Tessellation-Based Construction of Air Route for Wireless Sensor Networks Employing UAV
Abstract
:1. Introduction
- We build three categories of hexagonal tessellations that bear the property of Hamiltonicity underneath.
- To build an air route for the UAV, we propose a scheme which covers the sensor field with a hexagonal tessellation belonging to one of the three categories, establishes a point of interest at the centroid of each tile, and constructs an air route along a Hamiltonian cycle embedded on the hexagonal tessellation.
- We present a closed-form expression of the flight distance yielded by the proposed scheme.
- We find a suboptimal scheme that minimizes the number of points of interest by completely inspecting all patterns. Also, we discover an optimal scheme that minimizes the flight distance by corroborating the Hamiltonicity in suboptimal tessellation.
- We provide a universal lower bound on the flight distance in a closed form.
2. Wireless Sensor Network Employing UAV
3. Tessellation-Based Establishment of Points of Interest and Construction of Air Route
3.1. Tessellation-Based Establishment of Points of Interest
3.2. Tessellation-Based Construction of Air Route
4. Analysis of Flight Distance
5. Performance Evaluation of Proposed Scheme
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
References
- Seo, H.; Park, J.K.; Choi, C.W. Timeliness-aware Anti-discrimination MAC Scheme for Wireless Passive Sensor Networks. IEIE Trans. Smart Process. Comput. 2020, 9, 151–168. [Google Scholar] [CrossRef]
- Seino, W.; Yoshihisa, T.; Hara, T.; Nishio, S. A Communication Protocol to Improve Fairness and Data Amount on Sensor Data Collection with a Mobile Sink. In Proceedings of the 2010 IEEE International Conference on Broadband, Wireless Computing, Communication, and Applications (BWCCA), Fukuoka, Japan, 4–6 November 2010; pp. 33–40. [Google Scholar] [CrossRef]
- Kwong, K.; Goh, H.; Stephen, B.; Wu, T.; Sasloglou, K.; Shen, C.; Michie, C.; Glover, I.; Andonovic, I.; Du, W. Implementation of herd management systems with wireless sensor networks. IET Wirel. Sens. Syst. 2011, 1, 55–65. [Google Scholar] [CrossRef]
- Chang, J.-Y.; Jeng, J.-T.; Sheu, Y.-H.; Jian, Z.-J.; Chang, W.-Y. An efficient data collection path planning scheme for wireless sensor networks with mobile sinks. EURASIP J. Wirel. Commun. Netw. 2020, 2020, 257. [Google Scholar] [CrossRef]
- Ho, D.-T.; Grøtli, E.I.; Sujit, P.B.; Johansen, T.A.; Sousa, J.B. Optimization of Wireless Sensor Network and UAV Data Acquisition. J. Intell. Robot. Syst. 2015, 78, 159–179. [Google Scholar] [CrossRef]
- Olivieri, B.; Endler, M. DADCA: An Efficient Distributed Algorithm for Aerial Data Collection from Wireless Sensors Networks by UAVs. In Proceedings of the 20th ACM International Conference on Modelling, Analysis and Simulation of Wireless and Mobile Systems (MSWIM), Miami, FL, USA, 21–25 November 2017; pp. 129–136. [Google Scholar] [CrossRef]
- Salarian, H.; Chin, K.-W.; Naghdy, F. An Energy-Efficient Mobile-Sink Path Selection Strategy for Wireless Sensor Networks. IEEE Trans. Veh. Technol. 2013, 63, 2407–2419. [Google Scholar] [CrossRef]
- Khan, A.W.; Abdullah, A.H.; Razzaque, M.A.; Bangash, J.I. VGDRA: A Virtual Grid-Based Dynamic Routes Adjustment Scheme for Mobile Sink-Based Wireless Sensor Networks. IEEE Sensors J. 2014, 15, 526–534. [Google Scholar] [CrossRef]
- Da Silva, R.; Nascimento, M. On Best Drone Tour Plans for Data Collection in Wireless Sensor Network. In Proceedings of the 31st Annual ACM Symposium on Applied Computing (SAC), Pisa, Italy, 4–8 April 2016; pp. 703–708. [Google Scholar] [CrossRef]
- Cao, H.; Yang, Z.; Li, Y.-Q. A Mobile WSN Sink Node Using Unmanned Aerial Vehicles: Design And Experiment. Int. J. Interact. Mob. Technol. 2016, 10, 64–67. [Google Scholar] [CrossRef]
- Wu, C.; Liu, Y.; Wu, F.; Fan, W.; Tang, B. Graph-Based Data Gathering Scheme in WSNs With a Mobility-Constrained Mobile Sink. IEEE Access 2017, 5, 19463–19477. [Google Scholar] [CrossRef]
- Wen, W.; Zhao, S.; Shang, C.; Chang, C.-Y. EAPC: Energy-Aware Path Construction for Data Collection Using Mobile Sink in Wireless Sensor Networks. IEEE Sensors J. 2018, 18, 890–901. [Google Scholar] [CrossRef]
- Kim, E.-J.; Choi, H.H.; Kwon, J.-H. Regional Density-aware Data Collection Using Unmanned Aerial Vehicle in Large-scale Wireless Sensor Networks. Sensors Mater. 2018, 30, 1735–1742. [Google Scholar] [CrossRef]
- Chao, F.; He, Z.; Pang, A.; Zhou, H.; Ge, J. Path Optimization of Mobile Sink Node in Wireless Sensor Network Water Monitoring System. Complexity 2019, 2019, 5781620. [Google Scholar] [CrossRef]
- Vera-Amaro, R.; Rivero-Ángeles, M.E.; Luviano-Juárez, A. Data Collection Schemes for Animal Monitoring Using WSNs-Assisted by UAVs: WSNs-Oriented or UAV-Oriented. Sensors 2020, 20, 262. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Wang, G.; Hu, Y.; Chen, L.; Zhu, A.-X. Design of an Integrated Remote and Ground Sensing Monitor System for Assessing Farmland Quality. Sensors 2020, 20, 336. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kim, S.; Youn, J.; Ahn, S.; Cho, S. Low-Complexity Data Collection Scheme for UAV Sink Nodes in Cellular IoT Networks. IEEE Trans. Veh. Technol. 2021, 70, 4865–4879. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, S. Efficient Aerial Data Collection with Cooperative Trajectory Planning for Large-Scale Wireless Sensor Networks. IEEE Trans. Commun. 2021, 70, 433–444. [Google Scholar] [CrossRef]
- Zhao, L.; Li, S.; Guan, Y.; Wan, S.; Hawbani, A.; Bi, Y.; Guizani, M. Adaptive Multi-UAV Trajectory Planning Leveraging Digital Twin Technology for Urban IIoT Applications. IEEE Trans. Netw. Sci. Eng. 2023, 1–16. [Google Scholar] [CrossRef]
- Grünbaum, B.; Shephard, G. Tiles and Patterns; W. H. Freeman and Company: New York, NY, USA, 1987; ISBN -10 0486469816. [Google Scholar]
- Harary, F. Graph Theory; Addison-Wesley: Bosston, MA, USA, 1969; ISBN -10 0201410338. [Google Scholar]
- Sugimoto, T. Convex Pentagons for Edge-to-Edge Tiling, I. Forma 2012, 27, 93–103. [Google Scholar]
- Gordon, V.S.; Orlovich, Y.L.; Werner, F. Hamiltonian properties of triangular grid graphs. Discret. Math. 2008, 308, 6166–6188. [Google Scholar] [CrossRef]
- Radiansyah, S.; Kusrini, M.D.; Prasetyo, L.B. Quadcopter applications for wildlife monitoring. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2017; Volume 54, p. 012066. [Google Scholar] [CrossRef]
- Anweiler, S.; Piwowarski, D. Multicopter Platform Prototype for Environmental Monitoring. J. Clean. Prod. 2017, 155, 204–211. [Google Scholar] [CrossRef]
- Sidibe, A.; Loubet, G.; Takacs, A.; Ferré, G.; Ghiotto, A. Miniature drone antenna design for the detection of airliners. Int. J. Microw. Wirel. Technol. 2020, 13, 21–27. [Google Scholar] [CrossRef]
Scheme | Maximum Radius | Hamiltonian? | Flight Distance |
---|---|---|---|
Yes | |||
Yes | |||
Yes | |||
Yes | |||
Yes | |||
Yes | |||
Yes | |||
Yes | |||
Yes | |||
Yes | |||
Yes | |||
Yes |
Parameter | Unit | Value |
---|---|---|
Altitude | Meters | 100 |
Speed | Meters/second | 5 |
Beamwidth of receiving antenna | Degrees | 97 |
Airborne time | Seconds | 720 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, C. Tessellation-Based Construction of Air Route for Wireless Sensor Networks Employing UAV. Sensors 2024, 24, 3867. https://doi.org/10.3390/s24123867
Choi C. Tessellation-Based Construction of Air Route for Wireless Sensor Networks Employing UAV. Sensors. 2024; 24(12):3867. https://doi.org/10.3390/s24123867
Chicago/Turabian StyleChoi, CheonWon. 2024. "Tessellation-Based Construction of Air Route for Wireless Sensor Networks Employing UAV" Sensors 24, no. 12: 3867. https://doi.org/10.3390/s24123867
APA StyleChoi, C. (2024). Tessellation-Based Construction of Air Route for Wireless Sensor Networks Employing UAV. Sensors, 24(12), 3867. https://doi.org/10.3390/s24123867