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Abstract: The growing urban population and traffic congestion underline the importance of building
pedestrian-friendly environments to encourage walking as a preferred mode of transportation.
However, a major challenge remains, which is the absence of such pedestrian-friendly walking
environments. Identifying locations and routes with high pedestrian concentration is critical for
improving pedestrian-friendly walking environments. This paper presents a quantitative method to
map pedestrian walking behavior by utilizing real-time data from mobile phone sensors, focusing on
the University of Moratuwa, Sri Lanka, as a case study. This holistic method integrates new urban
data, such as location-based service (LBS) positioning data, and data clustering with unsupervised
machine learning techniques. This study focused on the following three criteria for quantifying
walking behavior: walking speed, walking time, and walking direction inside the experimental
research context. A novel signal processing method has been used to evaluate speed signals, resulting
in the identification of 622 speed clusters using K-means clustering techniques during specific
morning and evening hours. This project uses mobile GPS signals and machine learning algorithms
to track and classify pedestrian walking activity in crucial sites and routes, potentially improving
urban walking through mapping.

Keywords: walking behavior; mobile GPS tracking; machine learning; pedestrian-friendly environment

1. Introduction

Investigating pedestrian behavior and improving walking space in streets are becom-
ing increasingly crucial considering the proven benefits to health, sustainability, and the
development of safer pedestrian-friendly areas [1,2]. Consequently, an increasing amount
of research has been carried out examining the relationship between the urban environment
and individuals’ behavior on streets [3]. However, many of these studies focus on the macro
level; in addition to considering the urban characteristics on a wider scale, it is important to
also consider microscale factors of urban design that influence behavior on streets [1]. This
requires collecting data on the micro-level walking behavior of individuals on the streets to
obtain precise information and develop target solutions for promoting walking.

Behavior mapping is a commonly utilized technique for the direct and systematic
monitoring of individual behaviors and locations [1]. This mapping was first used in indoor
locations, primarily in the fields of psychology, sociology, and criminology. It has since
become commonly employed in public spaces like streets, parks, and playgrounds [4,5].
Currently, this mapping extends to street design and street planning. Shoval et al. [6]
utilized psychological mapping to generate real-time maps of subjective and objective
emotions to analyze Jerusalem’s urban surroundings for the first time. Building upon that
study, there is currently a growing interest in mapping behavior across several fields [7–9].
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Recent technological advances have enabled these studies to use real-time surveying,
tracking technologies, and global positioning systems (GPS). GPS data have been gathered
since the 1990s to analyze transportation and access system performance, including mea-
suring traffic flow, studying travel patterns, calculating route choices, etc. [10]. This opens
a new research area by combining modern technical methods with real-time interactive
communication. The availability of technology for the establishment of the geographic
coordinates of mobile phones and other devices has significantly increased, leading to the
emergence of a wide range of applications of location-based services (LBS) [11]. Similarly,
Wi-Fi signals were also utilized in these studies [9]. The incorporation of LBS improves the
quantitative metrics, offering significant spatial observation of the pattern of pedestrian
movement. Smartphones, with their wireless connection, inertial sensors, and cameras,
have greatly impacted digital health and gait analysis studies. Smartphones are currently
providing physiological assessment and data entry/collection capabilities through several
sensing modalities, which are accessible via apps [12].

However, this study found a few significant research gaps. The emergence of walking
behavior depends on a combination of sociocultural variables, individual choices, and ha-
bitual patterns rather than a physical setting [13]. Therefore, to enhance our understanding
of walking behavior patterns, we must acknowledge the complexity of this field.

Obtaining a detailed comprehension of individual experience in terms of time (second)
and space (meters) offers new possibilities for study and strategic decision-making [6]. It is
crucial to integrate the environment and individual characteristics of multiple individual
inputs on the map to form a clear visual representation of different patterns [7]. The use
of standard GPS positions is collected at intervals of a few seconds, resulting in hundreds
of data points at each interval and large datasets for a thorough analysis. Thus, the first
need is to map patterns of pedestrian walking behavior, as existing research highlights
the importance of modern data gathering and analysis approaches, including objective
walking patterns from large-scale tracking and machine learning analysis, to study the
types of pedestrian walking patterns [14].

Most walking behavior studies have measured pedestrian walking utilizing walking
duration, flows, and number of walkers [15]. Nevertheless, these studies are limited by
their dependence on observational methodologies. Thus, while they offer new insights,
their method has limitations [16]. Multiple authors identify the following five essential
components in the observation process: 1. a visual representation of the observed areas;
2. a precise explanation of the human behavior observed, tracked, described, or outlined;
3. a timetable of recurring intervals for observation and recording; 4. a methodological
observation process; and 5. a system for programming analysis that reduces the recording
workload [1]. While walkability studies highlight the complexity of walking activities,
there is still a lack of systematic categorization of pedestrian actions, creating a knowledge
gap [9]. Further, research on walking patterns disregards the individual travel direction and
time of the day. The individual travel direction has a significant impact on walking behavior
changes; in addition, the direction in which people walk is influenced by built environment
scenarios [17]. Also, time series analysis can be used to study changes in behavior over
time [8]. The absence of this information presents difficulty in acquiring walking patterns.
Hence, the second need involves considering individual travel direction and temporal
factors to map and analyze walking behavior using real-time tracking applications. This
approach allows researchers to collect more detailed and accurate data, resulting in more
effective urban planning efforts.

The behavior of human walking is naturally complex and shaped by a variety of
environmental and psychological factors. Subjective verification, which is frequently based
on personal user experience and perception, plays a crucial role in validating the accuracy of
measurement models, ensuring that they accurately reflect the complex nature of real-world
walking scenarios. Current research on evaluating human walking behavior primarily
concentrates on the construction of index systems, as well as data collecting and processing.
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However, it does not include any verification of the reliability of measurement findings or
the validity of measurement models [18].

In this context, analyzing pedestrian walking patterns using machine learning algo-
rithms is critical for improving road safety and optimizing traffic management. Traditional
techniques, such as artificial neural networks (ANNs) and hidden Markov models (HMMs),
have been widely used in this domain [19]. However, these algorithms frequently encounter
significant issues, such as overfitting and substantial data dependency, in real-time pro-
cessing scenarios. For example, Ajmaya and Eklund’s [19] study on recognizing pedestrian
events using IMU and GPS data emphasized the challenges of improving ANN models,
as well as the vast amount of training data required to obtain reliable results. Further-
more, the study by Gong et al. [20] identified limitations in using density-based spatial
clustering of applications with noise (DBSCAN-TE) and support vector machine (SVM)
methodologies, such as the need for parameter estimation and the lack of instant speed
and acceleration features, which reduce the accuracy and efficiency of detecting pedestrian
stops and movements.

Although data-driven methods have the potential to assist in making informed design
decisions, it is still uncertain which new sources of information and approaches could be
utilized to obtain insights into studying pedestrian walking behaviors in urban areas, result-
ing in a shortage of knowledge. Given the focus of our work, machine learning approaches
have also been utilized in various areas of GNSS positioning. For instance, Zhang et al. [21]
used unsupervised machine learning techniques to enhance precise positioning and navi-
gation in complex environments. By integrating best integer equivariant (BIE) estimation
with unsupervised K-means clustering algorithms, the proposed methods significantly
improved both accuracy and reliability. The experiment demonstrates that the use of this
approach could achieve millimeter-level precision, highlighting the effectiveness of ma-
chine learning techniques in such applications. In this study [21], K-means achieved high
accuracy rates for inferring transportation modes, particularly when speed profiles were
used as attributes. This implies that K-means clustering can handle the spatial and temporal
patterns in pedestrian movement data without considerable parameter modification.

Given the limitations and potentialities in current studies, this research developed a
framework utilizing unsupervised machine learning techniques to map pedestrian walking
behavior in streets with real-time tracking data using mobile phones. This research endeav-
ors to explore pedestrian walking behavior by utilizing mapping techniques to provide
insight that exceeds traditional methods. Researchers can collect complex characteristics of
pedestrian behavior, such as movement patterns, and interaction with the built environ-
ment using real-time tracking technologies and advanced mapping approaches. Integrating
tracking technologies with subjective and objective experiences of human behavior could
greatly enhance urban planning [6]. Extensive mapping not only helps to improve urban
design to promote pedestrian activity but also creates convenient urban environments.

2. Materials and Methods
2.1. Case Study

We developed an approach for mapping pedestrian walking behavior on the streets of
the University of Moratuwa and its vicinity. Campus walking areas are prioritized in urban
sustainable development and developing pedestrian-friendly surroundings [2]. Given
the nature of the experiment, this study examined walking behavior at the University of
Moratuwa and its surrounds, as shown in Figure 1. The case study includes public locations,
residential neighborhoods, cultural and commercial areas, and diverse university spaces
to evaluate walking behavior patterns in varied environments and situations. Pedestrian
traffic was seen in these areas, as many individuals were walking around the university
because university students choose different routes daily to get to the university.
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Figure 1. Case study area.

2.2. Experimental Design and Workflow

University students who live near the University of Moratuwa were selected as a
sample. These students, aged 23 to 27 years, were chosen for this study because they were
well-acquainted with their surroundings due to their daily commuting from their accom-
modation (boarding) to the university. Initially, 60 individual samples with a 50% gender
distribution were chosen. The experiment was only carried out on weekdays. Weekday
tests allowed for more focused monitoring of university pedestrian behavior. Specific times
for the experiments were set to prevent overcrowding and congestion. The times were 7:00
to 9:00 a.m. and 4:00 to 6:00 p.m. These times of the day were carefully chosen to include
both morning and evening peak hours to thoroughly examine pedestrian behavior.

As pointed out in the study by [18,22], which investigated several accelerometer
placements, including at the hip (belt), wrist, upper arm, ankle, and thigh of the test
person, using numerous accelerometers aids in activity identification. Thus, as illustrated
in Figure 2, in this study, participants were advised to secure their mobile phones to their
waistbands with designated holders. This strategy guaranteed that the phones remained in
a consistent and steady position throughout the data collection process. The test persons
were advised to keep the mobile phone in a vertical orientation within the holder to
preserve consistency. This placement of the phones enabled the accurate gathering of data
on walking speed, acceleration, and GPS position during the experiments.

Also, to effectively capture speed data when walking, the following parameters needed
to be considered: holding the phone upright in portrait orientation by ensuring that the
X-axis (horizontal) is parallel to the direction of movement while the Y-axis (vertical) is
perpendicular to the ground. This orientation enables the phone’s sensors to better capture
forward movement (along the X-axis) and up-and-down motion (along the Y-axis), both of
which are important for estimating speed.

Data for this study were collected using the Redmi Note 12 Pro smartphone, which
has a powerful sensor suite that includes an accelerometer, gyroscope, and GPS receiver.
Throughout the experiment, the use of these sensors was of utmost importance for collecting
data on walking speed, acceleration, and geographic positions. Furthermore, the smart-
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phone’s long-lasting battery allowed for continuous data collection over lengthy periods.
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Figure 2. Experiment setup.

Each participant was instructed to use their mobile phone to record their walking
speed, acceleration, and other variables available through the mobile app. Over four
weeks, participants were required to record these characteristics as they traveled around
the case study area during both the morning and evening. To minimize bias from long-
distance walking and associated fatigue, each recording session was limited to 10 min.
Accurate instructions on how to carry the phones were provided to participants. To
ensure precise data collection, participants were additionally directed not to check their
phones while walking and to keep focused on their surroundings. Every participant was
informed of this study’s purpose and the possible results, and they were all given specific
instructions to explore and experience the environment throughout the study walking
sessions. Throughout the process of this research, ethical standards and privacy have been
carefully upheld.

2.3. Data Analysis

Clustering individuals based on their walking speed, direction, and time enables the
precise classification of walking behavior. K-means clustering aids in identifying clusters [9].
Mapping identifies locations with high levels of pedestrian traffic and their distribution.
Clustering identifies areas with high levels of foot traffic or congestion hotspots, allowing
for more analysis to guide more effective solutions. Data analysis included three steps.

Framework of This Study

Figure 3 illustrates the framework used for evaluating location data and analyzing
pedestrian walking behavior. This framework offers a structured approach to gaining
insights from the dataset.

• Data collection using the sensor logger app;
• Data preparation—Before beginning the data preprocessing, each CSV file is classified

based on the time of travel and travel direction to gain additional insights for a
comprehensive dataset;

• Data preprocessing—The initial phase of the farmwork involves manual data preprocessing;
• Data preparation for K-means clustering—The dataset was cleaned and normalized

to detect clusters of pedestrian walking behavior. We used a bespoke algorithm to
preprocess the dataset;

• Mapping the results—The work principally centers on cluster analysis, employing
unsupervised machine learning methods to reveal noteworthy trends and identify the
homogeneous profile among pedestrians;

• Data validation—Data validation is conducted through the outputs of mapping using
K-means clustering and expert subjective assessment.
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1. Data collection using sensor logger app.

Sensor logger is a smartphone app that collects objective participant data. Figure 4
illustrates the interface of the sensor logger mobile application, which is used to gather data.
The application is available for Android, iPhone, and Apple Watch. The main reason for
choosing this mobile app is its ability to adjust walking speed according to the Naisthmith
rule, which sets it apart from other apps. It was useful for tracking small speeds caused by
terrain changes when walking. Also, by using this mobile app, one can capture diverse
walking dynamics. It mostly records the participant’s geographical location and timestamp
as they walk along the path. The program records acceleration, location, gyroscope, speed,
step count, sound, heart rate, wrist motion, and other elements to capture the walking
behavior. While the sensor logger app collects a range of data types, this analysis prioritizes
the use of metrics appropriate to this study’s aims. We specifically focus on using location
data in conjunction with metrics like walking speed, longitude, latitude, accuracy, time,
etc. In this mobile application, speed is calculated by measuring the change in consecutive
GPS coordinates over time. The application determines speed by recording latitude and
longitude at each time point and calculating the distance walked throughout each interval.
The app’s privacy practices may involve the management of subsequent data. The data can
be exported in several forms, such as Zip, CSV, JSON, and SQLite.

The entire dataset was initially normalized using the Naisthmith method to ensure
consistency in the measurements of walking speed across various terrains. The Naisthmith
rule is a common technique for calculating the actual working speed when facing slopes or
uneven surfaces.

The Naismith rule can be described using the following:

Equivalent distance = Horizontal distance + (Vertical distance ∗ α) (1)
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The horizontal distance refers to the distance at which an object moves on a level
surface, whereas the vertical distance indicates the rate of ascent or descent. The parameter
α represents Naisthmith’s number, a constant coefficient that quantifies the additional
exertion needed as a result of variations in altitude, which is usually set to 7.92.
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Figure 4. Sensor logger mobile application.

2. Data Preparation

The data collected includes multiple characteristics, such as time, elapsed seconds,
longitude, latitude, altitude, speed, bearing accuracy, vertical accuracy, horizontal accuracy,
and bearing. The dataset chosen for this study is presented in Table 1. The mobile data
covers 4 weeks and includes a complete dataset of 96,924 points. Before starting the data
preprocessing, each CSV file based on time travel and travel direction has to be classified to
gain additional insights for a comprehensive dataset.

Table 1. Types of data collected for this study.

Second
Elapsed

(Seconds)

Bearing
Accuracy
(Degrees)

Speed
Accuracy

(ms−1)

Vertical
Accuracy

(m)

Horizontal
Accuracy

(m)

Speed
(ms−1)

Bearing
(Degree)

Altitude
(m)

Longitude
(Degrees)

Latitude
(Degrees)

4188.1 0 0.0806 34.74 9.94 0.0001 0 −77.2 79.9002 6.7956
2096.2 0 0 4.18 11.70 0.0001 0 −76.4 79.8990 6.7953
1699.1 0 0.15 1.13 13.32 0.0002 0 −73.8 79.9000 6.7963

3. Data preprocessing

The dataset included individual speed points captured using speed-tracking tech-
niques in the mobile phone app. Following the framework proposed, an initial phase in
the data preprocessing was the removal of outliers from each user’s output. Outliers are
samples that appear to be inconsistent with the overall trend of the GPS signal. They could
be peaks, discontinuities, saturation, etc. To properly assess a signal, it must be removed
without affecting the rest of the data. In the context of analyzing walking behavior patterns,
outliers were defined as speed values outside the normal walking range, as follows: a speed
of 0.0 ms−1, indicating negligible movement, such as waiting, and a speed of 2.5 ms−1 or
more, which is likely inaccurate due to GPS signal errors.

In addition to outlier removal, the dataset was analyzed for direction of travel and
time. The manual process involved analyzing each user’s outputs for GPS points and
assigning the relevant direction based on timestamps using QGIS.

When assessing GPS signals for walking behavior, it is critical to focus on potential
outliers induced by rapid and major shifts in the signal, such as significant braking. Before
running the algorithm, the outlier removal strategy was used to thoroughly evaluate the
data for outliers and ensure the correct classification of valid samples.

4. Data preparation for K-means clustering

Clustering techniques are divided into types based on splitting, density, and model.
The K-means algorithm offers several advantages over other established approaches, such
as straightforward mathematical principles, quick convergence, the improved scalability to
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big datasets, the effective management of high-dimensional datasets, and straightforward
implementation. This approach is adaptable and can be utilized across several fields, as
well as simply adapted to new scenarios. The reason for choosing K-means clustering is its
capability to cluster data by reducing the sum of squared error (SSE) inside clusters.The
sum of squared error (SSE) is given by the following equation:

d =
k

∑
k=1

n

∑
i=1

(xi − uk)
2 (2)

The main function of the sum of the squared error is represented by d, where k is the
number of clusters, n is the number of observations, xi is an observation i, and uk is the
centroid generated for the cluster of xi.

However, typical K-means clustering has limitations. To address these issues in this
unsupervised machine learning model, a framework has been developed by following
specific techniques.

• Utilizes only numerical input variables—K-means uses distance-based metrics to
analyze the similarity between data points, restricting the evaluation to only numerical
factors. The analysis utilized geographic longitude and latitude coordinates to identify
the pattern of walking behavior. In addition, the undefined (NaN) values were
removed. Clustering results may be distorted if NaN values are included in the raw
dataset (CSV output);

• Outlier removal in data classification—To cluster the data for studying walking behav-
ior, the major dynamic being considered here is walking speed, which was collected
through a mobile application. To categorize the speed of data, the existing literature
has been examined. The speed property divides walking speeds into the following
four categories: “Slow”, “Normal”, “Fast”, and “Very Fast” [23]. It is imperative to
evaluate the potential impact of outlier data on the K-means clustering analysis during
the preparatory phase at this stage. The IQR-based outlier removal method was used
on each speed category to remove data points that were outside the permitted range.
Table 2 shows the average value of accuracy in each cluster after removing the outliers
and categorizing them into clusters.

Table 2. Average values of each cluster used in K-means clustering.

Cluster
Bearing

Accuracy
(Degrees)

Speed
Accuracy

(ms−1)

Vertical
Accuracy (m)

Horizontal
Accuracy (m)

Speed
(ms−1)

Slow 0 0 0.259 0.543 0.6775
Normal 0 0.1485 0 0.600 1.1081

Fast 0 0 0 0.677 1.4091
Very Fast 0 0 0.548 0.667 1.5447

• Data Normalization—Data normalization was performed using the min–max scaler
method [24] in Python using the sci-kit-learn package. The min–max scaler is given
as follows:

x1 =
x − min(x)

max(x)− min(x)
(3)

Let x1 represent the normalized value, x represents the initial value within a particular
range, min(x) represents the minimum value of the attribute within that range, and
max(x) represents the maximum attribute value within that range.
This phase ensured that the results were not affected by variations in scales and that
all scales had an equal impact on model fitting.

• The optimal number of clusters—This study utilized the K-means method to identify
unique patterns in the data based on geographical coordinates (latitude and longitude)
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and walking speeds. Clustering algorithms depend on a random initialization of the
cluster centroid. Silhouette analysis (SA) was used to address the issue and determine
the ideal number of clusters for each speed category [25]. Introduced by Rousseeuw in
1987, the silhouette analysis (SA) technique calculates the silhouette score, a statistic
that varies between −1 and 1. This score provides information on the proximity and
density of clusters, indicating their closeness or distance from one other and the total
density of the clusters.

5. Mapping the Results

The silhouette analysis (SA) approach helped to identify the ideal number of clusters
within each speed category. The next step was to map these clusters to reveal distinc-
tive patterns within the case study area. Basic QGIS mapping techniques were used to
accomplish this.

6. Data Validation

Validating the results is essential after finishing the analytical process. Validating these
results is challenging because spatial quality is a normative criterion [26]. This study used a
unique method that contrasted the results of the unsupervised machine learning algorithm
with the preferred speed of each cluster as identified by the students participating in
the research.

For this method, 150 clusters, which is one-third of all cluster setups, were carefully
chosen for assessment. These clusters were specifically used because they were within one
standard deviation. A total of 150 pictures were manually captured during the evaluation
procedure in the study area. Travel direction and traveled time were considered for each
cluster when taking the photos. The research participants were required to walk in a
specific direction and only identify what was directly in front of them; thus, the analysis
disregards the whole 360-degree field of vision and instead focuses on a 120-degree field of
view based on their walking path.

The camera features an 8-megapixel resolution and an f/2.2 aperture, ensuring sat-
isfactory image detail and effective light capture, respectively. Featuring a 120-degree
ultrawide field of vision, this device is capable of effectively capturing wide and expansive
scenes as well as group photographs. Furthermore, the camera’s 1/4.0-inch sensor size and
1.12 µm pixel size is advantageous. Students were asked to rate their preferred speed of
walking when looking at images categorized as slow, normal, fast, and very quick.

3. Results
3.1. Results of Cluster Mapping

By using the K-means clustering techniques, a total of 622 speed clusters were identi-
fied during both morning hours (07.00 to 09.00 a.m.) and evening hours (4.00 to 06.00 p.m.)
independently. The results discussed below are based on collected data and represent the
areas most extensively used by students. GIS and spatial analysis are employed to map the
results of the clustering of walking behavior, which includes point distribution maps that
illustrate pedestrian concentration on the road.

This study mapped pedestrian density in various locations within each of the four speed
categories during morning and evening hours. Figure 5 illustrates the spatial distribution
of pedestrian density among different speed clusters in the morning, whereas Figure 6
illustrates pedestrian concentration in the evening. The identification of unique spatial
behaviors within each cluster is facilitated by the display of data in both morning and
evening timestamps, which enables the observation of a variety of patterns. Figures 7 and 8
depict the walking behavior patterns in the morning and evening based on cluster analysis.
The points indicate the centroid of each cluster derived from K-means clustering.
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3.2. Results of Data Validation

Appendix A shows the results of ratings obtained by machine learning and the record-
ings from the students. For each of the 150 clusters, two ratings were estimated. Out of the
150 ratings, 126 were found to be the same, which is considered acceptable. The results were
assessed for validity using Kappa Statistics to quantify the inter-rater reliability between
the ratings made using machine learning and the recordings from the students. The values
were calculated using Python. Table 3 presents the summary of the results.

Table 3. Statistics of the machine learning and the recordings from the students indicating the
agreement value.

Agreement Cohen’s Kappa Coefficient Std. Err.

85.3% 0.8 0.013
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4. Discussion

This research enhances the understanding of the complex connections between urban
environments and pedestrian behavior by utilizing quantitative location data and speed
data of pedestrians, along with qualitative validation of the findings. “Big Data” analysis
is used to process and analyze significant and complicated datasets that typical data pro-
cessing systems are not able to handle. Various methods exist for gathering and analyzing
vast amounts of data, but there is a need for a standardized framework to extract insights.
In this paper, a method is proposed for conducting experiments using the pedestrian to
collect and analyze data and extract insights to conclude behavior, rather than relying on
biased observational data or the existing literature.

This study’s findings provide useful insights into pedestrian behavior patterns within
various speed categories. The clustering study using unsupervised machine learning
discovered several clusters for each of the following speed categories: slow, normal, fast,
and very fast. The clusters indicate regions with different pedestrian densities and speeds
of movement. Mapping highlights locations with a significant concentration of each cluster
on different roadways. The slow mean walking speed is 0.69 ms−1, the normal mean
walking speed is 1.11 ms−1, the fast mean speed is 1.41 ms−1, and the very fast mean speed
is 1.81 ms−1.

In this case, both in the morning and evening hours, a significant increase in pedestrian
traffic on Bandaranayake Mawatha and Molpe Road can be observed. In those areas, there
is a high concentration of slow and normal walking pedestrians. The field observations
show that these locations correspond to the main entry for vehicles at the University of
Moratuwa, where there is a notable rise in vehicular traffic and dense retail structures along
Molpe Road.

According to a study by [27], young adults walk at a speed of 89 m/min in educational
areas and 80 m/min in commercial areas. According to the speed ranges in this study,
the speed falls within the normal range. Results show that pedestrians passing around
the university area (Bandaranayake Mawatha) and the nearby commercial area (Molpe
Road) tend to walk at a normal speed, which aligns with the existing findings of the
aforementioned literature.

Inside the University of Moratuwa, during the morning hours, there is a high degree of
pedestrian concentration observed in the Lagan area. This congestion can be categorized as
slow and normal speed clusters. Based on on-site observation, this location in the university
is predominantly a green environment, which is similar to findings of [28] research that
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indicates that individuals tend to walk slower in greener environments. In addition, the
concentration of speed in different areas of the University of Moratuwa is constant.

This study found a substantial correlation (85%) between machine-generated scores
and subjective assessments. This verification demonstrates the effectiveness of our strategy,
which benefits substantially from the large dataset employed for analysis.

Finally, using the experimental study, we were able to visualize, accurately analyze,
and validate walking behavior patterns. Visualization is essential for managing tracking
data. GPS is important in urban research because it provides precise and observable data
that can be combined to create a new evidence base for predicting future urban trends.

5. Conclusions and Outlook

The objective of this research is to present an approach for analyzing pedestrian paths
in urban environments. Individuals’ walking patterns are evaluated on multiple streets
inside the case study location. Our employed method provides a full understanding of
pedestrian dynamics by gathering real-time tracking data and using unsupervised machine
learning methods to assess walking behavior.

This work provides insights into walking behaviors. Firstly, this study adds to the cur-
rent body of knowledge by developing a theoretical basis for using unsupervised K-means
clustering machine learning algorithms to assess pedestrian walking behavior using large-
scale GPS data. Secondly, our work expands the transportation planning and urban design
and planning literature by using large-scale data analysis with established methodologies.

The authors’ analysis of outcomes utilizing machine learning algorithms and mobile
location data collection led to the following conclusions and interpretations. K-means
clustering was used to determine the number of unique clusters within the case study
area. This method was tested at various times of day and discovered that there is a
different pattern in morning and evening walking behavior, demonstrating constancy in
pedestrian concentration in the studied area. These patterns may arise as a result of urban
design components and activities in an area that influences pedestrian movement patterns.
Therefore, it is recommended in future research to analyze the spatial and environmental
aspects of the study region to enrich the existing body of knowledge.

This study, however, is limited by continuous data collection due to technical chal-
lenges, resulting in missing information on certain days. This study only collected pedes-
trian movement data for a limited number of days and had a small sample size comprising
only university students. The primary objective of this work was to examine the suggested
methodology and showcase its efficacy in real-time tracking data by employing machine
learning techniques to analyze pedestrian locomotion patterns. This study was conducted
across two time periods, focusing on temporal aspects. Future research could benefit
from extending the duration of observations, analyzing the temporal patterns of different
activities in depth, and studying the diverse street users.

Author Contributions: Conceptualization, A.J. and H.S.; methodology, H.S., A.J. and G.R.; software,
H.S. and A.J.; validation, H.S., A.J. and G.R.; formal analysis, H.S.; investigation, H.S.; resources, A.J.
and G.R.; data curation, H.S.; writing—original draft preparation, H.S.; writing—review and editing,
A.J. and G.R.; visualization, H.S.; supervision, A.J.; project administration, A.J.; funding acquisition,
A.J. and G.R. All authors have read and agreed to the published version of the manuscript.

Funding: Open Access Funding by TU Wien.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data supporting the reported results were generated during
the data collection phase of this study. Due to privacy and ethical restrictions, the data are not
publicly available.



Sensors 2024, 24, 3822 14 of 16

Acknowledgments: The author acknowledges the funding for the mobile phones from project 618657-
EPP-1-2020-1-AT-EPPKA2-CBHE-JP from the Erasmus+ Capacity Building in Higher Education
program. This project has been funded with support from the European Commission. This publication
reflects the views only of the authors, and the Commission cannot be held responsible for any use
that may be made of the information contained therein.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Summary table of the evaluation using machine learning and subjective evaluation
conducted by the students.

Cluster No Machine
Evaluation

Subjective
Evaluation Cluster No Machine

Evaluation
Subjective
Evaluation

1 Very Fast Very Fast 76 Fast Fast
2 Very Fast Very Fast 77 Normal Normal
3 Very Fast Fast 78 Fast Fast
4 Very Fast Fast 79 Fast Fast
5 Fast Fast 80 Fast Fast
6 Very Fast Very Fast 81 Normal Fast
7 Very Fast Very Fast 82 Very Fast Fast
8 Normal Normal 83 Fast Normal
9 Very Fast Fast 84 Slow Slow
10 Very Fast Very Fast 85 Normal Normal
11 Very Fast Very Fast 86 Fast Fast
12 Slow Normal 87 Very Fast Very Fast
13 Slow Slow 88 Very Fast Fast
14 Fast Fast 89 Fast Fast
15 Slow Slow 90 Very Fast Very Fast
16 Very Fast Very Fast 91 Fast Fast
17 Normal Normal 92 Slow Slow
18 Normal Normal 93 Normal Fast
19 Fast Fast 94 Fast Fast
20 Fast Very Fast 95 Very Fast Very Fast
21 Very Fast Very Fast 96 Slow Slow
22 Fast Fast 97 Fast Fast
23 Normal Normal 98 Normal Normal
24 Fast Fast 99 Slow Slow
25 Slow Slow 100 Slow Slow
26 Fast Fast 101 Normal Fast
27 Slow Slow 102 Normal Normal
28 Slow Slow 103 Normal Normal
29 Fast Fast 104 Fast Fast
30 Normal Normal 105 Slow Slow
31 Normal Normal 106 Normal Normal
32 Normal Normal 107 Normal Normal
33 Normal Normal 108 Slow Slow
34 Normal Normal 109 Very Fast Very Fast
35 Normal Normal 110 Slow Slow
36 Very Fast Very Fast 111 Very Fast Very Fast
37 Very Fast Fast 112 Fast Fast
38 Fast Fast 113 Fast Fast
39 Fast Normal 114 Fast Fast
40 Slow Slow 115 Fast Fast
41 Slow Slow 116 Slow Slow
42 Very Fast Very Fast 117 Slow Normal
43 Slow Slow 118 Fast Fast
44 Very Fast Very Fast 119 Slow Slow
45 Slow Slow 120 Normal Slow
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Table A1. Cont.

Cluster No Machine
Evaluation

Subjective
Evaluation Cluster No Machine

Evaluation
Subjective
Evaluation

46 Normal Normal 121 Normal Normal
47 Slow Slow 122 Normal Normal
48 Fast Fast 123 Slow Slow
49 Normal Normal 124 Slow Slow
50 Slow Normal 125 Slow Slow
51 Normal Normal 126 Normal Normal
52 Slow Slow 127 Slow Normal
53 Very Fast Very Fast 128 Normal Normal
54 Normal Normal 129 Normal Normal
55 Slow Slow 130 Very Fast Normal
56 Very Fast Very Fast 131 Slow Fast
57 Slow Slow 132 Very Fast Very Fast
58 Normal Normal 133 Very Fast Very Fast
59 Normal Normal 134 Slow Slow
60 Fast Fast 135 Slow Slow
61 Slow Slow 136 Normal Normal
62 Normal Normal 137 Fast Very Fast
63 Normal Slow 138 Normal Normal
64 Slow Slow 139 Fast Very Fast
65 Slow Slow 140 Slow Slow
66 Slow Slow 141 Very Fast Very Fast
67 Very Fast Very Fast 142 Slow Slow
68 Normal Normal 143 Very Fast Very Fast
69 Very Fast Very Fast 144 Very Fast Very Fast
70 Normal Normal 145 Normal Normal
71 Normal Fast 146 Normal Normal
72 Slow Slow 147 Normal Normal
73 Very Fast Very Fast 148 Normal Normal
74 Fast Fast 149 Fast Normal
75 Very Fast Very Fast 150 Fast Fast
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