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Abstract: As the basic application of fiber optic sensing technology, strain measurement accuracy as a
key index needs to be further calibrated and analyzed. In this paper, accuracy calibration experiments
and the related analyses of two fiber-optic sensing technologies, the fiber-optic grating (FBG) and
optical frequency domain reflectometry (OFDR), are carried out using a standard beam of equal
strength and a mature resistive strain gauge (ESG). The fiber-optic single-point strain data for loading
and unloading changes of the beams of equal strength show good continuity and linearity, with good
cyclic stability, and the error in the strain test data is less than 2% after repeated loading. At the same
time, using finite element theory to analyze the data and using the measured data error within 5%, a
good strain test curve linearity is achieved and R2 is better than 0.998. After repeated loading and
unloading tests, it is verified that the fiber grating and the distributed optical fiber in the strain test
have good stability in repeatability accuracy. The calibration experiments and data analysis in this
paper further illustrate the three sensing technologies in determining the strain test accuracy and
the advantages and disadvantages of the indicators, and the development of the fiber optic sensing
technology application provides basic technical support.

Keywords: FBG; OFDR; strain calibration; repeated loading and unloading; strain jump

1. Introduction

In the process of designing, manufacturing, and applying critical structural compo-
nents, it is necessary to test and evaluate the comprehensive performance of their materials
and structures, such as the distribution of internal and external stresses and deformations
of structural components under certain conditions of loading, temperature, etc. [1–3]. Typ-
ically, the stress can be obtained by monitoring the strain generated in the elastic range
of the member material [4]. Through strain testing, the degree and cause of structural
deformation can be analyzed, which is of great significance to the quality monitoring of
structural components.

I In recent years, a variety of high-precision strain sensors have emerged in the
field of sensing and testing, specifically including two categories of contact and non-
contact. After years of development, resistive strain gauges have become a more mature
measurement method, and as the earliest measurement technology applied in the field of
strain monitoring, with a wide range of characteristics such as simple testing and reliability,
it has been widely used in a variety of engineering strain testing, commonly used in the
calibration of other new sensors [5,6]. However, at the same time, the use of strain gauges as
point sensors in the large-scale range sensing and monitoring of the fabrication structure is
complex, and under high temperature and high humidity, electromagnetic interference and
other complex environments are not applicable [7,8]. With the increase in the complexity of
testing needs, fiber optic sensing technology has accelerated in development. The Fiber
Bragg Grating (FBG) is one of the most representative sensors in fiber optic sensors and
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is resistant to electromagnetic interference, corrosion, and other complex environmental
factors. Multiple gratings in series can be used to carry out quasi-distributed sensing
measurements relatively easily. In recent years, with the further in-depth research on
FBG sensors, the application of FBG sensors has expanded from strain and temperature to
various fields. By characterizing FBGs into different types, we can extend them to other
parameter measurements, such as acceleration, displacement, and pressure. These are the
hot application fields of grating sensors at present [9,10].

Based on the distributed sensor technology of optical frequency domain reflection
(OFDR), the backscattered Rayleigh signal on the optical fiber link is retrieved through
the linear swept light source combined with the coherent detection technology, and the
strain and temperature sensing test with high precision and high spatial resolution is
realized. Using conventional single-mode optical fiber as sensor, it is easy to realize large-
scale deployment and realize point-to-point high-precision and high-resolution distributed
sensing, which is often used in the fields of structural health detection, nondestructive
testing of composite materials, battery temperature testing and so on in civil engineering.
With the advantages of OFDR technology, it provides a new idea for the design of various
sensing test schemes [11,12]. At present, with the development of FBG and OFDR, FBG and
OFDR have been widely used in the measurement of temperature, strain, stress and other
physical parameters [13–15]. As the basic application of optical fiber sensing technology,
strain measurement, as a key index, needs further calibration and analysis.

As an elastic sensitive element, the beam with equal strength has the advantages
of structural stability and convenient processing, and it is an isosceles triangle in shape.
When the vertex of the triangle is subjected to concentrated load, the free end changes
in deflection, and the stress and strain on the section at any distance from the vertex are
constant. It is commonly used in various stress and strain detection tests.

In this paper, the standard Beams of equal strength calibration system with mature
the Electric Strain Gauge (ESG) and two fiber optic sensing technologies, FBG and OFDR,
was used to carry out accuracy calibration experiments and related analysis. After several
Beams of equal strength loading and unloading tests, the fiber-optic single-point strain data
with the Beams of equal strength loading and unloading changes showed good continuity
and linearity, and the cyclic stability was better. The error of strain test data was less than
2% after repeated loading.

To accurately describe the strain distribution and numerical accuracy of the Beams
of equal strength, a finite element simulation model was used to compare and analyze
with the measured data, which showed an error of less than 5% and good linearity of the
respective strain test curves. As the number of loading and unloading cycles increased, the
local strain jumps in the ESG measurement data became more prominent, and the error of
the strain test data was less than 4% after repeated loading. After repeated loading and
unloading tests, it was verified that the fiber grating and distributed fiber exhibited good
stability in terms of the repeatability accuracy of the strain test, while the strain gauges
exhibited local strain shifts after multiple repeated loading and unloading cycles. This
experiment further verified that OFDR distributed fiber optic sensing technology, FBG,
and ESG were essentially comparable in terms of strain test accuracy, and also validated
the high repeatability stability of fiber optic sensing technology. The calibration method
provided technical support for the basic application of fiber optic sensing technology.

2. Strain Measurement Principles
2.1. Principle of ESG Measurement Technology

Strain gauge is composed of five parts: sensitive grid, substrate, cover layer, adhesive
and lead wire. As shown in Figure 1, the sensitive grid is the core part of the resistance
strain gauge, and its role is to convert the strain change into its own resistance change.
The lead wire connects the strain gauge to the test device, which can transfer the electrical
signal collected by the sensitive grid to the detection device. By attaching the resistance



Sensors 2024, 24, 3811 3 of 11

strain gauges to the surface of the structure, the strain in the structure can be converted
into a change in the resistance of the strain gauges.

Sensors 2024, 24, x FOR PEER REVIEW 3 of 12 
 

 

signal collected by the sensitive grid to the detection device. By attaching the resistance 
strain gauges to the surface of the structure, the strain in the structure can be converted 
into a change in the resistance of the strain gauges. 

Metal strain gauge resistance sensors mainly work by utilizing the strain effect of 
resistance, i.e., the amount of change in the resistance value of the metal sheet in the strain 
gauge is used to measure the small deformation caused by the applied external force or 
by the external force. 

ε0
d K
R
R =  (1)

R is the initial resistance of the metal wire, as seen in Equation (1), the resistance of 
the resistance wire is subjected to force, the rate of change of its resistance is proportional 
to the strain produced by the resistance wire, which is the working principle of the strain 
gage [16]. K0 is called the sensitivity coefficient of the resistance wire, and its value is a 
constant in the proportionality limit of the stretching of the resistance wire. K0 is generally 
determined experimentally, and the K0 for Conoco is generally 1.9–2.1, and that of Chro-
mium is generally 2.1–2.3. 

 
Figure 1. Structure diagram of resistance strain gauge. 

2.2. FBG Measurement Technology Principle 
Fiber grating is essentially a process of periodically changing the refractive index of 

a section of optical fiber within the core of optical fiber, as shown in Figure 2 below. Under 
normal circumstances through the light will all pass through the Bragg grating without 
being affected, only a specific wavelength of light in the Bragg grating will be reflected 
back to the original direction, equivalent to a narrowband reflector or filter. The FBG ob-
tains the variation of the physical quantity to be measured by monitoring the drift of the 
grating wavelength. The expression for the FBG wavelength is [17]: 

Λ= eff2nλ  (2)

where λ is the center wavelength of the FBG, neff is the effective refractive index of the fiber 
core, and ∧ is the grating period. When the FBG is located in the environment temperature 
or stress changes, external forces will lead to neff or ∧ change, which will cause the move-
ment of the FBG center wavelength. The FBG strain sensing characteristic expression is: 

( )[ ] ZBZBB KPPP ελελλ ε=








+−−=Δ
2

nv1 eff
2

121112  (3)

Figure 1. Structure diagram of resistance strain gauge.

Metal strain gauge resistance sensors mainly work by utilizing the strain effect of
resistance, i.e., the amount of change in the resistance value of the metal sheet in the strain
gauge is used to measure the small deformation caused by the applied external force or by
the external force.

dR
R

= K0ε (1)

R is the initial resistance of the metal wire, as seen in Equation (1), the resistance of the
resistance wire is subjected to force, the rate of change of its resistance is proportional to the
strain produced by the resistance wire, which is the working principle of the strain gage [16].
K0 is called the sensitivity coefficient of the resistance wire, and its value is a constant in the
proportionality limit of the stretching of the resistance wire. K0 is generally determined
experimentally, and the K0 for Conoco is generally 1.9–2.1, and that of Chromium is
generally 2.1–2.3.

2.2. FBG Measurement Technology Principle

Fiber grating is essentially a process of periodically changing the refractive index of a
section of optical fiber within the core of optical fiber, as shown in Figure 2 below. Under
normal circumstances through the light will all pass through the Bragg grating without
being affected, only a specific wavelength of light in the Bragg grating will be reflected back
to the original direction, equivalent to a narrowband reflector or filter. The FBG obtains
the variation of the physical quantity to be measured by monitoring the drift of the grating
wavelength. The expression for the FBG wavelength is [17]:

λ = 2neffΛ (2)

where λ is the center wavelength of the FBG, neff is the effective refractive index of the
fiber core, and ∧ is the grating period. When the FBG is located in the environment
temperature or stress changes, external forces will lead to neff or ∧ change, which will
cause the movement of the FBG center wavelength. The FBG strain sensing characteristic
expression is:

∆λB =

{
1 − [P12 − (P11 + P12)v]

n2
eff

2

}
λBεZ = KελBεZ (3)
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where λB is the strain sensing sensitivity coefficient, for ordinary quartz fiber, the elastic
optical coefficient P11 = 0.121, P12 = 0.27, V is the Poisson’s ratio of fiber grating, V = 0.17,
neff = 1.4438.
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2.3. OFDR Demodulated Distributed Fiber

The optical fiber manufacturing process has a specific Rayleigh scattering spectral
distribution due to uneven refractive index distribution. A certain position of the fiber is
affected by temperature or strain, causing a shift in the Rayleigh scattering frequency, where
there is a linear relationship between the amount of frequency shift and temperature and
strain [13]. OFDR is an optical frequency domain reflection technology, which is combined
with optical heterodyne detection technology to locate the scattered signal by measuring
the frequency of Rayleigh scattering signal in optical fiber. As shown in Figure 3, the linear
scanning light emitted by the light source is divided into two paths of light through the
coupler, in which one path of light wave is injected into the sensing fiber, and when it
propagates in the fiber, it will continuously generate Rayleigh scattering signals, which
become signal light and are coupled into the detector through the coupler, and the other
path of light wave is also coupled into the detector through the coupler as reference light
after reflection, and the relationship curve between frequency and Rayleigh scattering
intensity is located through the optical heterodyne coherent detection technology, and then
the frequency domain is converted into the time domain through Fourier transform [18].
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When the optical fiber is affected by external temperature and stress, its frequency
spectrum will drift. By calculating the frequency shift coefficient of temperature and
stress, the temperature and strain changes at this position can be obtained, and the fully
distributed sensing of temperature and strain sensing can be realized. The principle of
OFDR sensing test is shown in Figure 4 below.
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BH

P

E

l
2

σε =  (4)

where L, H and E are the length, thickness and elastic modulus of beams with equal 
strength, respectively (E = 72 GPa). where B is the width of the load-bearing part and σ is 
the stress on the beam section. Tensile stress, p is the acting force on the beam with equal 
strength. 

Part 1 Part 2 
(4)
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Part 1: DC and high frequency terms are filtered out.
Part 2: Beat frequency term measured by detector The intensity correspond to that re-

turn loss and reflectivity of the optical signal in the optical fiber. The distance corresponding
to the beat frequency is used for positioning along the optical fiber.

A linear sweep laser combined with coherent detection technology can detect the
Rayleigh backscattering signal in the optical fiber and obtain the Rayleigh scattering
information of the whole fiber. It is suitable for distributed optical fiber sensing with short
distance, high resolution, and high precision. Its spatial resolution is at the millimeter level,
and its measurement range can reach 100 m. The distribution result of the whole fiber can
be theorized and measured, and the local difference in strain parameters in the target area
can be obtained by a single measurement.

Along the length of the fiber, the fiber to be tested is divided into one adjacent sensing
unit at equal intervals, demodulate the frequency shift of the Rayleigh scattering spectral
signals before and after the loading of each sensing unit, and then combine the frequency
shift with the strain temperature conversion coefficient to derive the strain value. All the
sensing units of the whole fiber are calculated one by one, and the strain distribution with
distance can be obtained.
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3. Experimental Setup

In the experiment, three types of sensors were sequentially deployed onto an isostress
beam for testing, as illustrated in Figure 5, which shows the schematic diagram of the
sample deployment. Equal strength beam means that the maximum normal stress on
each cross section of the beam is equal and reaches the allowable stress of the material.
The material of equal strength beam used in this experiment is aluminum alloy, and the
working size is L × B × H = 295 × 9.25 × 3 mm. The strain calculation formula for beams
with equal strength is:

ε =
σ

E
P

H2
l
B

(5)

where L, H and E are the length, thickness and elastic modulus of beams with equal strength,
respectively (E = 72 GPa). where B is the width of the load-bearing part and σ is the stress
on the beam section. Tensile stress, p is the acting force on the beam with equal strength.

Among them, the Fiber Bragg Grating (FBG) system utilized a fiber optic grating with
a central wavelength of 1565 nm as the sensor, the Optical Frequency Domain Reflectometry
(OFDR) system employed a bend-insensitive polyimide optical fiber, and the Electric Strain
Gauge (ESG) was equipped with a sensor featuring a sensitive grid length of 3 mm, as
depicted in the actual sensor image shown in Figure 6. In this test, a fiber grating with
a central wavelength of 1565 nm, a strain gauge with a sensitive grating length of 3 mm
and a single-mode polyimide fiber with a length of 20 cm are used as strain test sensors.
The experimental process involved loading weights incrementally, with each increment
consisting of a 100 g weight, totaling 15 levels of loading.
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In this experiment, the strain gauge demodulator is DH3818Y static stress and strain
test and analysis system produced by Jiangsu Donghua Test Technology Co., Ltd., (Jingjiang,
China) with a strain range of ±10,000 µε, a resolution of ±0.1 µε and a static sampling
rate of 5 Hz. The fiber grating demodulator is OCI series equipment produced by Wuhan
Megasense Technologies Co., Ltd. (Wuhan, China). The strain and temperature mea-
surement is realized by calculating the center wavelength offset of grating. The strain
range is ±4000 µε, the spatial resolution is in the nanometer level, and the demodulation
rate is 2 kHz. OFDR system uses OSI series equipment produced by Wuhan Megasense
Technologies Co., Ltd. (Wuhan, China). The OFDR system uses a narrow-band linear
swept-frequency light source, with a working wavelength of 1530–1570 nm, a strain range
of ±12,000 µε, a spatial resolution of 1mm, a maximum sampling rate of 100 Hz and a
strain accuracy of ±1 µε. The above three sensing demodulation devices are shown in
Figure 7.
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During the experiment, the isostress beam’s state without any weights placed was
recorded as the zero state. The weights were incrementally added by 100 g, and the strain
test data for each stable state after loading were recorded. For data recording, a grating
demodulator, a strain demodulator, and an OFDR device were used sequentially to record
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and save the strain test data for the grating, strain gauge, and distributed optical fiber
strain tests.

4. Results and Discussion

When loading with a 200 g weight, as depicted in Figure 8, strain test data from the
three types of sensors were obtained. It can be observed that both the strain gauge and
the grating, after being demodulated by the demodulator, output a single strain value,
whereas the strain test data from the distributed optical fiber is continuously distributed.
The strain value measured by the strain gauge represents the average strain data within
its sensitive grid section, and the strain value measured by the grating is determined by
the strain size caused by the central wavelength shift within its grating area. Therefore,
during data processing, it is necessary to average all the strain data from the sensing points
within the optical fiber section corresponding to the sensitive grid of the strain gauge. This
average is then used as the measurement result for the optical fiber, which is compared
with the measurement data from the fiber grating and the strain gauge.
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Finite element analysis was conducted on the equi-strength beam used in the experi-
ment. At the same location on the equi-strength beam, a strain increase of 47 micro-strain
(µε) was observed for every 100 g weight added, as shown in Figures 9 and 10.
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Table 1 shows the test loading data, with 100 g weights per stage and 15 stages in
total. Three groups of test data are recorded, and the average value is plotted as shown
in Figure 11, in which the horizontal axis represents the increased weight and the vertical
axis represents the measured strain value. The strain test data from three sensors are fitted
linearly in turn, and the fitting coefficients (r) are 0.99813, 0.99889 and 0.99873 respectively.
The good linear relationship shows that the test data in this experiment is accurate and
effective. When comparing the strain test data from 1565 nm fiber grating, distributed fiber
and 3 mm strain gauge, the error is less than 2%. Compared with the data of finite element
theory analysis, the error between the measured data and the data of finite element theory
analysis is less than 5%.

Table 1. The trial loading data.

Load
Sensors

FBG/µε OFDR/µε ESG/µε

First Second Third Average First Second Third Average First Second Third Average

100 g 48 51 48 49 52 54 53 53 51 54 51 52

200 g 98 101 98 99 106 104 104 105 104 102 103 103

300 g 164 163 166 164 159 160 161 160 155 156 154 155

400 g 206 204 202 204 212 211 213 212 204 205 209 206

500 g 262 264 263 263 265 266 264 265 255 259 260 258

600 g 306 303 306 305 315 313 314 314 310 306 308 308

700 g 359 365 359 361 368 369 370 369 357 359 358 358

800 g 403 402 404 403 422 420 418 420 413 411 409 411

900 g 457 461 459 459 471 469 470 470 459 463 463 462

1000 g 518 521 521 520 523 521 522 522 512 516 514 514

1100 g 577 580 580 579 579 580 578 579 570 569 571 570

1200 g 633 631 632 632 639 637 638 638 625 630 629 628

1300 g 685 687 689 687 695 694 696 695 689 690 688 689

1400 g 757 756 758 757 763 764 765 764 750 749 748 749

1500 g 818 814 813 815 819 820 815 818 810 809 811 810

Multiple repeated loading and unloading cycles were conducted on the three sensors:
the fiber grating, the distributed optical fiber, and the strain gauge. A 100 g weight was
used for each loading/unloading stage, totaling eight stages. Based on the strain test results
from the three sensors as depicted in Figures 12 and 13, the following conclusions can
be drawn. The single-point strain data from the fiber grating and the distributed optical
fiber exhibited good continuity and linearity with changes in loading and unloading,
demonstrating better cyclic stability. After repeated loading, the strain test data error was
less than 2%. In contrast, the strain gauge measurements showed increasingly noticeable
local strain jumps with an increasing number of loading and unloading cycles. After
multiple repeated loading cycles, the strain test data error was less than 4%. This, apart
from being attributed to the intrinsic performance of the strain gauge, may also be related
to the adhesive properties of the strain gauge. The adhesive layer between the sensitive
grating of the strain gauge and the substrate, and the gluing between the substrate and the
test piece will cause the strain gauge data to drift when they are displaced and degummed.
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It can be clearly seen from Figure 13 above that the strain data measured by strain
gauge began to drift obviously after repeated loading of the test piece for many times.
Under normal circumstances, there are two kinds of situations that lead to the deviation
of test data: 1: Repeated loading causes irreversible damage to the test piece itself, which
leads to data drift; 2: The stability of repeated loading test of the sensor itself is weak,
and some irreversible strain remains in the sensor itself after repeated loading. Through
the loading test of the equal strength beam specimen alone, after repeated loading tests,
the aluminum alloy specimen of the equal strength beam is in good structural condition
without damage, so the deviation of the strain gauge data caused by the specimen itself is
ruled out, which further ensures the reliability and accuracy of the test.
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In order to avoid the contingency of the selected loading data, the test data are
statistically processed again and plotted as shown in Table 2. The FBG, PI and ESG sensors
are repeatedly loaded with 800 g weight, and an average value is taken every 40 groups of
data, and the error rate of strain test data after repeated loading is analyzed and calculated.

Table 2. Single 800 g Weight Repeated Loading Test.

Sensors
Loading Times

Load 40 Times Load 80 Times Load 120 Times Error Rate

FBG 420 µε 424 µε 426 µε <2%

PI 419 µε 425 µε 427 µε <2%

ESG 425 µε 432 µε 441 µε <4%

5. Conclusions

This paper presents precision calibration experiments and related analyses using a
standardBeams of equal strength system equipped with a mature ESG, along with two
types of fiber optic sensing technologies: FBG and OFDR. After multipleBeams of equal
strength loading and unloading tests, it was found that the fiber optic single-point strain
data exhibited good continuity and linearity with changes in loading and unloading, and
better cyclic stability, with the error in strain test data after multiple repeated loading being
less than 2%. Additionally, the finite element theoretical analysis data were within a 5%
error margin of the actual measured data, indicating a good linearity of the strain test
curves with R2 values greater than 0.998. Furthermore, repeated loading and unloading
experiments demonstrated the good stability of FBG and OFDR in terms of strain testing
repeatability and precision, while the strain gauge showed local strain shifts after multiple
repeated loading and unloading.

The calibration experiments and data analysis in this paper validate the stability
of OFDR distributed fiber optic sensing technology and FBG in strain testing accuracy,
providing foundational technical support for the development of applications of fiber optic
sensing technologies.
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