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Abstract: Traditional switching operations require on-site work, and the high voltage generated by
arc discharges can pose a risk of injury to the operator. Therefore, a combination of visual servo
and robot control is used to localize the switching operation and construct hand–eye calibration
equations. The solution to the hand–eye calibration equations is coupled with the rotation matrix
and translation vectors, and it depends on the initial value determination. This article presents a
convex relaxation global optimization hand–eye calibration algorithm based on dual quaternions.
Firstly, the problem model is simplified using the mathematical tools of dual quaternions, and then
the linear matrix inequality convex optimization method is used to obtain a rotation matrix with
higher accuracy. Afterwards, the calibration equations of the translation vectors are rewritten, and
a new objective function is established to solve the coupling influence between them, maintaining
positioning precision at approximately 2.9 mm. Considering the impact of noise on the calibration
process, Gaussian noise is added to the solutions of the rotation matrix and translation vector to
make the data more closely resemble the real scene in order to evaluate the performance of different
hand–eye calibration algorithms. Eventually, an experiment comparing different hand–eye calibration
methods proves that the proposed algorithm is better than other hand–eye calibration algorithms in
terms of calibration accuracy, robustness to noise, and stability, satisfying the accuracy requirements
of switching operations.

Keywords: switching operation; visual servo; convex relaxation; hand–eye coordination

1. Introduction

With social and economic development and the continuous expansion of the scale of
enterprise, the electrical maintenance workload is increasing daily. Traditional switching
operations [1–3] have high risk factors and low efficiency, creating an urgent need for new
technology to change the mode of operation, reduce the burden on staff, and ensure the safe
and stable operation of electrical equipment in distribution rooms. In recent years, with the
rapid development of artificial intelligence and robotics technology, intelligent robots [4–6]
for power distribution rooms have emerged. Through the integration of a six-degree-of-
freedom mechanical arm, 3D depth cameras, and other means, most manual operations and
maintenance tasks can be performed by robots. Operators can remotely monitor the status
of a robot and control it to achieve remote operation, maximizing unmanned distribution
room management, reducing labor costs, minimizing safety risks, improving the efficiency
of switching operations, and realizing intelligent construction.

The specific tasks of the switching operation referred to in this article include opening
power meter knobs, opening and closing secondary switches, and inserting and removing
keys. Precise localization of these actions can be accomplished by combining a depth
camera with a robot. The camera can be placed outside the robot’s body (eye-to-hand) or
mounted on the robot as part of the robot’s end-effector (eye-in-hand) [7–9]. Regardless
of where the camera is placed, the position of the target object is initially obtained by the
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camera’s coordinate system and needs to be transformed into the robot’s base coordinate
system. This requires an accurate estimation of the relationship between the two coordinate
systems (the transformation matrix), also known as hand–eye calibration. The accuracy of
the hand–eye calibration results directly affects whether the robot can accurately perform
tasks such as the localization and grasping of target objects. Due to the nonlinearity of the
solution to this problem, obtaining the optimal solution through optimization techniques
is a key focus for researchers. Only through scientific and effective hand–eye calibration
algorithms can we ensure accurate matching between the robot and the vision system,
thereby improving the recognition and localization of target objects.

Tsai et al. [10] and Shiu et al. [11] were the first to pose the hand–eye calibration
problem and simplified it into solving the AX = XB equation, where the hand–eye ma-
trix X to be solved contains a 3 × 3 dimensional rotational component matrix R and a
3 × 1 dimensional translation matrix T. This is a mutually coupled nonlinear solution, and
the normally solved X has multiple solutions that cannot be uniquely determined. Due to
this nonlinear problem, researchers have proposed different methods to solve this equation,
roughly categorized into two types: The classical hand–eye calibration method proposed by
Tsai decomposes the problem into two parts, the rotation matrix and the translation vector,
solving for the rotation matrix first and then for the translation vector. The two-step solution
method has a simple solution process and is insensitive to the noise of the measured data
in the translation part, but the solution accuracy of the translation vectors is susceptible
to rotation matrix error transfer. Researchers such as Frank and Navy [12] proposed a
hand–eye calibration algorithm, and Daniilidis K [13] proposed the Dual-Quaternion (DQ)
method. These algorithms parameterize the calibration equations and solve them with the
help of mathematical tools such as rotation vectors, Lie group–Lie algebra, unit quater-
nion, and dual quaternion. However, these methods are affected by direction-to-position
error propagation due to external noise interference in the actual measurement, which
affects the stability of the solution accuracy. Cui et al. [14] came up with a new two-step
hand–eye calibration method, simplifying the calibration process by making the robot
perform specified motions to obtain the hand–eye matrix. Andreff et al. [15] proposed a
method of solving the basic matrix of hand–eye calibration using the theory of the matrix
direct product, namely, using the direct product of the matrix to solve the basic matrix of
hand–eye calibration. In this method, the basic matrix is written in a linearized form, and
then the linearization method is used to solve it. This linearized solution method is simple
and easy to use and effectively avoids the possible solution instability of the nonlinearized
method. Junchen Wang et al. [16] proposed a nonlinear optimization algorithm based on
maximum likelihood estimation in the Eulerian rigid variation matrix space, reducing the
distance between the true value and the corresponding measured value to improve stability
and accuracy. Jinqiao Wang et al. [17] used a genetic algorithm to obtain the initial value
of the hand–eye transformation matrix using conventional methods and then optimized
the mathematical model based on the initial value, using the genetic algorithm to achieve
higher measurement accuracy. Zhaorui Zhang et al. [18] proposed a constraint matrix con-
struction method that integrates two kinds of motion information, analyzed the constraint
matrix rank, and constructed the constraint matrix to ensure its complete ranking according
to different situations, calculating the rotation matrix and translation vector. In general,
there is relatively little comprehensive research on the algorithms for solving the calibration
equations and the factors affecting the errors, both domestically and internationally. In
fact, the screening of calibration data and the algorithm used for solving the calibration
equations directly affect the accuracy of solving the hand–eye transformation matrix, so it
is necessary to comprehensively study these factors.

Aiming at the above problems of nonlinearity and coupling in the hand–eye calibration
solution, this article proposes a method for addressing the key problems in robot hand–
eye calibration. This method first establishes the hand–eye calibration problem using
pairwise quaternions through the concept of functions. Secondly, a convex relaxation global
optimization algorithm based on linear matrix inequality is introduced for the rotation and
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translation solutions in the hand–eye calibration problem. This approach overcomes the
limitations of traditional nonlinear optimization algorithms, which rely on the initial value
and easily fall into local optima. In conclusion, through experimental verification, it is
proven that the algorithm proposed in this paper has better solution accuracy and stability
compared to traditional hand–eye calibration algorithms, enabling the accurate positioning
of instrument knobs, secondary switches, and locking holes on the electric control cabinets
in power distribution rooms.

2. Coordinated Hand–Eye Reverse Gate Operation
2.1. Eye-in-Hand System Structure Design

The traditional manual implementation of the corresponding switching operation
requires coordination and cooperation. The long operating time involved in this process,
accompanied by arc discharge, can expose the operator to the risk of accidental injury,
making it difficult to complete the corresponding task in the power system in a stable
manner. Therefore, this study uses a robotic arm instead of a human hand to perform the
corresponding inverted gate task and a depth camera to simulate the human eye to observe
the specific location of the object to realize the automated operation process. As shown in
Figure 1, the robot has three overall components:

(1) A six-degree-of-freedom robotic arm allows highly accurate control and can ensure
the accuracy of the reverse gate operation, safeguarding against operation failure and
equipment damage. In some narrow and difficult-to-access spaces, the six-degree-
of-freedom robotic arm can flexibly maneuver the inverting lever for the purpose of
opening or closing the gate blade without the need for the operator to physically enter
the narrow or dangerous area.

(2) A depth camera, commonly using infrared or laser sensors, captures the three-
dimensional information of a scene, allowing for the more accurate determination of
the distance and shape of objects. Real-time video streaming can be used to monitor
the progress of the reversing operation and the status of the equipment, helping the
operator to pinpoint the location and position of the reversing equipment for the
proper placement of switch levers, handles, or other controls

(3) A uniquely designed jaw provides high-precision control, ensuring the accuracy of
the reverse gate operation and reducing the risk of misuse. It is intended for use in
rotating reversing gate equipment to ensure that meter buttons are opened or closed
correctly. It can control the rotary movement via a robotic arm or other devices to
precisely control the operation. Generally speaking, the eye-in-hand system adopts the
eye-in-hand mounting method, where the camera is fixed on the end-effector gripper.
This method provides relative flexibility and allows the camera to be moved with
the robot for image acquisition, and the distance of the camera can be adjusted when
facing target objects of different sizes to reduce measurement errors and improve
accuracy.

As illustrated in Figure 1, the positioning of the object needs to be performed through
the following steps. First, the depth camera captures the position information of the object,
identifying its features and determining the pixel coordinates in the image to complete the
specific task of positioning. Then, the two-dimensional image coordinates are converted to
three-dimensional coordinates. Using the transformation matrix between the coordinate
system of the end effector’s clamping claws and the camera coordinate system, the robot
arm performs the specific task based on the object’s position. Next, the kinematics of the
robot arm are solved, calculating the object’s position. Finally, the position of the object
is communicated to the robotic arm, enabling it to move to the appropriate position to
complete the specific switching operation.
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Figure 1. Structure of the switching operation system.

2.2. Description of the Hand–Eye Calibration Problem

When a robot performs a task under the guidance of vision, it is necessary to know
the relative positions of the robot end effector and the target to facilitate the subsequent
execution of the corresponding task. A camera is fixed to the robot end effector as a vision
sensor. The spatial position of the target workpiece relative to the camera is known, and
the position of the camera relative to the end of the robotic arm needs to be determined in
order to accurately identify and localize the target workpiece within the robot’s coordinate
system. The robot vision system in Figure 1 consists of a robot and a camera mounted on
an end effector, recording a set of relative robot motions. There is no change in the relative
positions of the robot base and the calibration plate, nor in the relative positions of the
camera and the robot end effector. Based on the multiple sets of known invariants, the
hand–eye calibration matrix can be solved:

bT(1)
g · gTc · cT(1)

t = bT(2)
g · gTc · cT(2)

t(
bT(2)

g

)−1
· bT(1)

g · gTc =
gTc · cT(2)

t ·
(

cT(1)
t

)−1

Let
(

bT(2)
g

)−1
· bT(1)

g = A, cT(2)
t ·

(
cT(1)

t

)−1
= B, gTc = X, then :

AX = XB

(1)

where bTg denotes the chi-squared matrix of the robot end coordinate system with respect
to the base coordinate system; cTt denotes the sub-matrix of the calibration plate coordinate
system with respect to the camera coordinate system; gTc denotes the sub-matrix of the
camera coordinate system with respect to the robot end coordinate system; A denotes the
relative attitude between two movements of the camera; B denotes the relative attitude
between two movements of the robot end effector; and X denotes the relative attitude of
the camera with respect to the end effector. This equation can be rewritten in another form:{

A = A1 A−1
2

B = B2B−1
1

(2)

where A1 and A2 denote the position matrices of the camera relative to the target object
with respect to the two motions of the camera; B1 and B2 denote the position matrices of
the base relative to the end with regard to the two motions of the robot end-effector. For the
camera, matrix A can be obtained from the external parameter calibration of the camera.
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Matrix B can be obtained from the forward kinematics equations of the robot or read out
from the robot controller output. The hand–eye calibration equations can be decoupled
into rotational and translational parts if matrices A, X, and B are assumed to consist of the
corresponding rotational and translational parts:

A =

[
RA tA
0 1

]
, B =

[
RB tB
0 1

]
, X =

[
RX tX
0 1

]
(3)

Then, Equation (1) can be transformed into[
RA tA
0 1

][
RX tX
0 1

]
=

[
RX tX
0 1

][
RB tB
0 1

]
(4)

Further expansion of this chi-squared equation yields the rotation vector equation and
the translation vector equation:{

RARX = RXRB

RAtX + tA = RXtB + tX
(5)

Solving the two equations of the above equation yields the solution to equation
AX = XB, the general form of the unfolding of the model of the hand–eye calibration
problem. At least two position changes (and thus at least three positions of the camera
calibration results) are needed to solve this problem. The above process of solving linear
equations is only carried out under the assumption that all the parameters are known to
satisfy the condition that there is a unique solution to the equation. However, in real life,
there is no ideal hypothesis, and we need to realistically solve the positional relationship
between the target object and the robot in order to accurately perform a task. Currently,
robots are used in more and more industries and perform tasks for a wide variety of objects,
but the hand–eye transformation matrix is solved uniquely for different objects. The
presence of multiple solutions leads to non-unique convergence of the results unfavorable
for end-effector operation.

For the switching operation discussed in this article, accurately locating the positions
of the instrument knob, secondary switch, and lock hole on the electric control cabinet
is crucial. Each task scenario varies in terms of its execution requirements. Traditional
calibration algorithms may tolerate small errors in tasks with low precision requirements,
such as positioning the instrument knob or secondary switch. In such cases, the robot can
still complete the task. However, tasks involving the positioning of the lock hole demand
high-precision calibration. Traditional optimization algorithms often rely on initial value
selection, which can prematurely converge to a local optimum, leading to task execution
instability. To address this, we propose the idea of global optimization, in which all possible
solutions of the function within given constraints are searched for, and the optimal solution
is selected for transmission to the robot.

3. Dual Quaternions for Solving Hand–Eye Calibration Problems
3.1. Dual Quaternions

Dual quaternions are an extended form of quaternions used to represent rigid body
transformations and animation interpolation. They are widely used in computer graph-
ics and robotics. A quaternion is a mathematical object consisting of one real part and
three imaginary parts, usually denoted as g = a + bi + cj + dk, where a, b, c, and d are
real numbers, while i, j, and k are imaginary units that satisfy the following relation:
i2 = j2 = k2 = ijk = −1. Quaternions have the advantage of rotational representation and
are used more often in rotational operations in three-dimensional space.

The dual quaternion introduces another quaternion as its counterpart on top of the
quaternion. It has a wide range of applications in object position measurement and can
be used to solve rotational relationships effectively. A dual quaternion can be understood
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to be a pair of quaternions whose elements are dual quaternions or a quaternion whose
elements are dual quaternions. According to the first conceptualization, dual quaternions
can be expressed in the following form:

ĝ = g + εg′ =
(

g0
→
g

)
+ ε

(
g′0→
g′

)
(6)

where g, g′ denote a pure quaternion (g0 and g′0 are the actual values);
→
g ,

→
g′ denote the

real part (the non-dual part) and the imaginary part (the dual part) of the dual quaternion,
→
g =

[
g1 g2 g3

]T ,
→
g′
[
g1

′ g2
′ g3

′]T ; and ε is the calibration constant (ε2 = 0 but ε ̸= 0).
The corresponding conjugate of a dual quaternion is defined as follows:

ĝ∗ = g∗ + εg′∗ =

(
g0

−→
g

)
+ ϵ

(
g′0
−

→
g′

)
(7)

For any two pairs of even numbers x̂ and ŷ, the main operation is

x̂ + ŷ = (x + y) + ε(x′ + y′)

λx̂ = λx + λεx′

x̂ · ŷ = (x · y) + ε(y · x′ + x · y′)

(8)

According to the definition of a dual quaternion, the unit dual quaternion satisfies the
following conditions:

ĝ∗ · ĝ =

(
1
0

)
(9)

Namely, the real part of the unit dual quaternion is the unit quaternion:

g∗ · g =

(
1
0

)
(10)

The dyadic part satisfies the orthogonality condition with respect to the real part:

g0g0
′+ <

→
g,

→
g′ >= 0 (11)

3.2. Solving the Calibration Equation Using Dual Quaternions

The calibration process requires at least two non-parallel rotational axes to obtain the i
bit-position transformed observation equations, and substituting them in dual quaternion
form into equation AX = XB yields

x̂i · ĝx = ĝx · ŷi (12)

where the dual quaternion x̂i = xi + xi′, ŷi = yi + yi′ is denoted by A and B in Equation (1)
in the i-th bit-pose transformation, respectively; the dual quaternion ĝx = gx + g′x is de-
noted by X in Equation (1), namely, the required hand–eye relation matrix X. Equation (12)
can be expanded as follows:{

xi · gx − gx · yi = 0

(xi′ · gx − gx · yi′) + (xi · gx′ − gx′ · yi) = 0
(13)

According to Chen’s theory of spiral motions (namely, describing motions in terms of
dual quaternions), when the scalar equations are expressed as in Equation (13), the scalar
part of x̂ and the scalar part of ŷ are equal. Using the property wherein the rotation angles
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and translation distances of motions A and B are equal, six equations can be obtained by
removing the redundant equations. These six equations are written as a matrix as follows:[

x − y [x + y]× 03×1 03×3
x′ − y′ [x′ + y′]× x − y [x + y]×

]
·
[

t
t′

]
= 0 (14)

There are eight unknowns in Equation (14), and by denoting the 6 × 8 matrix on the
left-hand side of the equation as S, the following 6i × 8 matrix S can be constructed for
i motions:

T =
(

ST
1 , ST

2 , · · · , ST
i

)T
(15)

The singular value decomposition of the matrix T in Equation (15) is shown below:

SVD(T) = U ∑ VT (16)

where U and V are the left singular matrix and right singular matrix, respectively; ∑ is
the diagonal array of singular values. In the absence of noise interference, the matrix T

attains a complete rank, and this rank is six. Then,
[

g
g′

]
must form a linear combination

with the last two vectors V7 and V8 of the right singular matrix V; from this, we can obtain
the real part of the solution for the corresponding rotated part of the dual quaternion and
then substitute it into Equation (5) to find the translation vector t.

4. Convex Relaxation Global Optimization Algorithm for Solving Hand–Eye
Calibration Equations
4.1. Convex Relaxation Global Optimization Algorithm

The convex relaxation global optimization algorithm is a method used to solve global
optimization problems. A global optimization problem involves finding the globally
optimal solution to a function under given constraints, aiming to minimize or maximize the
objective function [19–21]. The convex relaxation algorithm, rooted in convex optimization
theory, tackles the original non-convex global optimization problem by transforming it
into an equivalent convex optimization problem. This method offers several advantages,
as convex optimization problems are relatively easier to solve, with numerous efficient
algorithms and tools available for this purpose. The linear matrix inequality (LMI) solution,
grounded in convex optimization theory, ensures the existence and feasibility of the global
optimal solution. Optimization using the LMI relaxation technique [22] is tailored for
convex relaxation polynomial optimization problems, characterized by the absence of initial
value estimation. Theoretically, the LMI method stands as one of the most reliable choices,
maximizing the assurance of computationally searching for the global optimum. Hence, in
this article, we convert the optimization problem in the hand–eye transformation matrix
into a convex relaxation polynomial optimization problem to pursue the optimal solution.

Setting a scalar multivariate polynomial over W(x) is : x = (x1, x2, · · · xm) ∈ Cm, the
optimization problem for multivariate polynomials can usually be described as follows:

minW(x)

s.t.Di(x) ≥ 0, i = 1, 2, · · · , k

Among : x = (x1, x2, · · · , xm)
T ∈ Cm

W(x) ∈ Cm Di(x) ∈ Kni[x]

(17)

where W(x) and Di(x) both denote multivariate polynomials associated with x; Kni[x]
denote the set of ni × ni symmetric matrices with polynomial entries; and Di(x) ≥ 0 show
that the constraints are semipositive definite. Assuming that the number of highest-order
terms of W(x) and Di(x) is a known value, the above problem becomes a convex linear
matrix inequality (LMI) optimization problem.
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Lasserre [23] gives a general form for solving the LMI optimization problem. First,
define the multivariate polynomial D(x) as

D(x) = ∑
α≤t

pαxα
1 xα

2 · · · xα
m = ∑

α≤t
pαψ(x) (18)

where pα is the vector of coefficients of D(x); ψ(x) is a canonical basis for d =

[
m + n

m

]
monomials.

ψ(x) =
(

1, x1, x2, · · · , xm, x2
1, x1x2, x2x3, · · ·

)
(19)

In order to construct the Lasserre hierarchy, it is necessary to determine the minimum
relaxation factor tmin:

tmin = max
{

1,
degF(x)

2
,

degD1(x)
2

, · · · ,
degDk(x)

2

}
(20)

where: deg denotes the number of highest-order terms of the polynomial.
Then, a linear function Ly is introduced to linearize the multivariate polynomial

involved in the LMI optimization problem by replacing the monomial xα with a new
variable yα. The linearized objective function is

Ly[F(x)] = ∑
α≤t

payα (21)

The constraints after linearization are

Mn(y) = Ly

[
ψ(x)ψ(x)T

]
Mn[Di(x), y] = Ly

[
ψ(x)ψ(x)T ⊙ Di(x)

] (22)

where ⊙ denotes the Kronecker matrix product.
Finally, the above global optimization problem is modeled as an LMI optimization

model:
minLy[D(x)]

s.t Mt(y) ≥ 0 i = 1, · · · , k

Mt−d(y) ≥ 0 i = 1, · · · , k

Among: y = (y1, y2, · · · , yd)
T ∈ Cm

di =
[

degDi(x)
2

]
, d =

[
m + 2t

m

]
(23)

Assuming that there exists an optimal solution y∗, it can be verified that the final result
is globally optimal according to the matrix rank equality condition.

rank[Mt−d(y∗)] = rank[Mt(y∗)] (24)

The optimal solution of the above problem, y∗, can be obtained by invoking linear
optimization solvers such as CSDP, SDPA, and Sedumiand, among other toolboxes.

4.2. Convex Relaxation Optimization for Solving Hand–Eye Calibration Equations

Based on the quadratic number multiplication property, for unit quaternions r and g,
we have

r · g = A(r)g = B(g)r (25)



Sensors 2024, 24, 3830 9 of 16

where B(g) is called the metamorphic matrix of A(r). Thus, Equation (13) can be rewritten
in the following form:{

xi · gx − gx · yi = 0

[A(xi′)gx − B(yi′)gx] + [A(xi)gx′ − B(yi)gx′] = 0
(26)

Now, minimize the rotation matrix calibration equation in Equation (26), determine
the rotation error objective function f1, and model the optimization problem using the unit
quaternion property as a constraint 1:

min f1(gx) =
n
∑

i=1

∣∣∣∣xi · gx − gx · yi
∣∣|2F

s.t gT
x gx = 1

(27)

We determined the relaxation factor to be 2 according to Equation (20) and used the
LMI optimization method to find the real part of the dual quaternion gx.

For the translational vector calibration equation in Equation (26), organizing it into
matrix form yields [

A
(
x′ i
)
− B(yi)

]
gx + [A(xi)− B(yi)]g′x = 0 (28)

Then, for i = 1, 2, · · · , n, describing the relative motion of the subrobot and the camera,
there are A(x′1)− B(y′1)

...
A(x′n)− B(y′n)

gx +

A(x1)− B(y1)
...

A(xn)− B(yn)

g′x = 0 (29)

By denoting the 4i × 4 matrices in the above equation (in left-to-right order) as Q′ and
Q, Equation (29) can be deformed as follows:

Q′gx + Qg′x = 0 (30)

By minimizing the equation in Equation (30), we can determine the objective function
f2, with gT · g = 1, gT · g′ = 0 constraints, to establish optimization problem model 2:

min f (g′x) =
n
∑

i=1
||Q′gx + Qg′x||2F

s.t gT
x gx = 1

gT
x g′x = 1 gx1 ≥ 0

(31)

When solving an optimization problem, one can consider adding some additional
conditions or constraints to limit the solution space and reduce the number of solutions.
These additional constraints can be linear or nonlinear, and their introduction can help to
exclude some unstable solutions and make the final optimization results more reliable and
consistent. Similarly, the convex relaxation optimization method is then used to find the
dual part of the dual quaternion (Figure 2).

The steps of the dual quaternion hand–eye calibration algorithm based on convex
relaxation optimization proposed in this article are as follows.

Inputs: Robot pose matrix Ai and camera pose matrix Bi for i sets of relative motions.
(1) Considering the solution accuracy and speed requirements, set the iteration accu-

racy to 0.5 × 10−20.
(2) Define polynomial variables gx and g′x. gx = (gx1, gx2, gx3, gx4)

T ,
and g′x = (gx5, gx6, gx7, gx8)

T .
(3) Establish optimization problem model 1 according to Equation (27).
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(4) Determine the relaxation coefficients, introduce a function Ly to linearize the
optimization problem, and model the LMI optimization problem as follows:

minLy[W(x)]

s.t Mt(y) ≥ 0 i = 1, · · · , k

Mt−d(y) ≥ 0 i = 1, · · · , k

(32)

(5) Solve msdp
{

minLy[W(x)], Mt(y), Mt−d(y)
}

to obtain the real part of the dual
quaternion gx.

(6) Create the optimization problem model 2 according to Equation (31).
(7) Substitute gx, and repeat steps 4 and 5 to obtain the dual part of the dual quaternion g′x.
Output: optimal solution to the hand–eye transformation matrix X obtained after

global optimization.
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5. Experiment and Result Analysis
5.1. Experimental Environment Construction

In order to further validate the accuracy and robustness of the algorithm proposed
in this article, experiments were carried out by installing the Ubuntu operating system
on a computer with an Intel(R) Core(TM) i5-10500 CPU opperating @ 3.10 GHz and with
12 GB of RAM, using the ROS operating system version 18.04 Melodic, and performing eye-
in-hand calibration experiments. In this experiment, the eye-in-hand method is adopted;
namely, the camera is installed at the end of the robotic arm. The robotic arm used in
this experiment is an Elfin series Elfin-10 manufactured by Dazu Corporation. It weighs
43 Kg and has an effective workload capacity of 10 Kg, a working range of 1000 mm,
a maximum tool speed of 2 m/s, and a repetitive positioning accuracy of ±0.03 mm.
The depth camera used is a RealSense D415i manusfactured by Intel Corporation, with a
resolution of 1280 × 720 pixels. A tessellated grid plane target was used for the calibration
of the camera parameters, with tessellated grid parameters consiting of dimensions of
8 × 6 and a side length of 24 mm. ArUco code was used for the calibration of the camera
parameters, with an ID of 582 and size a of 50 mm. Before the experiment, the camera
needed to be first fixed on the manipulator end-effector flange, and the corresponding
camera SDK software driver package needed to be installed. At the same time, the stroke
and tension of the gripper were tested to ensure the safety of the instrument by adjusting
the stroke and tension for different tasks. The specific task of positioning for switching
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operation studied in this article is illustrated in Figure 3: (a) indicates the positioning of
the power instrumentation knob switches on the electric control cabinet; (b) indicates the
positioning of the secondary switches in the electric control cabinet; and (c) indicates the
positioning of the locking holes on the electric control cabinet.
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5.2. Data Acquisition

Camera calibration serves as the foundation for position measurement based on vi-
sual images, with good camera calibration being essential for improving measurement
accuracy. In this experiment, Zhang Zhengyou’s camera calibration method was adopted,
in which a checkerboard grid is used as a calibration plate to obtain internal camera
reference points. Zhang Zhengyou’s calibration method integrates the advantages of tradi-
tional camera calibration methods and camera self-calibration methods. It overcomes the
drawbacks of traditional camera calibration methods, which often require high-precision
three-dimensional calibrators, and addresses the issues of low precision and poor robust-
ness associated with camera self-calibration methods. With this method, only images of
calibration plates at different positions need to be collected, and the pixel coordinates
of corner points in the images are extracted. The initial values of the camera’s internal
parameters are then calculated using the single-stress matrix, and distortion coefficients
are estimated using the nonlinear least-squares method. This approach is not only simple,
flexible, and convenient but also offers high calibration accuracy. Currently, it is widely
used in solving in-camera parameters.

Visualization results were obtained, and the camera calibration method calculated the
parameters of the checkerboard grid calibration plate at each position, determining the
relative position relationship between the camera and the calibration plate at each position,
as shown in Figure 4b. The average reprojection error of the tessellated target image is
presented in Figure 4a, with each image’s average reprojection error being 0.43 pixels. The
calibration results exhibit high accuracy and meet the requirements of the subsequent
position measurement experiments. Finally, the internal reference matrix of the camera was
calculated as follows:

A =

881.21 0 215.64
0 884.22 274.45
0 0 1


distortion coe f f icients =

[
−0.02078 0.01459 0.00450 −0.01552 0

] (33)

where A denotes the camera’s internal reference matrix in the derived hand–eye relation-
ship; the distortion coefficients denote the camera’s distortion model coefficients; −0.02078,
0.01459, and 0.00450 are the radial distortion parameters; and −0.01552 and 0 are the
tangential distortion parameters.
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Via the Ubuntu operating system, Rviz was used to open the robot model, displaying
the necessary coordinate changes in the robot’s base coordinate system, camera coordinate
system, and end-gripper coordinate system. By using the Rqt command to open the image
visualization window, specific information of the ArUco code was identified, facilitating
the collection of positional changes in the robotic arm from different angles. The steps of
hand-eye calibration are as follows:

(1) Manually adjust the robotic arm so that the ArUco code moves to the center of the
camera’s field of view. Click ‘check starting pose’; if the check is successful, the
interface will display ‘0/17’, indicating that the procedure is ready and can be started.

(2) Click ‘Next Pose’, ‘Plan’, and ‘Execute’ in turn. The robot arm will move to a new
position. If the ArUco code is within the camera’s field of view and can be detected
successfully, proceed to the next step.

(3) Click ‘Take Sample’ in Interface 2. If valid information appears in the Samples dialog
box, this indicates that the first point calibration is successful.

(4) Repeat steps 2 and 3 until all 17 points are calibrated.
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By following the above steps, 17 sets of positional data on the robotic arm were
obtained. Five sets of data with large errors were eliminated, and finally, 12 sets of data
were selected, as shown in Table 1.
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In Table 1, Rotation represents the posture of the robot, expressed in quaternions,
while Translation represents the position of the robot. The 12 sets of data obtained were
subjected to hand–eye calibration using Tsai’s method, Horaud’s method, the dual quater-
nion method, and the DQCR method (proposed in this article) to perform an error analysis
of the experimental results.

Table 1. The 12 sets of positional data on the target object relative to the camera.

Groups Rotation (x,y,z,w) Translation (x,y,z)

1 −0.24 0.4 0.55 0.05 0.04 −0.01 0.65
2 0.05 0.03 0.39 0.74 0.66 −0.14 0.07
3 −0.45 0.42 0.55 0.06 0.06 0.22 0.84
4 −0.04 0.11 0.44 0.7 0.59 −0.11 0.39
5 −0.34 0.42 0.31 −0.17 −0.06 0.01 0.92
6 −0.26 0.35 0.51 0.19 0.27 −0.03 0.81
7 −0.08 0.15 0.45 −0.66 −0.64 0.12 0.39
8 −0.25 0.35 0.53 0.2 0.17 −0.03 0.78
9 −0.33 0.49 0.55 0.07 0.07 −0.01 0.68
10 0.02 0.05 0.41 0.72 0.65 −0.13 0.19
11 0.12 0.08 0.43 0.16 0.58 −0.23 0.14
12 −0.23 0.42 0.39 −0.12 0.14 −0.32 0.44

5.3. Experimental Results and Analysis

Using the collected pose data as an input, the DQCR hand–eye calibration optimization
algorithm proposed in this paper was used to solve the hand–eye relationship matrix. The
most recently obtained global optimal hand–eye relationship matrix is

X =


0.02473 0.95395 −0.29817 −0.17564
0.97552 −0.08838 −0.20134 0.52855
−0.21849 −0.28662 −0.93279 0.94272

0 0 0 1

 (34)

The transformation matrix of the camera coordinate system with respect to the coor-
dinate system of the end-gripper jaw was obtained using the aforementioned hand–eye
transformation matrix. Then, the position of the specific task performed was recognized
through end camera recognition, and the position information was converted into the
position under the arm’s coordinate system. For the specific tasks mentioned in this article,
such as positioning the instrument knob, secondary switch, and locking hole, 50 repet-
itive positioning experiments were carried out, and the following error accuracy curve
was plotted.

As illustrated in Figure 5, after using the Tsai calibration method to localize the
aforementioned tasks, the localization error interval was observed between 4 and 4.8 mm,
ultimately converging to about 4.4 mm. When employing the Horaud calibration method,
the localization error interval ranged between 3.8 and 4.5 mm, finally converging to about
4.0 mm. When employing the Daniilidis calibration method for the tasks, the localization
error interval fell between 3.3 and 3.8 mm, ultimately stabilizing at about 3.4 mm. Utilizing
the DQCR calibration method yielded a localization error interval between 2.6 and 3.3 mm,
eventually converging to about 2.9 mm.

For the identification of the power instrument knob and secondary switch, typically
involving the positioning of the center, the space reserved for the end-effector clamping
jaws is relatively large, and errors within the range of 5 mm to 1 cm are acceptable. Both tra-
ditional hand–eye calibration methods and the optimized DQCR algorithm can effectively
complete these tasks. However, in this study, the precision requirements for identifying
the lock hole are much higher. With the key inserted into the lock hole, the reserved space
measures between 2.5 mm and 3.0 mm. Traditional hand–eye calibration algorithms may
not achieve the necessary accuracy for this task. The DQCR optimization algorithm pro-
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posed in this article ensures stable positioning accuracy within the 2.9 mm range, meeting
the requirements for identifying locking holes in switching operations.

Meanwhile, in order to verify the accuracy of different calibration methods for the
localization and recognition of the same object, the following heat map of the four hand–eye
calibration methods and the target position was plotted.
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As illustrated in Figure 6, the ‘1’ in the center represents the recognition rate of
the target location as a percentage. The heat map presented in this article illustrates
the correlation between the four hand–eye calibration methods and the recognition rate
for the target location. Specifically, the accuracy of Tsai’s hand–eye calibration method
in repeatedly recognizing the target object is approximately 79%. Horaud’s hand–eye
calibration method achieves an accuracy of around 83% in the repeated recognition of
the target object, while Daniilidis’ method achieves an accuracy of around 88%. The
DQCR-optimized hand–eye calibration method demonstrates the highest accuracy, at
around 91%, for the repeated recognition of target objects. These results indicate that the
DQCR-optimized hand–eye calibration algorithm proposed in this article offers a superior
recognition rate and positioning accuracy.
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Since there is some noise and error in the process of obtaining motion pose matrix A
using visual estimation during the hand–eye calibration process, in order to compare the
robustness of different methods to the input camera motion pose with perturbation, this
experiment adds Gaussian noise with zero mean and a standard deviation of 0.01 d/deg
to the rotational part of the camera motion position matrix and Gaussian noise with zero
mean and a standard deviation of 0.02 d/mm to the translation part, where d is the noise
level (given here as d = 1, 2, . . ., 10). The relationship between the relative errors of the
rotation matrix and translation vectors was simulated under different noise levels, and the
line graphs of the rotation error and translation error were plotted as follows.

Based on the results depicted in Figure 7, it is evident that, under the same noise level,
the hand–eye calibration optimization method proposed in this article outperforms other
hand–eye calibration methods in terms of both rotational and translational errors while
also demonstrating less susceptibility to noise growth. This observation indicates that
the estimation results obtained from the algorithm presented in this article exhibit greater
stability, further validating the efficacy of solving rotation matrix and translation variables
separately, thereby enhancing robustness to noise.
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6. Conclusions and Perspective

Acquiring more accurate positional information is crucial to allow robots to execute
tasks since traditional optimization algorithms rely on the choice of initial values and
are prone to converge to local optimal solutions. To address the above problems, this
article proposes a hand–eye calibration algorithm based on convex relaxation for global
optimization. By employing the mathematical concept of dual quaternions, the optimal
pair of values was obtained through calculation; at the same time, the optimality of the
solution is guaranteed without requiring initial value estimation. The obtained results
show that the global optimization algorithm proposed in this article has higher accuracy
and robustness than the nonlinear optimization hand–eye calibration algorithm, not only
accomplishing fundamental tasks like turning knobs, flipping switches, and performing
other operations but also more intricate tasks such as inserting and extracting keys during
switching operations. It holds promise for future applications in high-precision robotic
vision systems. Due to the limited experimental conditions, this article only focuses on
the current laboratory environment. The subsequent plan is to test the data in different
environments and scenarios, check whether the algorithm has sufficient adaptability to
allow it to be improved, further enhance the algorithm’s processing speed, and broaden
the algorithm’s range of applications.
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