
Citation: Choi, C.-H.; Han, J.; Cha, J.;

Choi, H.; Shin, J.; Kim, T.; Oh, H.W.

Contrast Enhancement Method Using

Region-Based Dynamic Clipping

Technique for LWIR-Based Thermal

Camera of Night Vision Systems.

Sensors 2024, 24, 3829. https://

doi.org/10.3390/s24123829

Academic Editor: Stefania Perri

Received: 28 March 2024

Revised: 5 June 2024

Accepted: 10 June 2024

Published: 13 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Contrast Enhancement Method Using Region-Based Dynamic
Clipping Technique for LWIR-Based Thermal Camera of Night
Vision Systems
Cheol-Ho Choi * , Joonhwan Han , Jeongwoo Cha , Hyunmin Choi , Jungho Shin , Taehyun Kim
and Hyun Woo Oh

Pangyo R&D Center, Hanwha Systems Co., Ltd., 188, Pangyoyeok-ro, Bundang-gu, Sengnam-si 13524,
Gyeonggi-do, Republic of Korea; joonhwan.han@hanwha.com (J.H.); jeongwoo.cha@hanwha.com (J.C.);
hyunmin.choi@hanwha.com (H.C.); jh.hoya.shin@hanwha.com (J.S.); taetae@hanwha.com (T.K.);
hyunwoo.oh@hanwha.com (H.W.O.)
* Correspondence: cheoro1994@hanwha.com; Tel.: +82-31-8091-7680

Abstract: In the autonomous driving industry, there is a growing trend to employ long-wave in-
frared (LWIR)-based uncooled thermal-imaging cameras, capable of robustly collecting data even in
extreme environments. Consequently, both industry and academia are actively researching contrast-
enhancement techniques to improve the quality of LWIR-based thermal-imaging cameras. However,
most research results only showcase experimental outcomes using mass-produced products that
already incorporate contrast-enhancement techniques. Put differently, there is a lack of experimental
data on contrast enhancement post-non-uniformity (NUC) and temperature compensation (TC)
processes, which generate the images seen in the final products. To bridge this gap, we propose a
histogram equalization (HE)-based contrast enhancement method that incorporates a region-based
clipping technique. Furthermore, we present experimental results on the images obtained after
applying NUC and TC processes. We simultaneously conducted visual and qualitative performance
evaluations on images acquired after NUC and TC processes. In the visual evaluation, it was con-
firmed that the proposed method improves image clarity and contrast ratio compared to conventional
HE-based methods, even in challenging driving scenarios such as tunnels. In the qualitative evalua-
tion, the proposed method demonstrated upper-middle-class rankings in both image quality and
processing speed metrics. Therefore, our proposed method proves to be effective for the essen-
tial contrast enhancement process in LWIR-based uncooled thermal-imaging cameras intended for
autonomous driving platforms.

Keywords: infrared; thermal image; image processing; histogram equalization; contrast enhancement;
night vision

1. Introduction

Autonomous driving platforms relying on cameras, such as visible light-based RGB
(red-green-blue) or YUV with CMOS (complementary metal oxide semiconductor) tech-
nology, exhibit remarkable performance in object detection, recognition, and information
provision [1,2]. However, a significant drawback arises in nighttime environments where
obtaining high-quality image data for object recognition becomes challenging due to the
absence of ambient light [3].

To address this limitation in the automotive and defense industries, ongoing research is
actively exploring the integration of night vision systems using infrared cameras. Infrared-
based commercial cameras utilize the infrared wavelength range and are generally divided
into three product groups that utilize specific wavelength ranges: (1) SWIR (short-wave
infrared, 0.9–1.7 µm), (2) MWIR (mid-wave infrared, 3–5 µm), and (3) LWIR (long-wave
infrared, 8–14 µm) [4–6].
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In SWIR-based cameras, the principle is that when energy from the light source hits
an object and reflects, the detector visualizes the reflected energy. Therefore, in places such
as underground parking lots or tunnels where there is no light, SWIR-based cameras have
the disadvantage of not being able to obtain valuable images that users can utilize. For this
reason, the size of the product increases because a light source is essential to operate under
various conditions and a cooled detector must be used. The need to use a cooled detector
increases the price of the product and requires significant power consumption due to the
larger size of the products. Consequently, SWIR-based cameras are generally used mainly
in the defense industry.

MWIR- and LWIR-based cameras are generally known to users as thermal-imaging
cameras. MWIR-based cameras can acquire information on objects located at a distance
because their atmospheric transmittance is relatively high compared to cameras that utilize
other infrared wavelengths. However, like SWIR-based cameras, they must utilize a cooled
detector, which increases the size of the product and the cost of production, and requires
a large amount of power consumption. On the other hand, LWIR-based cameras have the
advantage of being able to acquire information across a wide temperature range because
they can detect most of the thermal energy emitted by various targets. Additionally, LWIR-
based cameras can use bolometer-type detectors, allowing the use of either a cooled or
uncooled detector depending on the intended use of the product. This means that products
can be manufactured with characteristics such as low power consumption, low cost, and
miniaturization, depending on the intended use.

Although LWIR-based cameras are known to have relatively shorter detection ranges
than MWIR-based cameras, they provide performance that satisfies most distance con-
ditions for situational awareness according to various standards (e.g., ISO-26262 [7]) or
user requirements [4]. Therefore, to meet various standards or requirements such as cost
or other conditions, depending on the application, LWIR-based cameras can be utilized
most widely.

For this reason, ongoing academic research is actively exploring the integration of
night vision systems using LWIR-based thermal-imaging cameras into autonomous vehicle
platforms [8–10]. Especially in the case of research and development (R&D) centers within
the automotive industry, LWIR-based cameras are being developed for use as night vision
systems among various infrared wavelengths, as they must produce finished products that
meet standards such as ISO-26262. LWIR-based thermal-imaging cameras typically employ
two detectors, categorized as either (1) cooled or (2) uncooled [11–13]. Cooled detectors
provide high-quality image acquisition but are expensive to produce, large in size, and
require significant power, so they are mainly used in applications such as defense. On the
other hand, uncooled detectors, which are cheaper to produce, smaller in size, and require
less power, are preferred in autonomous vehicle platforms within the automotive industry.
However, since uncooled detectors do not have a mechanical cooler, noise removal and
pixel value correction for temperature changes require additional processing of the raw
data collected.

Essential pre-processing steps, such as non-uniformity correction (NUC) to address
fixed pattern noise and temperature compensation (TC) to offset temperature-related pixel
value variations, are crucial for resolving hardware-related issues [14]. Nevertheless, images
obtained after NUC and TC processes exhibit low-dynamic range (LDR) characteristics,
rendering them unsuitable for deep learning or machine learning-based object detection
and recognition, essential components in autonomous vehicle platforms. To overcome this
challenge, research is underway to develop contrast-enhancement techniques, specifically
aiming to convert LDR into high dynamic range (HDR) characteristic images after NUC
and TC processes.

Various histogram equalization (HE)-based methods exist for image contrast enhance-
ment. Most commercially available products commonly utilize global histogram equaliza-
tion (HE)-based methods after non-uniformity correction (NUC) and temperature compen-
sation (TC) processes to enhance image quality. This approach helps reduce production
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costs and ensures stability, meeting military standards (MilSpecs) or international standards
organization (ISO)-26262 requirements in autonomous or military industries. However,
conventional HE methods, relying on a probability density function (PDF) and cumu-
lative distribution function (CDF), can oversaturate results when histogram values are
excessively concentrated, leading to issues such as a shifted average brightness level. More-
over, conventional HE-based methods solely present performance evaluations on data
obtained from mass-produced products. This means there is a lack of experimental results
on contrast enhancement using images calculated exclusively with NUC and TC processes.
Additionally, most studies employing these methods only conduct experiments in driving
scenes characterized by good image quality and favorable driving scenarios. Consequently,
it becomes challenging to assert the algorithm suitability for infrared thermal-imaging
cameras in autonomous driving platforms since the performance evaluation is confined to
specific favorable driving conditions. Therefore, to comprehensively assess performance
for deployment in autonomous driving platforms, it is imperative to conduct experiments
in worst-case driving environments, including scenarios such as tunnels.

In this paper, we introduce a four-group-based HE method designed for contrast
enhancement. Additionally, we present experimental results demonstrating the effective-
ness of contrast enhancement using images after NUC and TC processes, considering
both best and worst driving scenarios. The primary objective of our proposed method is
to exhibit contrast enhancement performance in both favorable and challenging driving
conditions. Moreover, regarding the experimental results, the comparison between the pro-
posed method and conventional methods in both best and worst driving scenarios enables
a comprehensive evaluation. In conclusion, the obtained images serve to determine the
most suitable contrast-enhancement technique after the NUC and TC processes, providing
potential application probability in mass-produced products.

2. Background
2.1. Non-Uniformity Correction (NUC)

All multidimensional array sensors generate a fixed pattern due to geometric differ-
ences between each pixel element or gain difference in the transmission and amplification
stages, known as fixed pattern noise (FPN). Specifically, when using uncooled infrared
detectors designed by a read-out integrated circuit (ROIC) that processes row and column
units, FPN manifests as line patterns in both horizontal and vertical directions, referred to
as non-uniformity in the infrared image. To address this issue, the method for correcting
non-uniformity is known as NUC in infrared-based thermal imaging systems. In embedded
environments, a two-reference NUC is commonly employed, utilizing Equation (1), with
two reference input values required for this operation.

IN(x, y) = GN(x, y)× I(x, y) + ON(x, y) (1)

where GN(x, y) represents the look-up table (LUT) of gain for the NUC, I(x, y) denotes the
input image, ON(x, y) is the LUT of offset for NUC, and IN(x, y) corresponds to the output
image after the NUC operation.

2.2. Temperature Compensation (TC)

The process of adjusting the output value in response to temperature changes in
an uncooled infrared detector is commonly referred to as TC or the thermal electric cooler
(TEC)-less algorithm. This is necessary because the pixel values, influenced by temperature
in the output of an uncooled infrared detector without TEC, need to be compensated
to a constant value. In the absence of TEC, the image output values for the same object
may vary inconsistently due to changes in the external/internal environment, potentially
leading to fixed patterns caused by noise and temperature fluctuations. To address this,
after collecting image data for a specific temperature using a black body, pixel values
corresponding to each temperature, which vary based on the internal/external environment,
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are stored and applied in real time for each temperature. The TC method achieves this
objective by incorporating an offset value, as illustrated in Equation (2).

IT(x, y) = I(x, y)−OT(x, y) (2)

where IT(x, y) denotes the output image after applying the TC operation, I(x, y) represents
the input image, and OT(x, y) is the LUT of offset for TC.

There are two options for implementing NUC and TC operations as software in
an embedded environment. When TC is performed after NUC, Equation (3) is applicable.
Conversely, when NUC is performed after TC, it is equivalent to Equation (4).

IO(x, y) = GN(x, y)× (I(x, y)−OT(x, y)) + ON(x, y) (3)

IO(x, y) = GN(x, y)× I(x, y) + (ON(x, y)−OT(x, y)) (4)

where IO(x, y) represents the output image obtained by applying both NUC and TC. Cur-
rently, there is no quantitative numerical report that definitively determines the superiority
of either Equation (3) or Equation (4). However, in general, the implementation and
research are trending towards performing TC after NUC, as shown in Equation (3).

2.3. Contrast Enhancement (CE)

The difference in image output values between objects in the output image after NUC
and TC processing is minimal, making it challenging to distinguish the disparities. When
image data values are concentrated at a specific pixel point, the resulting image exhibits
a poor contrast ratio. Hence, there is a need to enhance contrast by evenly rearranging the
distribution of slightly different image data values.

For this purpose, HE-based methods are widely employed in embedded environments.
This is particularly relevant because the mass production cost of the embedded thermal
imaging system is high, and high performance processors cannot be utilized. In essence,
HE-based methods are chosen due to challenges such as processor occupancy resulting
from NUC and TC processes.

In HE methods, two types are commonly distinguished: (1) Global and (2) Local. After
using NUC and TC processes, pixel values tend to concentrate in a specific pixel intensity
region. Consequently, when window- or cell-based local HE is applied after NUC and TC,
the contrast improvement rate may be very low. Therefore, it is essential to perform global
HE after NUC and TC processes, with most mass-produced thermal imaging systems
adopting global HE as the subsequent step following NUC with TC.

In the contrast enhancement methods after the proposed 2011 year, as shown in Table 1,
it is typically divided into three types except for deep learning-based methods as shown in
Table 1: (1) histogram-based, (2) retinex-based, and (3) other technique-based. In histogram-
based contrast enhancement methods, there are various methods, and reflectance-guided
contrast accumulated histogram equalization (RG-CACHE) was proposed as one of the
state-of-the-art methods. In retinex-based contrast enhancement methods, low-light image
enhancement via illumination map estimation (LIME) is widely used because of its high
contrast improvement performance. In other technique-based contrast enhancement meth-
ods, there are various methods, and their algorithms utilize de-haze or statistical techniques.
Among these three types of contrast enhancement methods, the retinex-based contrast
enhancement method showed higher contrast enhancement performance than the other
two types of contrast enhancement methods for general visible images, equivalent to RGB
or YUV cameras. However, retinex-based contrast enhancement methods have a complex
computation process. On the other hand, the other two types of contrast enhancement
methods showed relatively lower contrast improvement performance than the retinex-
based contrast enhancement method. However, these methods have the advantage of
a simple computation process compared to retinex-based contrast enhancement methods.
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Table 1. Various conventional contrast enhancement methods.

Category Method Year

RLBHE [15] 2013
Histogram-based RG-CACHE [16] 2020

ROPE [17] 2021

AMSR [18] 2013
NPE [19] 2013
SIRE [20] 2015

Retinex-based MF [21] 2016
SRLLIE [22] 2016

SRIE [23] 2016
LIME [24] 2017

Dong [25] 2011
Others MEFF [26] 2017

Al-Ameen [27] 2020

3. Proposed Method

When using NUC and TC, as detailed in Equations (1)–(4) and mentioned in Section 2
contrast enhancement is essential to provide meaningful images to users. Pixel values
processed through NUC and TC are in a 14-bit format. If a contrast enhancement algorithm
is performed using a high-performance processor in an embedded environment, the 14-bit
image data produced through the NUC and TC algorithms can be utilized.

However, as mentioned in Section 1, to produce a finished product suitable for the au-
tomotive industry, components must be standard specification such as ISO-26262. In other
words, to produce an LWIR-based camera for automotive, processors and memories must
comply with ISO-26262 standard specifications. Additionally, Original Equipment Manu-
facturers (OEMs) require products like cameras to have low-power and low-production
cost characteristics.

For LWIR-based camera products to satisfy OEM requirements, they must use low-
cost and low-power memory (e.g., LPDDR2 or LPDDR3) and low-cost processors (e.g., TI
TDA3x) while meeting the ISO-26262 standard. In such as embedded platform environment,
to ensure acceptable image quality for OEMs and other users, communication with various
external components (e.g., Controller Area Network (CAN) or I2C) and cyber-security
must be possible. Additionally, NUC, TC, global contrast enhancement, and local contrast
enhancement algorithms are all operational.

Therefore, when both global and local contrast enhancement algorithms are utilized,
the 14-bit format data obtained after performing NUC and TC are generally reduced to
8-bit. This reduction is necessary to meet various conditions such as processing speed
and power consumption. Considering that a local contrast enhancement algorithm will be
included in the future, this paper proposes a global contrast enhancement algorithm based
on 8-bit image data.

3.1. Motivation

When acquiring an image in 14-bit format after performing NUC and TC operations,
it is inevitable that pixel values are concentrated in a specific area due to the characteristics
of the LWIR-based camera. Therefore, when downscaling the image data from 14-bit
to 8-bit (after applying the automatic gain control described later), the low-temperature,
medium-temperature including room-temperature, and high-temperature areas can be
more clearly distinguished. As a result, the temperature areas are more distinct in the 8-bit
domain (space) than in the 14-bit domain (space).

From this perspective, the analysis results shown in Figure 1 were confirmed. Figure 1
presents the results of analyzing the values of each pixel after downscaling the image,
calculated using NUC and TC, to 8-bit format. As shown in Figure 1, in a typical driving
scenario with NUC and TC, the pixel values of the infrared-based thermal images fall
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within the low-temperature, medium-temperature, and high-temperature ranges in the
histogram plot (low-temperature range: 0 to 63, medium-temperature range: 64 to 191, and
high-temperature range: 192 to 255).

Figure 1. Pixel value analysis result of downscaled image by using NUC and TC methods.

The red annotation area in the thermal image represents the sky and the pixel values
were confirmed to be in the early 20s. In the case of the green annotation located on the
asphalt road, it was observed that the pixel values were in the early 100s. Lastly, in the case
of the blue annotation located on the rear side of the vehicle, it can be observed that the
pixel values of the vehicle fall within the range of 149 to 183. However, the exhaust pipe of
the vehicle has a slightly higher value of 195 or higher than the surrounding objects due to
the high temperature.

When viewed as a histogram plot, pixel values can be grouped into a total of four
regions. First, in the case of the sky with a lower temperature compared to surrounding
objects (without the sun), it falls within the first group (region) with pixel values between
0 and 63. Second, on vehicle-driving roads such as asphalt, it falls within the second group
(region) between 64 and 127. Third, the vehicle falls within the pixel group (region) between
128 and 191. Lastly, parts expressing high temperatures, such as exhaust pipe or the sun,
belong to the fourth group (region) with a pixel value of 192 or higher. In other words, in
terms of histogram frequencies, unlike CMOS-based cameras, it was observed that the pixel
values from the 8-bit infrared thermal image exhibit the characteristic of being clustered in
specific groups (regions).

3.2. Algorithm

Based on the analysis results depicted in Figure 1, we propose a region-based HE
method that utilizes clipping and distribution techniques with a dynamic clip limit. As
illustrated in Figure 2 and pseudo-code (Algorithm 1) for the proposed method, the opera-
tional process of the proposed method comprises five steps: (1) Automatic Gain Control
(AGC) including Histogram Bin Calculation, (2) Histogram Group Division, (3) Histogram
Clipping, (4) Excess Value Distribution, and (5) Output Value Mapping.

3.2.1. Automatic Gain Control (AGC) and Histogram Bin Calculation

In the AGC step, prior to Histogram Bin Calculation, the bit depth of the input pixel
values in the computed image, obtained using NUC and TC methods, is reduced from
an N-bit format to an 8-bit format, as defined by Equations (5)–(7). Thereafter, in the
Histogram Bin Calculation step, the frequencies of pixel values across the entire image in
8-bit format are then computed.

Imax = max(INT) (5)
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Imin = min(INT) (6)

Iα =
(INT − Imin)

(Imax − Imin)
× 2α (7)

where INT represents the input image computed by using the NUC and TC methods,
whereas Imax and Imin denote the maximum and minimum pixel values of INT , respectively.
The variable α corresponds to the desired bit reduction from the input pixel value to the
output pixel value, and α represents the output image with α-bit depth.

Algorithm 1 Pseudo-Code for Proposed Contrast Enhancement Method Using Region-
Based Histogram Equalization with Dynamic Clipping Technique

Input: IIn : Input Image with N-bit format
Output: I(Out,L) : Contrast Enhanced Output Image

1: < Automatic Gain Control (AGC) >
2: IIn.Max ←max(IIn)
3: IIn.Min ←min(IIn)
4: I8bits ← 255 × (IIn − IIn.Min) / (IIn.Max − IIn.Min)
5:
6: < Histogram Bin Calculation >
7: for x ← 1 to N do
8: for y← 1 to M do
9: H(I8bits)← H(I8bits) + 1

10: end for
11: end for
12:
13: < Histogram Group Division >
14: H1 ← H(0 : 63)
15: H2 ← H(64 : 127)
16: H3 ← H(128 : 191)
17: H4 ← H(192 : 255)
18:
19: < Histogram Clipping >
20: for L← 1 to 4 do
21: HL.Max ←max(HL)
22: HL.Min ← small(HL)
23: [HL, EL]← Clip(HL, HL.Max, HL.Min)
24: end for
25:
26: < Excess Value Distribution >
27: HC ← [H1, H2, H3, H4]
28: E← E1 + E2 + E3 + E4
29: HC ← HC + (E / 256)
30:
31: < Output Value Mapping >
32: C← CDF(HC)
33: P← PDF(C)
34: for x ← 1 to N do
35: for y← 1 to M do
36: O(x, y)← 255 × P(I8bits)
37: end for
38: end for
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Figure 2. Operation process of the proposed method.

3.2.2. Histogram Group Division

After computing the pixel value frequencies in the Histogram Bin Calculation step, the
Histogram Group Division step involves dividing the histogram bin values into four groups,
based on the analysis results presented in Figure 1 and defined by Equations (8) and (9).

(i, k) =


(1, n) n ≤ 63
(2, n− 64) n ≤ 127
(3, n− 128) n ≤ 191
(4, n− 192) other

(8)

Histi(k) = Hist(n) (9)

where i represents the histogram region with values ranging from 1 to 4, and n represents
the histogram bin value. In the first histogram region, frequencies are considered for bin
values ranging from 0 to 63. The second histogram region includes frequencies for bin
values from 64 to 127, whereas the third histogram region encompasses frequencies for bin
values from 128 to 191. Finally, the fourth region comprises frequencies for bin values from
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192 to 255. In other words, each histogram region is subdivided into four, with each region
having a histogram bin value range of 64.

As explained in the motivation subsection, each frame captured by the LWIR-based
camera contains extensive temperature information. By applying AGC, the analysis can be
performed within a limited domain (space), allowing the intervals to be distinguished based
on the temperature range. For example, when the temperature decreases (e.g., from the sky
to below zero), the pixel value approaches 0. Conversely, when the temperature increases
(e.g., from a car engine or a fire), the pixel value approaches 255. In the case of medium
temperature, the range is considerably wider. However, even within the intermediate
temperature range, the thermal inversion phenomenon is generally observed based on the
median value within the limited domain (space), depending on the external environment
temperature (e.g., in the 8-bit domain, the pixel value is 127). Therefore, the intermediate
temperature range is divided into two histogram regions. As a result, the proposed method
divides the histogram into four regions, allowing the pixel values within each temperature
region to be distinguished and utilized.

3.2.3. Histogram Clipping

In the Histogram Clipping step, the frequency values of histogram bin values for each
region are clipped using Equations (10)–(13).

DHist(i) = max(Histi(k))− small(Histi(k)) (10)

CT = DHist(i)× α (11)

Ei =

{
Ei = Ei Histi(k) ≤ CT

Ei = Ei + (Histi(k)− CT) Histi(k) > CT
(12)

Histi(k) =

{
Histi(k) Histi(k) ≤ CT

CT Histi(k) > CT
(13)

where i represents the histogram region; max(Histi(k)) is the maximum histogram fre-
quency value of region i; small(Histi(k)) is the minimum histogram frequency value of
group i (minimum non-zero value if a histogram exists, if the histogram does not exist
in group i); DHist(i) is the difference value between maximum and minimum histogram
frequency values; α is the weight factor for selecting the threshold for the clipping operation;
Ei is the excess value for each region. As shown in Equations (10) and (11), the difference in
frequency values between the maximum and minimum histogram frequencies is calculated
for each region.

Subsequently, the threshold value for the clipping operation is determined using the
difference value and the weight factor α, which ranges from 0 to 1.

After determining the threshold value, as shown in Equation (13), the histogram
frequency values for each group are clipped. During the clipping operation, similar to
the clip-limit adaptive HE (CLAHE) method [28], the excess value is calculated using
Equation (12). When the histogram frequency value is greater than the threshold value
for the clipping operation, the histogram frequency value is adjusted to the threshold
value. Conversely, when the histogram frequency value is less than the threshold value,
the histogram frequency value remains unchanged.

3.2.4. Excess Value Distribution

In the Excess Value Distribution step, the excess value is distributed for each histogram
region by using Equation (14).

Histi(k) = Histi(k) +
∑4

i=1 Ei

256
(14)
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As illustrated in Equation (14), first, the summed excess value is divided by 256, and
then the resulting divided excess value is added to the clipped histogram frequency values
from bin value 0 to 255. This distribution process, as per Equation (14), helps prevent
oversaturation of histogram frequency values at specific points during CDF computation.

3.2.5. Output Value Mapping

In the Output Value Mapping step, the output value is then calculated using
Equations (15)–(18).

VC((i− 1)× 63 + k) =
4

∑
i=1

63

∑
n=0

Histi(k) (15)

VC(n) =
VC(n)
(w× h)

(16)

VS = VC(Iα(x, y)) (17)

VO(x, y) =

{
VS × 255 Vs ≤ 1
255 Vs > 1

(18)

where VC((i − 1)× 63 + k) is the calculated value by using the cumulative distribution
function (CDF); w and h are the width and height size of the computed image using the
NUC and TC methods, as follow:

where VC((i− 1)× 63 + k) is the calculated CDF value; VC(n) is the normalized CDF
by using w and h; w and h are width and height size of the computed image using the NUC
and TC methods; VS is the selected CDF value using VC(n); and VO(x, y) is the output
image with improved contrast ratio. Using Equations (15) and (16), the CDF value can be
calculated. Subsequently, the CDF value is selected using the 8-bit computed input image
obtained through the NUC and TC methods. Finally, normalization is performed, and the
output value is calculated using the selected CDF value multiplied by 255. During the
computation of the output value, it is fixed to 255 when the selected CDF value is greater
than one, as the CDF value can exceed one due to the excess value distribution process.

4. Experimental Results

To evaluate the performance of the proposed method, it is crucial to set the parameter
α for determining the threshold value for Histogram Clipping in each histogram region. In
Section 4, α was set to 0.5. This choice was made because if α approaches 1, the Histogram
Clipping result for each histogram region according to the threshold value becomes very
weak, resulting in no significant difference from traditional histogram equalization (THE).
Conversely, if α approaches 0, the Histogram Clipping result for each histogram region
can have a very strong effect. However, as per Equations (14)–(18), when pixel values are
densely distributed in a specific histogram region, the contrast enhancement performance
can be significantly reduced as α approaches 0. Additionally, there is a risk that the average
pixel level of the image after contrast enhancement processing may decrease, leading to a
notable reduction in image brightness. Therefore, in this paper, the experimental results
obtained by setting α to 0.5, which is the median value between 0 and 1, were compared
with the other conventional methods.

4.1. Qualitative Comparison (Visual Comparison)
4.1.1. Best Driving Scenario

Figure 3 presents experimental results comparing the proposed method with vari-
ous conventional contrast enhancement methods for visual comparison under the best
driving scenario. First, Figure 3b–l shows the experimental results using histogram-based
conventional contrast enhancement methods. Second, Figure 3m–r shows the experi-
mental results using retinex-based conventional contrast enhancement methods. Third,
Figure 3s–w shows the experimental results using other technique-based (e.g., de-haze)
conventional contrast enhancement methods. Finally Figure 3x shows the experimental
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result using the proposed method based on histogram techniques. As depicted in Figure 3a,
the downscaled 8-bit image obtained using NUC, TC, and AGC reveals objects such as
crosswalks, vehicles, and apartments.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

(u) (v) (w) (x)

Figure 3. Experimental results obtained under the best driving scenario with vehicles on the road:
(a) input image with 8-bit, (b) THE, (c) BBHE [29], (d) DSIHE [30], (e) MMBEBHE [31], (f) RMSHE [32],
(g) BPDHE [33], (h) BPHEME [34], (i) BHEPL [35], (j) RLBHE [15], (k) RG-CACHE [16], (l) ROPE [17],
(m) AMSR [18], (n) NPE [19], (o) SIRE [20], (p) SRIE [23], (q) MF [21], (r) LIME [24], (s) SRLLIE [22],
(t) Dong [25], (u) MEFF [26], (v) Al-Ameen [27], (w) Al-Ameen [36], and (x) proposed method with
0.5 weight factor for clipping operation.

Among the histogram-based contrast enhancement methods, Figure 3c,f,i,j showcases
the results when using BBHE (Brightness-Preserving Bi-Histogram Equalization) [29], RMSHE
(Recursive Mean-Separate Histogram Equalization) [32], BHEPL (Bi-Histogram Equaliza-
tion with a Plateau Limit) [35], and RLBHE (Range-Limited Bi-Histogram Equalization) [15].
These methods improve the contrast ratio compared to the input image, making detailed
object components visible. However, the image clarity appears somewhat diminished, akin
to a foggy appearance.

Conversely, Figure 3d,e,g displays the outcomes when utilizing DSIHE (Dualistic
Sub-Image Histogram Equalization) [30], MMBEBHE (Minimum Mean Brightness Error
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Bi-Histogram Equalization) [31], and BPDHE (Brightness-Preserving Dynamic Histogram
Equalization) [33]. These methods exhibit increased sharpness compared to BBHE [29],
RMSHE [32], BHEPL [35], and RLBHE [15] results. However, oversaturation of pixel values
is observed in trees and signs on the far left of the image, causing inaccuracies in object
details and pixel values.

In contrast, Figure 3b,h,k,l,x demonstrates that applying THE, BPHEME (Brightness-
Preserving Histogram Equalization with Maximum Entropy) [34], RG-CACHE [16], ROPE
(Reflectance-Oriented Probabilistic Equalization) [17], and the proposed method yield
better contrast enhancement performance in terms of contrast ratio and sharpness com-
pared to conventional methods. Detailed parts of images enhanced using THE, BPHEME,
RG-CACHE, ROPE, and the proposed method are clearly visible, surpassing the results
obtained with other histogram-based conventional methods.

Among the retinex-based contrast enhancement methods, as shown in Figure 3m,
AMSR (Adaptive Multi-Scale Retinex) [18] exhibited low pixel-level values and poor con-
trast enhancement performance. As depicted in Figure 3r, when using LIME [24], it showed
an oversaturated experimental result compared to other conventional and proposed methods.
On the other hand, as shown in Figure 3n–q,s, when using NPE (Naturalness Preserved
Enhancement) [19], SIRE (Simultaneous Illumination and Reflectance Estimation) [20], SRIE
(Simultaneous Reflectance and Illumination Estimation) [23], MF (Multi-Scale Fusion) [21],
and SRLLIE (Structure-Revealing Low-Light Image Enhancement) [22], they exhibited better
contrast enhancement performance than other retinex-based methods. However, generally,
these methods showed relatively lower contrast enhancement performance compared to
histogram-based contrast enhancement methods.

Among the other technique-based contrast enhancement methods, the method pro-
posed by Dong [25] showed good edge enhancement in the image compared to other
methods. However, in terms of contrast enhancement, the pixel values are oversaturated
compared to other methods. In other words, the contrast enhancement performance is
lower than other contrast enhancement methods. As shown in Figure 3u–w, they demon-
strate better contrast-enhanced experimental results compared to the results obtained when
using the method proposed by Dong [25]. However, they exhibit lower contrast enhance-
ment performance compared to the experimental results using histogram-based contrast
enhancement methods.

Table 2 and Figure 4 present the results of subjective evaluations based on blind tests
of 5 min videos (equivalent to 300 frames) containing frames from the best driving scenario,
conducted by nine individuals including R&D engineers working in the automotive or
military industries. Table 2 displays three items: (1) subjective scores for each individual,
(2) average score, and (3) rank; Figure 4 illustrates graphs containing two items: (1) average
score and (2) rank.

Subjective evaluation scores for each individual range from one to five points, with
one point indicating the video consisting of the worst quality frames and five points
indicating the video consisting of the best quality frames. The average score is calculated by
summing up the subjective scores evaluated for each method and dividing by the number
of individuals (nine in Table 2). The rank value is determined by ranking the calculated
average scores from top to bottom.

As evident in Table 2 and Figure 4, our method obtained an average score of 4.56 and
ranked 6th when sorted from top to bottom. Being ranked 6th implies being within the
top 30% (approximately within the 7th rank) overall. When analyzing solely within the
histogram-based contrast enhancement method category and ranking sequentially, the
proposed method is positioned in the 6th rank, indicating it received a medium average
score. Compared to contrast enhancement methods based on retinex and other techniques,
it is apparent that the proposed method achieves a better rank than conventional methods.
In other words, through subjective evaluation, which visually assesses the image, it is
confirmed that histogram-based contrast enhancement methods are most effective in the
best driving scenario.
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Table 2. Subjective evaluation of various methods in best driving scenario: results from nine
participants on 300 frames.

Method Person
A

Person
B

Person
C

Person
D

Person
E

Person
F

Person
G

Person
H

Person
I

Average
Score Rank

THE 5 5 5 5 4 5 5 5 5 4.89 1
[29] 4 3 2 3 2 3 3 4 4 3.11 12
[30] 4 5 4 4 5 4 5 5 5 4.56 6
[31] 4 4 4 4 3 4 5 5 5 4.22 8
[32] 4 3 2 4 1 4 4 4 4 3.33 10
[33] 5 5 4 5 5 4 5 5 4 4.67 2
[34] 5 4 5 5 4 4 5 5 5 4.67 2
[35] 4 3 2 3 2 3 4 4 4 3.22 11
[15] 4 3 3 4 3 4 4 4 4 3.67 9
[16] 5 4 5 5 5 3 5 5 5 4.67 2
[17] 5 4 4 5 4 5 5 5 5 4.67 2

Ours 5 4 3 5 4 5 5 5 5 4.56 6

[18] 1 1 1 1 1 1 1 1 1 1.00 22
[19] 3 2 1 2 3 2 3 3 3 2.44 15
[20] 1 1 1 1 2 2 2 2 2 1.56 21
[21] 3 3 2 4 5 2 3 3 3 3.11 12
[22] 2 3 1 2 2 1 3 3 3 2.22 16
[23] 2 2 1 2 4 2 2 2 3 2.22 16
[24] 2 2 1 2 3 1 2 2 2 1.89 20

[25] 1 1 1 1 1 1 1 1 1 1.00 22
[26] 2 2 1 2 2 2 3 3 3 2.22 16
[27] 3 3 1 2 1 1 3 3 3 2.22 16
[36] 2 3 1 3 3 2 3 3 3 2.56 14

(a) (b)

Figure 4. Chart to visually compare Table 2: (a) average score and (b) rank.

4.1.2. Worst Driving Scenario

Figure 5 presents experimental results comparing conventional and proposed contrast
enhancement methods for visual comparison under the worst driving scenario located
in a tunnel. The sequence of methods applied to compute the experimental result frames
from Figure 5a–x is the same as in Figure 3. In the worst driving scenario, improving
the contrast ratio of the 8-bit input image is crucial for detecting and recognizing objects
for autonomous platforms. Enhanced contrast is essential for accurately recognizing the
driving status.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

(u) (v) (w) (x)

Figure 5. Experimental results obtained under the worst driving scenario located in the tunnel:
(a) input image with 8-bit, (b) THE, (c) BBHE [29], (d) DSIHE [30], (e) MMBEBHE [31], (f) RMSHE [32],
(g) BPDHE [33], (h) BPHEME [34], (i) BHEPL [35], (j) RLBHE [15], (k) RG-CACHE [16], (l) ROPE [17],
(m) AMSR [18], (n) NPE [19], (o) SIRE [20], (p) SRIE [23], (q) MF [21], (r) LIME [24], (s) SRLLIE [22],
(t) Dong [25], (u) MEFF [26], (v) Al-Ameen [27], (w) Al-Ameen [36], and (x) proposed method with
0.5 weight factor for clipping operation.

Histogram-based contrast enhancement methods exhibit similar trends to the exper-
imental results in the best driving scenario. In Figure 5e,g,i, when MMBEBHE, BPDHE,
and BHEPL are applied, the shape of the vehicle in the tunnel is clearly visible, but they
do not accurately represent the environment around the vehicle within the tunnel. On
the other hand, in Figure 5c,f,h,j, although the clarity in the vehicle region is relatively
reduced, the contrast is improved to a level where the driving environment in the tunnel
can be roughly judged. However, the overall visual evaluation still feels dark due to low
pixel brightness levels observed in Figure 5f,h,j. In Figure 5c, the contrast-enhanced image
has a relatively high brightness pixel value compared to Figure 5f,h,j. However, there
is a problem of oversaturation in the vehicle region, making it impossible to accurately
analyze object characteristics, and there is low contrast enhancement in the background
region where the driving environment can be identified. In Figure 5b,d,k,l, the contrast
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has been improved to the point where the driving environment within the tunnel can be
accurately distinguished compared to the results of the other histogram-based contrast
enhancement methods. However, the vehicle region is so oversaturated that the wheels
and vehicle body cannot be visually distinguished, and the auxiliary lights in the tunnel
also appear oversaturated.

In Figure 5x, the proposed method demonstrates a uniform improvement in overall
image contrast across all areas. Based on the contrast-enhanced image using our proposed
method, it is evident that the pixel brightness level maintains an appropriate value, indi-
cating it is not oversaturated compared to conventional histogram-based enhancement
methods. When assessed by regions, the contrast ratio has improved sufficiently to clearly
identify the driving environment within the tunnel where the frame was captured. This
indicates reasonably good performance among the histogram-based methods.

The experimental results for retinex-based contrast enhancement methods are presented
from Figure 5m–s. Among these methods, the SRLLIE [22] method, depicted in Figure 5m,
exhibited poor contrast enhancement performance, making it difficult to identify vehicles and
the driving environment. However, when utilizing AMSR [18], NPE [19], SIRE [20], SRIE [23],
MF [21], and LIME [24], as shown in Figure 5m–r, relatively high contrast enhancement
performance was observed. Among these six methods, Figure 5m,o,p, which represents the
results of utilizing AMSR [18], SIRE [20], and SRIE [23], respectively, displayed sufficient
contrast enhancement in both object and background regions for recognizing the driving
environment. However, since the brightness level of the contrast-enhanced images is generally
low, post-processing techniques such as gamma correction may be considered to further
improve visibility.

The experimental results from Figure 5u–w revealed poor contrast enhancement
performance, similar to Figure 5s. However, when employing the method proposed by
Dong [25], illustrated in Figure 5t, notable contrast enhancement performance with high
edge preservation was observed. Comparing the experimental results from Figure 5r–t, it is
important to note that the ranking of user-preferred images may vary based on subjective
evaluation. Therefore, a blind test was conducted on the worst driving scenario to rank the
images from top to bottom, similar to the methodology described in Table 2 and Figure 4.

Table 3 and Figure 6 display the subjective evaluation results conducted under blind
conditions on a 5-min video, comprising 300 frames depicting the worst driving scenario,
similar to the experiments outlined in Table 2. Our method achieved an average score of
3.44 and ranked 5th when sorted from top to bottom. This places our method within the top
30% (approximately within the 7th rank) overall for this scenario. In the histogram-based
contrast enhancement method category, our method secured the 1st rank when ranked se-
quentially, indicating it received the highest average score among its peers. Comparing our
proposed method with retinex- or other technique-based contrast enhancement methods, it
ranked 5th, placing it within the top 50% (approximately 6 out of 12).

In conclusion, it is evident that no single category of contrast enhancement meth-
ods demonstrates overwhelmingly superior performance in the worst driving scenario.
A comparison of Tables 2 and 3 reveals significant performance discrepancies among con-
ventional contrast enhancement methods in subjective visual evaluations across the best
and worst driving scenarios. Conversely, our proposed method consistently ranks 6th and
5th in the best and worst driving scenarios, respectively. This consistency offers the advan-
tage of providing users with contrast-enhanced images containing uniform information
regardless of the driving conditions.
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Table 3. Subjective evaluation of various methods in worst driving scenario: results from nine
participants on 300 frames.

Method Person
A

Person
B

Person
C

Person
D

Person
E

Person
F

Person
G

Person
H

Person
I

Average
Score Rank

THE 4 4 2 2 4 2 2 4 3 3.00 9
[29] 4 3 2 2 3 2 2 3 2 2.56 13
[30] 4 5 2 2 5 2 2 3 3 3.11 7
[31] 3 3 3 3 2 3 3 4 2 2.89 10
[32] 4 2 2 2 3 2 3 4 3 2.78 12
[33] 3 2 3 5 5 3 3 4 2 3.34 6
[34] 3 1 2 1 2 1 2 2 2 1.78 18
[35] 3 3 3 3 4 3 3 4 2 3.11 7
[15] 3 1 2 2 1 1 1 2 2 1.67 19
[16] 4 2 2 2 4 3 2 2 2 2.56 13
[17] 4 2 2 2 3 2 2 2 2 2.33 17

Ours 5 4 2 3 4 3 2 4 4 3.44 5

[18] 5 3 3 3 2 2 2 3 3 2.89 10
[19] 5 5 4 4 5 4 4 5 5 4.56 2
[20] 4 3 2 3 1 2 2 3 3 2.56 13
[21] 4 4 4 4 4 2 4 4 4 3.78 4
[22] 1 2 2 1 1 1 1 2 1 1.33 21
[23] 2 3 2 2 2 1 4 3 3 2.44 16
[24] 5 5 5 5 5 5 5 5 5 5.00 1

[25] 5 4 5 4 3 4 4 4 5 4.22 3
[26] 1 1 1 1 1 1 1 1 1 1.00 23
[27] 1 2 2 1 3 1 1 2 1 1.56 20
[36] 1 1 1 1 2 1 1 1 1 1.11 22

(a) (b)

Figure 6. Chart to visually compare Table 3: (a) average score and (b) rank.

4.2. Quantitative Comparison

In the quantitative comparison, we assess various aspects of contrast enhancement
using six metrics: (1) Enhancement Measure (EME), (2) Entropy, (3) Linear Fuzziness (LIF),
(4) Lightness Order Error (LOE), (5) Structural Similarity (SS), and (6) Mean Processing
Time (MPT). A higher EME value indicates a larger dynamic range within each pre-defined
cell, whereas higher values of entropy and SS indicate greater information content in the
image. Conversely, lower values of LIF and LOE signify better enhancement.

4.2.1. Best Driving Scenario

Table 4 and Figure 7 present the experimental results of performance evaluation
using objective metrics for the best driving scenario frames, as illustrated in Figure 3.
When utilizing the proposed method, the EME, entropy, LIF, LOE, and SS metrics are
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6.8451, 6.4485, 0.4959, 15.8458, and 0.9043, respectively. For metrics where higher values
indicate better performance, the method showing the highest performance in EME is
THE with a value of 9.5430, and the proposed method ranked 6th with a value of 6.8451,
which means that when considered as a percentage, the proposed method is in the top
30% (approximately within the 7th top rank). When considering Table 2, which shows
the subjective evaluation experimental results, it can be seen that the EME values of the
proposed method and THE are similar to the average score-based rank results through
subjective evaluation.

Table 4. Performance evaluation for the best driving scenario frame.

Method EME Entropy LIF LOE SS

THE 9.5430 6.3503 0.4018 21.3017 0.8432

BBHE [29] 4.8884 6.4911 0.5127 18.0800 0.9601

DSIHE [30] 8.0627 6.4191 0.3231 19.7817 0.8959

MMBEBHE [31] 7.1076 6.4420 0.4699 20.7842 0.8962

RMSHE [32] 5.3176 6.4558 0.5840 30.4000 0.9578

BPDHE [33] 6.8636 6.4213 0.4692 24.2925 0.9018

BPHEME [34] 4.8884 6.4249 0.4302 18.0800 0.9601

BHEPL [35] 4.3751 6.5413 0.5312 11.7825 0.9804

RLBHE [15] 5.4903 6.4454 0.5794 19.8967 0.9368

RG-CACHE [16] 9.4475 7.7473 0.4698 22.0458 0.9101

ROPE [17] 6.4407 6.4118 0.4450 20.8467 0.8787

AMSR [18] 5.3533 5.5537 0.7290 378.7333 0.7407

NPE [19] 6.2717 6.5510 0.7138 34.3925 0.9368

SIRE [20] 2.2524 6.2699 0.4839 38.4483 0.9918

SRIE [23] 2.4411 6.5677 0.5419 71.3442 0.9824

MF [21] 2.8083 6.6197 0.7287 179.5583 0.9543

LIME [24] 2.3124 6.4809 0.3529 177.1883 0.9297

SRLLIE [22] 2.0922 6.5734 0.7285 3.6983 0.9998

Dong [25] 2.7922 5.9300 0.4487 118.7650 0.8662

MEFF [26] 2.2566 6.4797 0.6385 43.1033 0.9945

Al-Ameen [27] 5.3137 6.3279 0.4614 8.9917 0.9903

Al-Ameen [36] 3.9181 6.4510 0.6800 7.4750 0.9965

Ours 6.8451 6.4485 0.4959 15.8458 0.9043

Regarding entropy, generally, a higher indicator value indicates better performance. In
the entropy metric, the proposed method is ranked 12th with a value of 6.4485, indicating
moderate performance. In terms of the SS metric, the proposed method is ranked 16th with
a value of 0.9043, indicating relatively low performance. However, as shown in Table 2, it
can be observed that the entropy and SS values of methods that received good results in
subjective evaluation (e.g., THE, RG-CACHE [16], ROPE [17], and the proposed method)
are located at low ranks. In other words, in general, as the contrast ratio is greatly improved,
it can be said that the better the image quality, the lower the entropy value. This is because
the LWIR-based thermal image that can be obtained after the NUC and TC processes
basically has a low contrast ratio.



Sensors 2024, 24, 3829 18 of 25

(a) (b)

(c) (d)

(e)

Figure 7. Chart to visually compare Table 4: (a) EME, (b) Entropy, (c) LIF, (d) LOE, and (e) SS.

Conversely, for LIF and LOE metrics, a low value indicates high performance. In terms
of LIF, when using the proposed method, it ranks 12th with a value of 0.4959, indicating
medium performance compared to conventional contrast enhancement methods. Regarding
LOE, when using the proposed method, it ranks 5th with a value of 15.8458, indicating
high performance (within the top 25%) compared to conventional contrast enhancement
methods. The objective performance evaluation results, including LOE and LIF, of the
proposed method were satisfactory. However, it is noted that LOE and LIF also exhibit
poor index values for conventional methods that received good average scores in subjective
evaluation. Therefore, this suggests that the previously used objective indicators cannot
be relied upon as a sole standard when evaluating contrast improvement results for LWIR-
based thermal images computed after NUC and TC processes in the best driving scenarios.

4.2.2. Worst Driving Scenario

Table 5 and Figure 8 showcase the experimental results of performance evaluation for
the worst driving scenario frames, as depicted in Figure 5. In terms of EME, the proposed
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method obtained a rank of 14, from top to bottom, with a value of 22.1756. However, it is
essential to note that EME computation relies on the minimum and maximum values per
pre-defined cell. Consequently, in worst-case scenarios where the contrast ratio is enhanced,
extreme brightness or darkness may skew EME results. Thus, EME may not offer a fair
comparison metric as it could be influenced by factors like image illuminance, especially in
experimental results of the worst driving scenario using LWIR-based thermal images.

Table 5. Performance evaluation for worst driving scenario in a tunnel.

Method EME Entropy LIF LOE SS

THE 63.6363 4.0922 0.3943 61.6200 0.6142

BBHE [29] 70.8164 4.1989 0.2120 71.9383 0.6259

DSIHE [30] 50.9569 4.1884 0.3231 65.0767 0.6139

MMBEBHE [31] 55.8149 4.1720 0.0220 48.4775 0.8221

RMSHE [32] 56.1822 4.2422 0.0298 53.7292 0.7669

BPDHE [33] 41.6762 4.1997 0.1157 55.9900 0.6980

BPHEME [34] 70.8164 4.1805 0.0133 71.9383 0.6259

BHEPL [35] 62.9209 4.1103 0.0391 52.8108 0.8314

RLBHE [15] 36.2587 4.1172 0.0416 47.7275 0.8866

RG-CACHE [16] 90.1348 7.2769 0.3934 67.1533 0.5797

ROPE [17] 29.7584 4.2093 0.4740 65.7525 0.5729

AMSR [18] 37.4381 6.2452 0.5197 248.4500 0.6192

NPE [19] 22.7990 6.8297 0.6023 196.2258 0.8866

SIRE [20] 11.8167 6.0200 0.1186 71.9092 0.8443

SRIE [23] 12.6207 5.9563 0.1119 89.6333 0.8521

MF [21] 12.2459 6.8288 0.4729 60.2250 0.7137

LIME [24] 13.5070 7.1112 0.3734 67.6200 0.7514

SRLLIE [22] 5.1925 4.1793 0.0074 10.8800 0.9942

Dong [25] 13.8657 6.2326 0.3013 103.7392 0.5805

MEFF [26] 18.3571 2.8246 0.0020 74.0692 0.9354

Al-Ameen [27] 21.6101 4.2750 0.0107 27.7633 0.9937

Al-Ameen [36] 18.3571 2.8246 0.0020 74.0692 0.9354

Ours 22.1756 4.2490 0.3829 56.9617 0.6606

Similarly, the SS metric assumes high structural visibility in the original image. How-
ever, in worst-case scenarios, the input image for contrast enhancement lacks clear structure
due to an extreme low dynamic range acquired by low infrared energy. Therefore, con-
versely, a lower SS value might indicate better performance in such scenarios. This is
because an image with improved contrast has a specific structure unlike the original input
image, making it significantly different. Hence, a smaller SS value indicates better image
quality. Based on this understanding, for the SS metric, the proposed method ranked 9th
with a value of 0.6606, placing it in the top 40%. Therefore, when using the proposed
method for the worst driving scenario, it showed medium performance.

In terms of the LIF, LOE, and entropy metrics, they are calculated using the original
image, making them more reliable for understanding the overall driving environment.
However, since the original image has low structure and poor dynamic range character-
istics, these metrics may not be efficient for objectively evaluating contrast enhancement
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performance in the worst driving scenario. This is particularly evident when considering
the experimental results presented in Tables 3 and 5.

(a) (b)

(c) (d)

(e)

Figure 8. Chart to visually compare Table 5: (a) EME, (b) Entropy, (c) LIF, (d) LOE, and (e) SS.

4.2.3. Processing Speed Performance

Table 6 and Figure 9 present the MPT and frames-per-second (FPS) metrics for both the
proposed and conventional methods. These metrics were extracted through experiments
conducted using MATLAB software (R2023a version) on a personal computer environment.
The MPT values for the proposed and conventional methods were computed based on
200 frames with a resolution of 640 × 480 obtained from the QuantumRed product of
Hanwha Systems Company.

Among the histogram-based contrast enhancement methods, except for BPDHE [33],
the proposed and conventional methods exhibited similar MPT performance. Convert-
ing MPT to FPS yields performance ranging from approximately 10.7 to 12.8 FPS across
methods. The proposed method ranked third in terms of both MPT and FPS indicators.
However, these values fall short of the real-time performance benchmark of 30 FPS.
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Table 6. Mean processing time (MPT) and frame-per-second (FPS) performance.

Category Method Mean Processing Time (s) Frame-Per-Second (FPS)

THE 0.07830 12.7714
BBHE [29] 0.08980 11.1359
DSIHE [30] 0.08945 11.1794

MMBEBHE [31] 0.09155 10.9230
RMSHE [32] 0.07815 12.7959

Histogram-based BPDHE [33] 0.16955 5.8980
BPHEME [34] 0.08425 11.8694
BHEPL [35] 0.09345 10.7009
RLBHE [15] 0.09325 10.7239

RG-CACHE [16] 3.24542 0.3081
ROPE [17] 0.31558 3.1688

Ours 0.08340 11.9904

AMSR [18] 0.07689 13.0056
NPE [19] 5.90948 0.1692
SIRE [20] 3.87817 0.2579

Retinex-based SRIE [23] 3.45799 0.2892
MF [21] 0.30080 3.3245

SRLLIE [22] 6.03222 0.1658
LIME [24] 0.78934 1.2669

Dong [25] 0.08868 11.2765
Others MEFF [26] 0.25854 3.8679

Al-Ameen [27] 0.01577 63.4115
Al-Ameen [36] 0.03149 31.7561

(a) (b)

Figure 9. Chart to visually compare Table 6: (a) MPT and (b) FPS.

Among the retinex-based contrast enhancement methods, NPE [19], SIRE [20], SRIE [23],
and SRLLIE [22] required a large amount of processing time, making real-time operation
impossible. On the other hand, AMSR [18], MF [21], and LIME [24] required relatively less
processing time compared to the other retinex-based contrast enhancement methods. When
comparing our proposed method with the retinex-based contrast enhancement methods, our
proposed method showed appropriate processing performance.

In terms of the other technique-based contrast enhancement methods, they exhibited
fast processing speeds compared to both histogram-based and retinex-based contrast
enhancement methods. However, it is evident from previous experimental results that
methods such as those proposed by [27,36], which achieve the real-time performance of
30 FPS or higher, exhibit poor contrast enhancement performance in both the best and
worst driving scenarios.

In conclusion, methods that demonstrate a certain level of performance in previous
experimental results do not achieve real-time processing speeds of more than 30 FPS
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on a personal computer. Furthermore, there is a risk of performance degradation when
running these methods in embedded environments. Solutions for achieving real-time
performance will be discussed in Section 5.

5. Discussion
5.1. Industry Contribution

In Section 4, we visually compared two driving scenarios (best and worst case) and
conducted a qualitative evaluation using six metrics. The application of the proposed
method demonstrates significant improvements, particularly in terms of enhanced sharp-
ness and contrast ratio in both the best and worst driving scenarios. These findings suggest
that the proposed method holds promise for potential use in mass-produced products.

This paper introduces a region-based histogram equalization algorithm with dynamic
clipping technique for enhancing N-bit original images following NUC and TC processes,
a topic not previously explored in the literature. By combining objective and subjective
evaluations, our study provides comprehensive performance evaluation results. We an-
ticipate that our findings will enable companies in defense and electronics industries to
implement stable methods for mass-producing products utilizing LWIR-based thermal
cameras. However, whereas our proposed method shows promising performance, qualita-
tive evaluation metrics yielded mixed results, indicating the need for further investigation
into their alignment with objective/subjective evaluations by actual users.

5.2. Contrast Enhancement Performance

Figure 10 illustrates the performance disparity between methods that excelled in
subjective evaluation in the best and worst driving scenarios. Notably, methods like THE,
BPDHE, BPHEME, RG-CACHE, and ROPE, which performed well in the best scenario,
exhibit significant rank differences ranging from 4 to 16 or more in the worst scenario.
Conversely, LIME, NPE, and the method proposed by Dong, which showed effectiveness
in the worst scenario, display rank differences of at least 13 to 19. Interestingly, DSIHE
and our proposed method demonstrate minimal variation in ranking between the best and
worst scenarios. However, our method consistently ranks higher (6th and 5th) compared
to DSIHE (6th and 7th), indicating superior performance and uniform image information
provision on average. Therefore, for LWIR-based thermal-imaging cameras used in defense
and electronics industries, our proposed method emerges as a viable choice due to its ability
to consistently deliver uniform information to users.

Figure 10. Top rank difference between best and worst driving scenarios.
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5.3. Processing Speed Performance with Production Cost

Regarding processing speed performance, neither the proposed method nor con-
ventional methods achieved real-time processing performance in a personal computer
environment with a resolution of 640 × 480. The primary limitation arises from executing
a contrast enhancement algorithm on a CPU, where only one frame of the input image can
be stored in memory at a time, followed by subsequent calculations.

Considering the CPU-based operation mechanism, if all algorithms (including NUC,
TC, and contrast enhancement) for thermal image processing are executed in an embedded
environment, not only will latency increase, but FPS will also fall short. This deficiency
presents a critical challenge as it fails to meet the low latency and processing speed require-
ment of 30 FPS or higher, typically demanded in the defense and automotive industries.
This shortfall is particularly significant because both defense and automotive industries
now demand resolutions higher than high definition (HD, 1280 × 720), alongside low
latency and ultra-high FPS performance. Specifically, automotive applications necessitate
up to 60 FPS for ADAS systems in high-speed driving environments, whereas defense
systems require up to 100 FPS to counteract high-speed weapons.

Therefore, considering the pre-processing steps (NUC and TC) before the contrast
enhancement algorithm, it becomes imperative to employ a thermal imaging processor
equipped with accelerators optimized for these algorithms to meet the processing per-
formance requirements across various resolutions in embedded environments. For the
pre-processing accelerator, the RTL (Register Transfer Level) circuit can be designed with
a fully pipelined architecture.

In the case of contrast enhancement, encompassing both proposed and conventional
algorithms, the RTL circuit may not support a fully pipelined architecture. However, by
utilizing internal FIFO memory to store the input frame of the image and simultaneously
calculate the histogram, latency, and processing time can be significantly reduced compared
to the CPU operation mechanism. If such an optimized accelerator-based thermal imaging
processor is applied to the product, the production cost of the final LWIR-based camera
can be lowered because only optimized hardware resources (e.g., block random access
memories (BRAMs), LUTs, and registers) are used.

6. Conclusions

In this paper, we introduced a histogram equalization-based contrast enhancement
method employing a region-based clipping technique tailored for dedicated LWIR-based
thermal image processing. To assess its performance, we conducted visual and qualitative
evaluations comparing the proposed method with conventional approaches under both
best and worst driving scenarios. In the visual evaluation, it is evident that the proposed
method enhances contrast and clarity compared to the conventional method. In qualitative
evaluations of image processing performance and processing speed, the proposed method
consistently demonstrates above-average metric results compared to the conventional
method in both best and worst driving scenarios. However, as discussed in Section 5, the
objective evaluation metrics did not reflect the proposed method’s performance adequately.
Hence, future work will involve conducting experiments to gauge the discrepancy between
the objective evaluation metrics and user perspectives, with input from a larger pool of
test evaluators.

Considering the processing speed, neither the proposed nor conventional methods met
real-time performance standards. Therefore, our forthcoming endeavors will concentrate
on assessing and improving processing speed. This will entail developing an accelerator in
the form of a contrast enhancement processor using field-programmable gate array (FPGA),
alongside exploring the development of application-specific integrated circuit (ASIC).
Additionally, we will focus on comparing and analyzing the performance of dedicated
contrast enhancement processors for infrared-based thermal imaging.
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Through the findings presented in this paper and future research experiments, we
anticipate significant enhancements in the image quality of mass-produced LWIR-based
thermal cameras for night vision systems.
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