0 −∆t −∆t sin ϕ tan θ −∆t cos ϕ tan θ
0 0 −∆t cos ϕ ∆t sin ϕ
1 0 −(∆t sin ϕ)/ cos θ −(∆t cos ϕ)/ cos θ
0 1 0 0
0 0 1 0
0 0 0 1

 (65)

The measurement model for sensor fusion is obtained as follows:

zk =
[
accx accy accz θpot ϕcam θcam ψcam

]T (66)
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The observation model that maps the state vector to the measurement vector is ob-
tained as follows:

h
(

x̂(k|k−1)

)
=
[
− sin θ cos θ sin ϕ cos ϕ cos θ θ ϕ θ ψ

]T (67)

The observation transition matrix given in (58) is obtained as follows:

Hk =



0 − cos θ 0 0 0 0
cos ϕ cos θ − sin ϕ sin θ 0 0 0 0
− cos θ sin ϕ − cos ϕ sin θ 0 0 0 0

0 1 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


(68)

The measurement noise covariance matrix is obtained as follows:

Rk =



raccx 0 0 0 0 0 0
0 raccy 0 0 0 0 0
0 0 raccz 0 0 0 0
0 0 0 rθpot 0 0 0
0 0 0 0 rϕcam 0 0
0 0 0 0 0 rθcam 0
0 0 0 0 0 0 rψcam


(69)

The updated state estimate given in (53) is obtained as follows:

x̂(k|k) =
[
ϕupdated θupdated ψupdated biasxupdated biasyupdated biaszupdated

]T
(70)

7. Results

First, we discuss the intermediate outcomes of identifying the aircraft skeleton from
both side and top images, as the accuracy of attitude estimation heavily relies on the precise
positioning of the corner points within the aircraft model skeleton.

The utilisation of Harris corner detection to identify corner points introduces varying
errors in the pixel coordinates (u, v), leading to inaccuracies in the Euler angle estimation.
The errors derived from Harris detection, exemplified by a single frame, are showcased in
Table 1. Additionally, Figure 7 illustrates the corner points and aircraft model skeleton in
the pixel coordinates, with green and red colours representing the initial frame and a con-
secutive frame, respectively. A notable limitation of applying corner detection algorithms
to the current CAD model design and lighting setup is that the right-wing tip falls into a
blind spot and remains invisible to the camera unless the aircraft model exhibits roll by
more than 5 degrees. Additionally, the left wing tip is generally obscured and only becomes
visible when the model exhibits extensive motions across all three degrees of freedom.

Table 1. Harris detection method errors.

Corner Points X Pixel Error Y Pixel Error

Side View Tail P1 0.880 1.312
Top View Wing P1 2.052 0.052
Top View Wing P2 1.060 0.583

Top View HS 2.052 ±1.052
Side View HS P1 1.229 −1.171
Side View HS P2 1.257 −1.047
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Figure 7. Initial frame and consecutive frame [16] (reprinted with permission from the American
Institute of Aeronautics and Astronautics, Inc.).

The transformation of 2D pixel coordinates to 3D coordinates of the aircraft model
skeleton as described in Section 3.3 is illustrated in Figure 4. This figure demonstrates the
accuracy of the customised transformation from 2D to 3D coordinates, specifically tailored
for this orthogonal stereo setup, in successfully converting the aircraft skeleton points from
the top and side camera views into a unified 3D world coordinate system. The rotation
matrix obtained using (30) has a determinant of 1. This indicates that the matrix represents
a pure rotation without any scaling effects. Figures 8–13 illustrate the ϕ, θ, ψ, ϕ̇, θ̇, and ψ̇
results from our proposed vision method and compare them to the Simscape data. Table 2
provides a comprehensive numerical representation of accuracy defined as the degree to
which the estimated angles from our proposed method match the ground truth values
represented by Simscape results, expressed as an error range. The following interpretations
could be made from the results obtained from the quaternions:

1. The results of pitch angle (θ) indicate that there is no consistent bias towards under-
estimation or overestimation in these angles. However, the results of roll angle (ϕ)
indicate a consistent bias towards underestimation and the results of yaw angle (ψ)
indicate a consistent bias towards overestimation. Irrespective of the bias, the results
follow a pattern of the input of the Simscape model, which is a sin wave.

2. The magnitude of the errors suggests that the quaternion method is accurate in
estimating angles, with ϕ and ψ having relatively small errors and θ having relatively
larger errors.

3. The bias of ϕ̇, θ̇, and ψ̇ do not have a consistent bias towards underestimation or
overestimation.

4. The magnitudes of the error range of θ̇ have large errors while the ϕ̇ and ψ̇ have small
errors identical to the Euler angles results as described in [16].

Even though quaternions offer accuracy and stability, small errors in their components
can still lead to significant deviations in Euler angles, especially near zero rotation angles.
This is due to the sensitivity of trigonometric functions involved in converting quaternions
to Euler angles. The inaccuracies in identifying Euler angles propagate to Euler rates during
backward differentiation. A significant error of −0.2806 radians per second in the θ̇ occurs
at the first time step, which is at 0 + ∆t, with the subsequent minimum error changing to
−0.0818 radians per second, suggesting that the primary error occurs initially.

Table 2. Error range of Euler angles and rates from quaternions.

Angles Error Range (◦) Rates Rates Error (rad/s)

ϕ [−0.1548, 0] ϕ̇ [−0.0578, 0.0307]
θ [−0.9924, 0] θ̇ [−0.2806, 0.1041]
ψ [0, 0.0394] ψ̇ [−0.0118, 0.0134]
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Figure 8. Euler angle, ϕ.

Figure 9. Euler rate, ϕ̇.
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Figure 10. Euler angle, θ.

Figure 11. Euler rate, θ̇.
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Figure 12. Euler angle, ψ.

Figure 13. Euler rate, ψ̇.

By computing the root mean square error (RMSE) for each estimate of phi, theta, and
psi individually, and then aggregating these RMSE values, the percentage improvement of
the quaternion method when compared to the direction cosine matrix employed in [16], is
determined by using the following equation,
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percentage =

(
RMSE DCM − RMSE Quat

RMSE DCM

)
100% (71)

The results indicate a 45.41% improvement in the accuracy of the quaternion method
for attitude estimation of the CAD model compared to using the direction cosine ma-
trix method.

A sensitivity analysis is performed to evaluate the system’s robustness and its ability to
maintain performance under varying errors in the identification of aircraft skeleton points.
This analysis aims to understand how errors in accurately identifying the aircraft skeleton
corner points, as visualised in Table 1, propagate to the Euler angle errors. Additionally, to
further analyse the first-order changes in the Euler angles, random numbers between −1
and 1 are chosen as ∆P3. Table 3 depicts the obtained first-order change of functions. The
results indicate the following:

1. The world coordinate points (Y3(2,5), Y3(2,6), Z3(3,3), and Z3(3,4)) have a high impact
on the change in ϕ angles. These points are the Y-coordinates of the tail length and
Z-coordinates of wing tips. This is visualised in Figure 14, where dx31, · · · , dy31,
· · · , dz31 represent ∂X3(1,1), · · · , ∂Y3(1,1), · · · , ∂Z3(1,1), which are the aircraft skeleton
points in consecutive frames as defined in (23).

2. Figure 15 indicates that the world coordinate points (X3(1,5), X3(1,6)) have a significant
impact on the change of θ angles. These points are the X-coordinates of the tail length
and the points Z3(3,1), and Z3(3,2) have slightly minimal impact on the change in θ
angles. These points are the Z-coordinates of the fuselage length.

3. Figure 16 depicts that the points (X3(1,3), X3(1,4), Y3(2,1), and Y3(2,2)) have a high impact
on the ψ angles. These are the X-coordinates of the wing tips and the Y-coordinates
of the fuselage length.

4. Any inaccuracies or disturbances in the identification of P3 points tend to amplify the
roll and yaw angle and affect the accuracy or stability in ϕ and ψ estimation.

5. The results obtained from quaternion measurements were corroborated by the sensi-
tivity analysis, affirming their reliability in obtaining ϕ, θ, ψ angles. Additionally, the
sensitivity analysis reveals that the pitch angle exhibits the highest susceptibility to
noise or inaccuracies in aircraft skeleton points, followed by the roll angle, while the
yaw angle demonstrates relatively lower sensitivity.

Figures 17–19 depict the results of EKF state (ϕ, θ, ψ) estimation, respectively. The
dynamic measurements (ϕ̇, θ̇, ψ̇) obtained through backward differentiation of EKF’s state
estimates are illustrated in Figures 20, 21 and 22, respectively. Table 4 provides a compre-
hensive numerical representation of the error ranges. Comparing the EKF results to the
quaternion results in Table 2 indicates that the EKF estimation of Euler angles is consistent
with the expected error range from quaternions. Comparing the EKF results with the
Simscape results indicates the following:

1. A comprehensive and reliable estimate of the system state is derived by the EKF
fusion process that effectively integrates information from different sensors. This
indicates a reliable fusion by the EKF.

2. The EKF is robust to variations, noise, and uncertainties present in the gyroscope,
accelerometer, and potentiometer data. This demonstrates the ability of EKF to
effectively handle sensor measurements and provide state estimation even in chal-
lenging conditions.

3. The results from EKF perform as validation for the sensor fusion algorithm imple-
mented in the EKF. It indicates that the fusion process is functioning correctly.
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Table 3. First-order change of the functions.

Euler Angles Change in Angles (◦)

ϕ 0.0194
θ −0.0569
ψ 0.0111

Figure 14. Sensitivity analysis roll.

Figure 15. Sensitivity analysis theta.
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Figure 16. Sensitivity analysis yaw.

Table 4. Error range of EKF attitude estimation.

Angles Error Range (◦) Rates Rates Error (rad/s)

ϕ [−0.0578, 0.0232] ϕ̇ [−0.0321, 0.0309]
θ [−0.9928, 0] θ̇ [−0.2806, 0.0701]
ψ [−0.0113, 0.0173] ψ̇ [−0.0118, 0.0128]

Figure 17. EKF Euler angle, ϕ.
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Figure 18. EKF Euler angle, θ.

Figure 19. EKF Euler angle, ψ.
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Figure 20. EKF Euler rate, ϕ̇.

Figure 21. EKF Euler rate, θ̇.
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Figure 22. EKF Euler rate, ψ̇.

8. Conclusions

A computer vision technique is proposed for the attitude estimation of a scaled aircraft
model in dynamic wind tunnel testing without the placement of any markers on the
model. This implementation is novel and has not been previously executed. The method
implements a sequential process of Harris corner detection, Kanade–Lucas–Tomasi tracking,
and quaternions to identify the Euler angles. The Harris detection method introduces
inaccuracies in identifying the corner points of the aircraft model skeleton, thereby affecting
the estimation of Euler angles. A sensitivity analysis of the proposed approach was
conducted using a first-order Taylor series. The implementation of quaternions over the
direction cosine matrix for estimating Euler angles has shown a 45.41% improvement in
accuracy. The quaternion method achieves an RMSE of 0.0101 rad/s, 0.0361 rad/s, and
0.0036 rad/s for the dynamic measurements of ϕ̇, θ̇, and ψ̇, respectively. Additionally, this
method exhibits an accuracy of 98.08% for pitch rate (θ̇). Furthermore, by incorporating
data from on-board sensors such as an IMU and a potentiometer gimbal, and integrating it
with vision data using the extended Kalman filter, this method has achieved an RMSE of
0.0090 rad/s, 0.0262 rad/s, and 0.0034 rad/s for the dynamic measurements of ϕ̇, θ̇, and ψ̇,
respectively. This method exhibits an improved accuracy of 98.61% for the estimation of
pitch rate (θ̇).

Additional verification of the method through application to lateral and longitudinal
angle changes will be performed, along with full integration with other measurement
techniques. While the approach developed here works satisfactorily without markers,
making this a challenging exercise, the inclusion of markers should improve accuracy and
reliability. The system will also be integrated into a longitudinal 3-degree-of-freedom rig
that is currently being developed [41,42].
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DWT dynamic wind tunnel
DOF degree-of-freedom
MEMS micro-electro-mechanical system
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DLT direct linear transformation
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