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Abstract: This article describes a novel fusion of a generative formal model for three-dimensional (3D)
shapes with deep learning (DL) methods to understand the geometric structure of 3D objects and the
relationships between their components, given a collection of unorganized point cloud measurements.
Formal 3D shape models are implemented as shape grammar programs written in Procedural Shape
Modeling Language (PSML). Users write PSML programs to describe complex objects, and DL
networks estimate the configured free parameters of the program to generate 3D shapes. Users write
PSML programs to enforce fundamental rules that define an object class and encode object attributes,
including shapes, components, size, position, etc., into a parametric representation of objects. This
fusion of the generative model with DL offers artificial intelligence (AI) models an opportunity
to better understand the geometric organization of objects in terms of their components and their
relationships to other objects. This approach allows human-in-the-loop control over DL estimates by
specifying lists of candidate objects, the shape variations that each object can exhibit, and the level of
detail or, equivalently, dimension of the latent representation of the shape. The results demonstrate
the advantages of the proposed method over competing approaches.
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1. Introduction

The generation and understanding of three-dimensional (3D) geometries hold signifi-
cant importance across diverse domains, from computer graphics to robotics and virtual
reality. Recent advancements in deep learning (DL) and generative modeling have pro-
pelled research in the area of 3D shape generation. Notably, techniques such as Variational
Autoencoders (VAEs) [1–3], 3D Generative Adversarial Networks (3D-GANs) [4–6], and
3D Stable Diffusion [7–10] have shown promise in autonomously producing realistic and
diverse 3D shapes. Shape grammars have also been demonstrated as a powerful approach
for formal model generation by providing a rule-based framework for generating complex
geometric structures and enforcing constraints within objects [11–13]. Each methodol-
ogy has its advantages and limitations. This article seeks to provide a fusion of these
two methodologies to achieve the best of both worlds for novel 3D shape synthesis.

Despite the progress achieved, challenges and limitations persist in the deep learning
3D shape generation methodology. Figure 1 showcases several failure instances of these
methodologies. VAEs, as evidenced in Figure 1a, often struggle with capturing complex
and high-dimensional distributions of 3D shapes. GANs often struggle with mode collapse
in training, where the generator produces a limited diversity of shapes or collapses to
a few modes, failing to capture the full distribution of the data as shown in Figure 1b.
Mode collapse can make GANs difficult to train and lead to the generation of unrealistic
or repetitive shapes, limiting the variety and quality of the generated outputs. Figure 1c
shows a car model generated by 3D stable fusion techniques which may struggle with
preserving fine-grained details and local geometric features, leading to information loss in
complex shapes or smoothed shapes.
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(a) (b) (c)
Figure 1. Deep learning methods face significant challenges in grasping the geometric and physical
constraints inherent in 3D objects, resulting in shortcomings in the generated objects. (a) A VAE
generated couch model only provides a rough approximation of the complex geometry of a couch [1].
(b) A 3D GANs generated table model lacks manifold geometry for the legs and fails to enforce
self-similarity constraints, resulting in variations in shape and size among the four legs [4]. (c) A
stable diffusion generated car model is smoothed on the object edges and fails to adhere to real-world
constraints, as one of the front wheels occupies the spatial location intended for the car’s front
fender [9].

Shape grammars have been used commonly in computer graphics and design to
describe the generation of complex shapes through a set of production rules [14,15]. These
rules define how basic shapes or components can be combined and manipulated to form
more intricate structures. Shape grammars provide a systematic approach to generat-
ing shapes by specifying the relationships between various components and enforcing
constraints to ensure the coherence and consistency of the generated designs.

Shape grammar rules can be implemented using the modeling language as the formal
syntax and vocabulary [16–19]. Users can define programs that describe objects as a
semantic hierarchy of 3D shape elements, where each element may be a semantic group
of objects, e.g., a floor of a building, or an indivisible object, i.e., a brick within a building.
Each indivisible object, e.g., a brick from a building, is modeled in terms of its geometry
and appearance.

Shape grammars offer a means to encode the implicit generation rules and geometric
constraints inherent in objects, which remains challenging for deep learning models to
grasp. However, common objects typically have predictable generation rules which are
satisfied by all instances of these objects. For example, tables usually feature a top surface
and multiple supporting legs connected to the top, and cars typically have four wheels
on two sides that can roll. However, deep learning neural networks find it challenging to
comprehend these constraints, hindering their ability to accurately generate such objects.
Shape grammars provide a solution by implementing these rules to construct objects and
allowing users to define the parameters of these rules.

Bridging deep learning techniques with shape grammars presents significant potential.
Users can define shape programs and convey shape rules to artificial intelligence (AI)
systems. By employing DL networks to learn the parameters of these rules rather than the
rules themselves, AI models gain the ability to internalize such constraints. This capability
leads to disentangled representations within the latent space, where each dimension corre-
sponds to a meaningful attribute of the data. This promises enhanced controllability and
interpretability of the generated shapes.

This article proposes a novel fusion of 3D shape representation using shape grammars
and DL model estimation. Shapes are represented as a formal shape grammar using
Procedural Shape Modeling Language (PSML) [19], which applies a sequence of rules to
construct a 3D geometric model as a collection of 3D primitives. In contrast to competing
approaches from the DL literature, the inclusion of dynamic parameterized formal shape
models promises to allow DL applications to more accurately represent the structure of
commonplace objects.

The proposed method merges the powerful representation of PSML for many im-
portant shape-understanding contexts with the heretofore unprecedented capabilities for
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non-linear estimation provided by recent advances in AI through deep learning neural
models and their training methodologies. Prior efforts have seen much success in deter-
ministically applying shape grammars in procedural modeling contexts [11,20] to generate
impressive geometric models with direct human input and control. However, the capability
to leverage procedural shape grammar models to solve the inverse problem of the shape
estimation approach from measured data has eluded academics in terms of being able to
extract reliable fits of shape grammar parameters given measured depth, RGB, LiDAR, or
other data [21–23]. The promise of using the unprecedented power of AI estimation to
solve this inverse problem has not been investigated. This article explores the extent to
which current DL models are capable of solving the problem of estimating shape grammar
parameters from measured data. Our results demonstrate that the deep learning models
effectively address this new problem, achieving reliable and accurate parameter estimation.

In this article, we demonstrate several benefits of our approach that fuses shape models
with DL estimation which are listed below:

• Shape estimates are guaranteed to satisfy complex geometric shape and physical con-
straints, including self-symmetry, self-similarity, and free-standing stability properties.

• Shape estimates are guaranteed to satisfy important geometric model properties by
providing water-tight, i.e., manifold, polygon models that require a small number of
triangle primitives to describe the basic object geometry.

• Shape estimates provide a highly compact parametric representation of objects, allow-
ing objects to be efficiently shared over communication links.

• User-provided shape programs allow human-in-the-loop control over DL estimates.
Aspects of this control include specifying lists of candidate objects, the shape variations
that each object can exhibit, and the level of detail or, equivalently, dimension of the
latent representation of the shape. These aspects of our approach allow humans to more
easily control the DL estimate outputs and also enable humans to more easily interpret
DL estimate results, which we collectively refer to as “human-in-the-loop” benefits.

• Users can control the complexity and diversity of DL-estimated shapes for each object
and for each object component directly through the construction of the DL network.

• Object models can be used to synthesize training data for DL systems, improving
over current 3D model databases which use static 3D models and therefore lack
geometric diversity. Object models can be combined to generate extremely large
synthetic 2D/3D datasets having rich geometric diversity and including important
annotations to support a wide variety of 3D and 2D DL applications.

• An example of the proposed DL fusion is provided that detects objects, and their
parametric representation given a PSML shape grammar is demonstrated. Key metrics
for the model estimates are shown that demonstrate the benefits of this approach.

These contributions open the door to the integration of shape-grammar-based data
generation methods with deep learning techniques for 3D object/scene understanding.
User-defined shape programs offer various benefits and advantages over competing ap-
proaches which are demonstrated by the results of this study.

2. Related Work

This study explores the advantages of shape grammar in data synthesis compared to
other methods of data generation. Through experiments, the PSML-driven data generation
approach shows significant potential for various computer vision applications. For these
reasons, a review of the literature related to this article is divided into two parts:

• A overview of shape grammar and its applications.
• An examination of deep learning generative models of 3D shapes.

2.1. Shape Grammar

Shape grammar, proposed in the 1970s [24], provides a formal framework for generat-
ing and analyzing complex shapes and designs. As as a shape-based visual description
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grammar and a rule-based automated design grammar, shape grammar has been ap-
plied to many domains, including urban planning [12,13], industrial design [14], and
computer-aided design [15]. Over the years, advancements in shape grammar have led
to the development of sophisticated methods for shape generation [25], analysis [26], and
optimization [27], integrating computational techniques such as procedural modeling [19],
parametric design [28], and machine learning [29].

There has been a considerable amount of work that investigates the use of shape
grammars for vision tasks with a large number of articles being produced that focus on
the segmentation of architecture within images [30,31] or segmentation of building facade
images [21–23,32]. However, these techniques were limited to 2D grammars since the
labeled primitives produced by the used grammars were limited to 2D faces. Other work
leverages shape grammar to model 3D indoor scenes from point clouds [33]. Recently,
researchers have been leveraging shape grammar to guide 3D shape semantic labeling [34]
or scene graph generation [35]. This study systematically explores the benefits of the
data generation method driven by the shape grammar and its potential in deep learning
computer vision tasks and machine understanding, where an AI system emulates the
sense-making and decision-making ability of human beings.

2.2. Generative Models of 3D Shapes

Deep learning generative models have significantly advanced the field of 3D shape
generation, with methodologies such as Variational Autoencoders (VAEs) [1–3], Generative
Adversarial Networks (GANs) [4–6], and Stable Diffusion [7–10] emerging as popular
methodologies. VAEs encode input shapes into a latent space and reconstruct them via a
decoder but often struggle with capturing complex and high-dimensional distributions
of 3D shapes. GANs leverage a generator–discriminator framework to produce realistic
shapes but may suffer from mode collapse leading to the generation of unrealistic or
repetitive shapes. Stable diffusion, a recent innovation that offers improved training
stability and control over generated samples, may struggle with capturing fine-grained
details and preserving the complex geometric properties present in real-world objects.

These methods train the AI systems to learn the geometric constraints such as self-
similarity, and physical constraints such as the free-standing stability of the 3D objects. This
is extremely difficult for AI systems, as their training data typically do not encode these
rules or principles. It results in these methods tending to generate an approximation of
instances of objects but not a geometric model that adheres to real-world constraints. The
fundamental difference of this study is to encode into training data the organizations of
objects in terms of their components and their relationships to other objects.

3. Methodology

The methodology of this article is organized into the following sections:

• An introduction to the Procedural Shape Modeling Language (PSML) that incorpo-
rates shape grammar programs as elements within the sequential programming code
(Section 3.1).

• A discussion of the benefits offered by the PSML data generation approach (Section 3.2).
• A fused system of PSML and DL that takes point cloud as input and generates 3D

shape estimates of objects (Section 3.3).
• An application of using the PSML-driven method to generate synthetic datasets

(Section 3.4).

3.1. Procedural Shape Modeling Language (PSML)

PSML [19] is a programming language to generate 3D shapes procedurally based on
shape grammar rules. It provides programmers the ability to describe shapes in terms of
their 3D elements, where each element may be a semantic group of 3D objects, e.g., a brick
wall, or an individual object, e.g., an individual brick. As such, users may query these
models for volumetric information such as the number, position, orientation, and volume
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of 3D elements. PSML grammar associates labels to both object space, i.e., geometric objects,
and void space, i.e., the space that bounds objects. These labels may be used to facilitate
analysis that requires knowledge of both types of information, e.g., furniture placement,
accessibility, navigation of virtual spaces, and path planning.

Algorithm 1 shows an example of a PSML program to generate a table object. The
overall structure of a PSML program includes one “ShapeGrammar” declaration that
contains one or more “method” declarations. Each method declaration must include
at least one “rules” declaration. Rule blocks must be defined within each method, and
each rules block contains a set of shape grammar production rules. The execution of
a production rule causes the non-terminal symbol referred to as the predecessor to be
replaced by the successor, which may be one or more terminal or non-terminal symbols.
Terminal symbols, indicated by the special string “terminal” in PSML algorithms, do not
appear as predecessors in any production rule and are visible elements that exist in the
final 3D model except terminals declared to be space. PSML is constrained to work entirely
from closed geometries and associates semantic labels to non-terminals, visible terminals,
and empty spaces. In PSML, terminals are drawn from a pre-defined set of 3D shape
primitives, for example, box, cylinder, sphere, and cone, and non-terminals are constructed
from multiple terminals to represent complicated shapes. Shape grammars specified within
the rule blocks use the passed shape, argument variables, and locally defined variables to
generate an instance of the grammar shape.

Algorithm 1 The contents of the PSML program: Table.psm

1public class Table extends ShapeGrammar {
2public Table(Shape myShape, double l, double w, double h, double t, double offset_w, double offset_l) {
3double R = 0.73;
4double G = 0.55;
5double B = 0.39;
6rules {
7axiom::I("box", new double[]{l, h, w}) {table};
8table::split("y", new double[]{scope.s.y-t, t}) {bottom, top};
9top::appearance("diffuse", new double[]{R, G, B}){terminal};

10// round table top
11// top::I("cylinder", new double[]{w/2, t})appearance("diffuse", new double[]{R, G, B}){terminal};
12bottom::split("x", new double[]{offset_w, t, scope.s.x-2*t-2*offset_w, t, offset_w}){space, side,

space, side, space};
13side::split("z", new double[]{offset_l, t, scope.s.z-2*t-2*offset_l,t, offset_l}){space, legMass,

space, legMass, space};
14legMass::I("cylinder", new double[]{t/2, h-t}){leg};
15// square table legs
16// legMass::I("box", new double[]{2*leg_rad, 2*leg_rad, h-t}) R(Math.PI/2, 0, 0) {leg};
17leg::appearance("diffuse", new double[]{R, G, B}){terminal};
18space::void(){terminal};
19}
20}
21

22public static void main(String[] args) {
23Shape zShape = new Shape("root");
24Table s = new Table(zShape, 1, 1, 0.8, 0.05, 0.05, 0.05);
25s.showShapes("table");
26}
27}

Algorithm 1 generates a “table” shown in Figure 2a. With the rule block of the table
method, a box is first defined (line 7). The box is then split into two sections “top” (line
9) and “bottom” (line 12) with the “top” being the surface of the table and the bottom
the space where the table legs are. The algorithm then creates a space in the center of the
“bottom” part and only keeps two faces on the side of the plane where the legs are (line
13). These two sides then respectively get cut in the middle to finally create two table legs
on each side (line 14). The appearance of the table is colored brown (lines 9 and 17). The
Table.psm generates a table object with a square top and four round legs. The commented
lines (lines 10, 11, 15, and 16) offer the opportunity to generate a table object with different
semantic structures, a round top, and square legs. In this example, the tabletop (line 19)
and legs (line 17) are the “terminals” of the program and all other symbols are non-terminal
symbols, which are replaced by terminal or non-terminal symbols.
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Figure 2 shows various realizations of the table object and demonstrates how the
representation guarantees that target shapes satisfy the shape constraints over all possible
parameter variations, e.g., there are always table legs connecting to a surface for these
variations. More generally, the PSML syntax for detecting the size and position of the
current volume allows the user to develop shapes that re-organize their components
consistently over parametric variations, e.g., anisotropic scaling.

(a) (b) (c) (d) (e)
Figure 2. Semantic variations of the table models generated by different PSML program parameters.
(a) A visualization of the shape generated by Table.psm (Algorithm 1). (b) A variation of l = 2. (c) A
variation of t = 0.12. (d) A variation of o f f set_l = o f f set_w = 0.12. (e) A variation with round top
and square legs.

3.2. Benefits of PSML-Driven Data Generation

Shapes represented using PSML offer significant benefits, including the following:

• Enforced geometric constraints and physical constraints;
• Manifold polygon models;
• Compact parametric representation;
• Unlimited semantic variability;
• Human-in-the-loop control and interpretability of DL estimates.

Each of these benefits will be discussed in the following subsections.

3.2.1. Geometric and Physical Constraints

Shapes generated using PSML are guaranteed to adhere to the geometric and physical
constraints, including self-symmetry, self-similarity, and free-standing stability. By incor-
porating these constraints into the generation process, PSML ensures that the resultant
shapes not only exhibit desired geometric properties but also possess structural integrity
and functional coherence.

In the provided table example, the four legs are generated from the same shape
primitive “cylinder” and the same parameters t and h (Algorithm 1 line 14). By employing
this generation approach, PSML ensures that all legs exhibit precisely the same shape,
thereby guaranteeing uniformity among them. This geometric constraint mirrors real-
world manufacturing practices commonly employed in producing table objects, where
consistency in leg design is important for structural stability.

PSML programming also allows components of objects to be constructed with appro-
priate relative positions. The relative position of the legs is delineated by the common
parameters, denoted as o f f set_l and o f f set_w (Algorithm 1 line 13). These geometric
parameters define the spatial arrangement of the legs, ensuring consistency and symmetry
in their positioning relative to each other and to the table top they support. The precise
relative positions of the legs, together with the uniform shapes, promote balanced weight
distribution and stability of the table, ensuring its suitability for applications such as
real-world simulation.

The constraints not only apply to individual objects but can also extend across different
objects. In Figure 3, an example illustrates how a door generated using PSML can open and
close within a wall. The PSML program for generating the door is outlined in Algorithm 2.
The grammar rules (lines 2–5) dictate the mechanism where the door can open or close by
rotating along its side connected to the wall. By incorporating these constraints, the PSML
program enables doors to exhibit realistic behavior when interacting with other objects,
ensuring that the generated doors adhere to principles of real-world physics.
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(a) (b)
Figure 3. Shape grammar representation allows for the systematic generation of doors with realistic
interactive behavior. (a) A closed door. (b) An open door.

Algorithm 2 The contents of PSML program: Door.psm

1public Shape makeDoor(Shape myShape, double doorOpening, double frameWidth, double doorThickness) {
2double angle = doorOpening * Math.PI / 2;
3rules {
4parent::T(-(myShape.s.x / 2) * Math.cos(angle) + myShape.s.x / 2, 0, - (myShape.s.x / 2) *

Math.sin(angle)) R(0, - angle, 0)
5I("box", new double[]{myShape.s.x, myShape.s.y, myShape.s.z}){door};
6door::split("y", new double[]{frameWidth, myShape.s.y - 2 * frameWidth, frameWidth}){wood, mass1, wood};
7mass1::split("x", new double[]{frameWidth, myShape.s.x - 2 * frameWidth, frameWidth}){wood, mass2,

wood};
8mass2::split("z", new double[]{(myShape.s.z - doorThickness) / 2, doorThickness, (myShape.s.z -

doorThickness) / 2}){space, lightWood, space};
9wood::appearance("diffuse", new double[]{0.2, 0.1, 0}){terminal};

10lightWood::appearance("diffuse", new double[]{0.3, 0.15, 0}){terminal};
11space::void(){j3d.terminal};
12}
13return myShape;
14}

The proposed shape-grammar-driven approach aims to leverage DL networks to
estimate the parameters of the predefined rules and constraints that formal grammar
generative models rely on to generate shapes. These rules with parameters dictate how
basic shapes or components can be combined and transformed to create more complex
structures. Deep learning generative models, including 3DGANs, 3DSVAE, and SJC,
leverage neural networks to learn patterns and distributions from data. They can generate
new content by learning from large datasets and then generating samples that mimic the
statistics of the training data, while often struggling to ensure the generation of 3D models
that adhere to essential geometric constraints as shown in Figure 1.

3.2.2. Manifold Polygon Models

Shapes generated by PSML are water-tight, i.e., manifold, models. This is attributed
to PSML-generating objects from volumetric geometries, characterized by a pre-defined
set of 3D closed-shape primitives such as boxes, cylinders, spheres, and cones. These
primitives accurately describe the fundamental geometry of the object. This generation
approach provides the ability to generate manifold geometries and represent objects as a
semantic hierarchy of 3D shape elements. Other shape representations like point clouds
and voxel meshes lack such properties. The components of these representations—points or
voxels—operate independently, without constraints to enforce connectivity or the creation
of a manifold geometry.

Figure 4 illustrates a chair instance generated from its hierarchical components. The
chair is constructed from a set of components including a seat, front legs, rear legs, a back,
and stretchers. The shape derivation tree depicted in Figure 4b showcases the hierarchical
composition. The blue nodes represent “non-terminal” objects whose child objects can
further refine the shape of their parent objects by substituting the parent shape with one
or more terminal or non-terminal shapes. The green nodes represent “terminal” objects,
indicating that no further decomposition of this shape is available. These terminal objects,
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represented by boxes that are closed primitives, construct a chair object with a manifold
polygon model. For simplicity, the shape derivation for the back and stretchers is omitted
from the derivation tree.

This hierarchical representation of objects allows associating semantic labels to the
components, which offers the opportunity for AI systems to understand objects at multiple
levels of abstraction, from individual parts to complex assemblies.

(a) (b)
Figure 4. (a) An example of PSML constructing a chair hierarchically from its components.
(b) Derivation tree of the chair. The components of the chair are colored. Shapes represented using
PSML are constructed from their components and satisfy the relative constraints of the components.

3.2.3. Compact Parametric Representation

With pre-defined generation rules, shapes generated using PSML can be represented
by a set of parameters that succinctly describe the geometry and appearance of objects.
Parametric representations result in the highly compact encoding of object information, min-
imizing the amount of data that need to be transmitted or stored. This significantly reduces
the dimensionality of the data compared to voxel-based or polygonal mesh representations.

The parametric representation provided by PSML offers a lightweight yet powerful
solution for encoding object information in resource-constrained environments, making
it well suited for applications like mobile robotics, where efficient communication and
collaboration are essential. In mobile robotic systems, where the communication bandwidth
is often limited, sharing detailed object representations like point clouds or meshes may
be impractical due to their high data volume. However, if all robots share knowledge
of the grammar of objects or scenes, they can simply communicate the semantic labels
and associated parameters to convey their understanding of the scene effectively. By
transmitting only the semantic labels and relevant parameters, robots can share information
about the scene efficiently while minimizing the data transmission overhead.

3.2.4. Unlimited Semantic Variability

Objects generated using PSML adhere to specific design rules and are defined by a
set of parameters. Modifying the shape, size, or appearance of an object can be achieved
by simply adjusting these parameters, rather than manipulating complex geometric data
directly. This promises the unlimited semantic variability of object models, which can be
used to synthesize training data for DL systems, improving current 3D model databases
which use static 3D models and therefore lack geometric diversity.

Figure 2 shows different variations of the table object generated by Algorithm 1 using
different PSML parameter values (Figure 2b–e) and rules (Figure 2e). The structure of the
table object is controlled by the length l, the width w, the height h, the thickness of the
tabletop t, and the position of the legs, which are determined by the offset from the edges
of the table, represented by o f f set_w and o f f set_l, respectively. Figure 2a–d show the table
variations generated by setting different values to these parameters. Figure 2e visualizes a
table variation with a round tabletop and square legs, which are opposite from other tables
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in Figure 2. More examples of other objects are shown in Figure 5, where variations of
shelves and couches are generated by editing associated PSML programs, demonstrating
the capability of generating unlimited semantic variations for DL systems. By applying
different construction rules and/or passing different parameter values to the generation
program of objects, indefinite variations of the object can be synthesized as training data
for DL systems.

(a) (b) (c) (d)
Figure 5. (a) A shelf with 3 rows and 2 columns. (b) A single-column shelf. (c) A regular couch with
3 seats. (d) A couch with a round seat and back.

3.2.5. Human-In-The-Loop Control and Interpretability

User-provided shape programs allow human-in-the-loop control over DL estimates.
Aspects of this control include specifying lists of candidate objects, the shape variations
that each object can exhibit, and the level of detail or, equivalently, dimension of the latent
representation of the shape. Figure 2d–e demonstrate the semantic control by specifying
“square table” and “round table” as distinct table realizations. Human-specified shape
grammars therefore directly control the label set and implicitly define the shape realizations
that can be drawn from the latent representation internal to the trained neural network.
Another aspect of Human-In-The-Loop Control is to control the level of detail or, equiva-
lently, the dimension of the latent representation of the shape. In this example, both objects
are embedded in a latent feature space having 6 dimensions. Specifically, a total of 6 PSML
parameters are used to define both objects including l, w, h, t, o f f set_w, and o f f set_l. By
changing the dimension of the shape grammar parameter vector for shape representation,
more simplistic (lower-dimensional) and/or more complex shapes (higher-dimensional)
can be specified by humans through shape grammar programs and estimated via neural
network training and inference. These controllable aspects of our approach allow humans
to more easily control the DL estimate outputs and also enable humans to more easily
interpret the DL estimate results, which we collectively refer to as “human-in-the-loop”
benefits. Users can control the complexity and diversity of DL-estimated shapes for each
object and its components directly through the construction of the DL network.

Through parameterization, shapes generated using PSML allow the formalization of
the DL estimate results into specific rules and constraints. Shape grammar rules incorporate
parameters that define the properties of the generated elements, such as shape, size, orien-
tation, and position. Parameters can also function within shape grammar rules to enforce
constraints during generation. These parameters encode domain-specific knowledge of
the shapes, for example, symmetry, alignment, and spatial relationships between com-
ponents. When discrepancies arise between DL-estimated parameter values and ground
truth, these errors serve as indicators of specific knowledge gaps within the model, such
as its inability to learn rotational or positional relationships accurately. Analyzing the
nature and frequency of these errors allows us to inform model improvement efforts, such
as refining the network architecture or augmenting the training data. The transparent
attribution of errors to specific aspects of the input data enhances the interpretability of the
model’s results, enabling humans to understand and assess its predictions more effectively.
This interpretability addresses a crucial challenge in making deep learning systems more
comprehensible and trustworthy for real-world applications.



Sensors 2024, 24, 3874 10 of 23

3.3. Fusion of PSML and Deep Learning

Figure 6 illustrates the fused system of PSML and DL for estimating 3D shapes. The
proposed system takes the point cloud as input and outputs 3D shape estimates of objects.
A DL network, 3DETR [36], is adapted and modified to perform 3D object detection and
estimation of the PSML parameters. The estimated parameters, together with the semantic
labels for determining the associated shape programs, are passed to the PSML to generate
estimates of 3D shapes.

Figure 6. The fused system of PSML and DL for estimating 3D shapes.

The 3DETR network [36] is an end-to-end Transformer-based object detection model
for 3D point clouds. Unlike traditional convolutional neural networks (CNNs) which rely
on spatial hierarchies to extract features from images, the 3DETR network leverages the self-
attention mechanism of Transformers to capture both spatial and contextual information
in an integrated manner. This enables the network to effectively process point cloud
data, which lacks the grid-like structure present in images, while also facilitating global
context understanding and the precise localization of objects within a 3D scene. The 3DETR
network adapts an encoder–decoder architecture that produces a set of features. These
features are fed into prediction Multi-Layer Perceptrons (MLPs) to predict bounding boxes.
A 3D bounding box contains attributes, including (a) location, (b) size, (c) orientation, and
(d) the semantic class of the object.

Two modifications are implemented in the 3DETR network to facilitate the estimation
of PSML parameters:

• A new Multi-Layer Perceptron (MLP) is added to the existing architecture for PSML
parameters estimation.

• The PSML parameters are encoded as an additional attribute of the 3D bounding
boxes for prediction.

In this article, unless specified otherwise, the modified 3DETR network is denoted
as 3DETR-P, where P stands for PSML, while 3DETR refers to the original network. The
3DTER-P takes a set of 3D points (point cloud) as input and outputs a set of 3D bounding
boxes and associated PSML parameters. A vector of dimension 5 is chosen to encode the
PSML parameters representing each object in the dataset. The dimensionality of this vector
corresponds to the latent representation of the shape. By adjusting this size, DL networks
are enforced to capture finer details of the object when increased, while reducing it provides
more flexibility in the estimated solution space.

The L1 regression loss, i.e., the mean absolute error (MAE), is used as the loss function
to measure the difference between the predicted values and the ground truth values. The
equation for the PSML parameter loss is as follows:

LPSML =
1
n

n

∑
i=1

|pi − p̂i| (1)

where n is the number of PSML parameters, pi is the ground truth value for the i-th
paramter, and p̂i is the network predicted value for the i-th parameter. This loss was added
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to the naive 3DETR loss with weight as the new final loss function to train the network.
The final loss function is as follows:

L = L3DETR + λLPSML (2)

where λ is the weight associated to the PSML loss, and L3DETR is defined in [36].

3.4. Data Synthesis for DL Systems

For the training of the 3DETR-P deep learning network and the evaluation of the
integrated system shown in Figure 6, point cloud data annotated with ground truth in-
formation are essential. These include 3D bounding boxes, semantic labels, and shape
grammar parameters. However, to our knowledge, there is no publicly available dataset
that meets these requirements. It is necessary to generate a new dataset specifically for
this purpose.

This section describes a novel pipeline shown in Figure 7 to synthesize image data
from user-written PSML programs. Physically realistic objects and/or scenes are first
designed by shape grammar rules and created using PSML programs. These scenes are
then passed to a rendering engine, for example, OpenGL to produce sensor data required by
the users for their applications such as simulated RGB and/or depth image data, along with
associated ground truth labels, including 2D/3D bounding boxes, semantic segmentation
labels, and PSML parameters.

Figure 7. Pipeline of the different stages in the proposed data generation pipeline. The design of 3D
models of scenes and objects happens in the PSML engine. These models are then passed to OpenGL,
where RGB and depth sensors are simulated for rendering RGB-D images and associated ground
truth labels. Point clouds can be derived from depth data using the camera’s intrinsic parameters.

3.4.1. Scene Data Generation

Figure 8 shows a room scene consisting of different objects including tables, chairs,
couches, bookshelves, a door, and a window. Shape grammar and PSML are utilized to
generate 3D designs of scenes and objects within them. Users first define shape grammar
programs, specifying the desired scene elements and their attributes. These programs are
similar to Algorithms 1 and 2, outlining the rules governing the structure, arrangement,
and characteristics of the scene components. Subsequently, the PSML engine interprets
and executes these shape grammar programs, generating physically realistic 3D designs
of scenes. Through this process, the PSML engine determines the spatial relationships
between objects, their shapes, sizes, orientations, and other relevant properties. Users can
interactively adjust the parameters and rules within the shape grammar programs to refine
the generated designs according to their preferences. This integration of shape grammar
and PSML allows users to efficiently generate diverse and customizable 3D designs of
scenes and objects.
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Figure 8. A room scene generated using PSML that combines multiple furniture objects.

3.4.2. Sensor Data Generation

To generate images from a scene model using a rendering engine like OpenGL, simu-
lating camera sensors is typically necessary. By integrating a scene model with a simulated
camera directed towards the scene, it becomes possible to render image data such as RGB
and depth images. These rendered images can then serve as valuable input for deep
learning systems, facilitating tasks such as object recognition, scene understanding, and
depth estimation.

OpenGL has been previously used by other researchers as a sensor simulator [37].
In this study, both sensor values and ground truth labels are generated through OpenGL
by rendering the 3D models produced by PSML into 2D images. The process of con-
verting 3D coordinates into 2D pixels is managed by the OpenGL graphics pipeline [38],
which comprises two main parts: (1) projecting 3D surface coordinates (x, y, z) to their
corresponding 2D locations (x, y) in the sensor image using the sensor projection model,
and (2) assigning the value of these locations to the sensed values at the projected (x, y, z)
location, representing the surface appearance for RGB images and the surface-to-sensor
depth for depth images.

Figure 9 illustrates the OpenGL rendering pipeline and its internal transformations. In
OpenGL, the transformation of local coordinates to screen (image) coordinates involves
4 steps: (1) Local-space coordinates, denoting the position of an object relative to its local
origin, are transformed to world-space coordinates using a model matrix Mmodel . These
world-space coordinates represent the object’s position relative to a broader world context
and are referenced against a global origin shared by multiple objects within the scene.
(2) The world coordinates are converted to view-space coordinates using a view matrix
Mview, aligning them with the perspective of the camera or viewer. This transformation
ensures that each coordinate reflects the object’s appearance from the viewpoint of the
observer. (3) The view-space coordinates are projected to clip-space coordinates using a
projection matrix Mprojection, where they are processed to fit within the −1.0 and 1.0 range,
determining which vertices will be visible on the screen. (4) The clip-space coordinates
are transformed into screen-space coordinates through a process known as viewport trans-
formation. The coordinates are mapped to the coordinate range defined by the viewport
using the OpenGL function glViewport. Through this series of transformations, OpenGL
accurately positions objects within the rendered scene, thereby generating the 2D OpenGL
image. Steps (1–3) can be represented in the following equation, where V indicates the
vertex and M indicates the transformation matrix:

Vclip = Mprojection · Mview · Mmodel · Vlocal (3)
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Figure 9. Vertex coordinate transformation from local space to screen space [38]. Object-relative
vertex coordinates (local space) are converted to world coordinates (world space) using a model
matrix Mmodel , and then world coordinates are converted to view coordinates (view space) using a
view matrix Mview.

The resulting screen coordinates are then forwarded to the rasterizer, where they are
converted into fragments, each containing the necessary data for rendering a single pixel.
The main purpose of the fragment shader is to calculate the final color of a pixel. Typically,
the fragment shader contains data about the 3D scene, such as lighting, shadows, and light
color, to determine the pixel’s ultimate color.

OpenGL is also employed to simulate depth sensors through the utilization of the
depth buffer. The depth buffer, created by the OpenGL windowing system, stores depth
values as 16-bit floats within each fragment, representing the fragment’s depth value. To
mimic real depth sensors, noise consistent with actual sensors is introduced into these
depth measurements as documented in the literature such as [39], which outlines observed
accuracy for depth images from RGB-D sensors, like the Microsoft Kinect sensor. This
depth noise follows a Gaussian model, where depth variance increases quadratically with
the sensor-to-surface depth. During rendering, OpenGL compares the depth values of each
fragment with the current depth buffer. Fragments that are behind other fragments are
discarded, while fragments that pass this depth test are rendered, and the depth buffer is
updated with the new depth values. This automated process, known as “depth testing” , is
seamlessly handled by OpenGL.

3.4.3. Synthetic Dataset

The capability to generate 3D models and simulate sensors offers the flexibility to
generate diverse datasets tailored to specific applications. In this study, a pin-hole camera
model is used as the perspective model in OpenGL to simulate the sensors for an RGB-D
image dataset creation. The poses of the sensors are varied in different images. This is
achieved by moving all objects in the scene in the reverse direction of camera movements,
as OpenGL by itself is not aware of the concept of a camera [38]. Using the inverse camera
model re-projection and the perfect depth map, it is also possible to calculate the 3D position
of each surface in the scene. This integration of PSML and OpenGL for synthesizing data
provides (1) RGB-D images, (2) the ground truth information of the object poses relative to
the camera, (3) hierarchical decomposition of objects, and (4) parametric representation of
objects, where (1), (3) and (4) benefit from PSML scene generation and (2) from the OpenGL
sensor simulation.

This versatile data generation framework extends to diverse research goals, facilitat-
ing tasks such as city scene modeling with accurate labeling, object part segmentation
with component-level ground truth labeling, and analysis of various object realizations
to address data scarcity issues. Additionally, customization for different sensor types or
views, such as fish-eye cameras or bird’s-eye view perspectives, and adjustments to illu-
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mination settings in OpenGL, further expand the framework’s applicability across varied
research domains.

4. Results

This section presents the results of three experiments. The results demonstrate
the benefits offered by the PSML shape generation method and its fusion with deep
learning techniques.

4.1. Comparison with Other Generative Methods

This experiment was conducted to demonstrate the advantages of 3D models gener-
ated using the PSML programs over the models generated by other competing methods.
Specific cases of shapes generated by different methods were analyzed. From a wide
array of possible algorithms, three algorithms representing VAE, GANs, and stable diffu-
sion, respectively, were evaluated against the PSML approach: (1) 3D Shape Variational
Autoencoder (3DSVAE) [1], (2) 3D Generative Adversarial Network (3DGANs) [4], and
(3) Score Jacobian Chaining (SJC) [9]. While many algorithms are available in the litera-
ture, the selected algorithms provide a representative sampling of generative methods for
3D shapes.

Figure 10 illustrates the comparison between 3D shapes generated using PSML and
using other approaches, including VAE, GANs, and stable diffusion. The examples for
comparison were sourced from their respective papers. The couch model generated by
3DSVAE (Figure 10a) lacks the structural characteristics of a couch object, offering only
a rough approximation of its complex geometry. In contrast, the couch model generated
using the PSML approach (Figure 10d) contains sufficient geometric features to represent a
couch object. In the case of the table model generated by 3DGANs, the second leg from
the left lacks manifold geometry, resulting in a discontinuous geometry and an unrealistic
gap. Additionally, the legs lack self-similarity and self-symmetry in terms of size and
length, which are typically present in real-world manufactured table objects. Conversely,
the table model generated using PSML (Figure 10e) is a manifold polygon model and
satisfies the geometric and physical constraints, attributed to its rule-based volumetric
generation method. The car model generated by SJC (Figure 10c) lacks fine-grained details
and fails to adhere to physical constraints, as one of the front wheels occupies the spatial
location intended for the car’s front. Its PSML-generated counterpart (Figure 10f), however,
presents a high-quality and physically realistic model.

(a) (b) (c)

(d) (e) (f)
Figure 10. (a) A VAE-generated couch model [1]. (b) A 3D-GANs-generated table model [4]. (c) A
stable-diffusion-generated car model [9]. (d–f) Models generated using PSML programs.
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Although the objects in Figure 10d–f may be rigid and visually simplistic, they do
satisfy important common constraints for these commonplace objects. These constraints, for
example, closed-shape geometry and free-standing capability, are necessary to be exhibited
for objects to be classified into the correct category. The objects in Figure 10a–c, while
being visually sophisticated, would fail most realistic tests for symmetry and usability;
for example, the couch cannot be sat on, the table does not stand, and the car wheels do
not roll.

The PSML approach ensures the generation of 3D models that adhere to essential
geometric constraints. Expanding upon this technology to integrate more realistic details
holds the potential to produce visually captivating and functionally reliable 3D geometries.
This advancement could bridge the gap between visually appealing designs and practical
usability, offering a holistic solution for various applications.

4.2. Comparison with Other Data Representations

This experiment was conducted to demonstrate the efficiency of the compact paramet-
ric shape representation offered by the PSML approach.

Figure 11 shows a table generated using Algorithm 1, and its polygonal mesh and point
cloud representations. The shape grammar representation only requires six parameters
(l, w, h, t, o f f set_w, and o f f set_l) to represent the geometry and three more parameters
to describe the color appearance. In contrast, the polygonal mesh contains 674 vertices
and 1328 triangular faces. The point cloud sampled from the mesh representation contains
5000 3D points. Assuming the data are represented using single-precision floating points
(4 bytes), the total memory usage is 24,024 bytes for the polygonal mesh, 60,000 bytes for
the point cloud representation, and only 36 bytes for the PSML parametric representation.
The PSML representation requires to work with the associated program. Assuming each
character in Algorithm 1 is represented using 2 bytes, the program occupies 1662 bytes,
making the total memory necessitated for a PSML table object 1698 bytes. Compared to
the other two representations, this parametric representation reduces the data required to
describe the geometry by ∼14 times compared to the polygonal mesh and ∼35 times to the
point cloud.

(a) (b) (c)
Figure 11. Shape grammar representation requires much less data to describe object geometry. (a) A
table generated using Algorithm 1. Only 6 parameters are required to represent the geometry and
3 more parameters to describe the color appearance. (b) A polygonal mesh representation of the table
with 674 vertices (blue) and 1328 points (red), each of which requires 3 parameters to represent the
3D coordinates. (c) A sampled point cloud from the mesh representation with 5000 3D points.

Table 1 illustrates the memory usage of three representations for various object in-
stances. The memory usage for the point cloud representation is determined by sampling
2000 points per area unit of the mesh, and the PSML usage includes the memory required
for the source code. The results indicate that PSML substantially reduces memory usage
for most object instances, except for the chair, where polygon meshes achieved minimal
usage. As the complexity of objects increases, such as in a room scene model contain-
ing various furniture pieces, the efficiency of PSML parametric representation becomes
increasingly significant.
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Table 1. Memory in byte required by different representations.

Table (Box) Chair Couch Bookshelf Window Door Room

PSML 1046 6410 3606 2350 2244 798 21,328
Polygon Mesh 92,496 3840 3360 15,600 18,960 1920 529,344

Point Cloud 63,360 42,000 7,063,680 647,760 786,960 192,240 14,986,080

The results presented herein underscore the data efficiency offered by parametric
representation in contrast to alternative methods. Through parameterization, the PSML
approach retains considerable potential for achieving high data efficiency. This efficiency
not only conserves memory but also streamlines the transmission and processing of object
information, rendering it particularly advantageous for applications constrained by limited
resources or bandwidth.

The compact parametric representation also sets the foundation for the benefits of
utilizing deep learning techniques for parameter estimation, particularly in reducing the
complexity of the solution space. By leveraging the compact representation, the fusion
of PSML and deep learning methods promises the effective estimation of 3D shapes with
greater efficiency.

4.3. PSML-DL Fusion for Shape Detection Task

In this experiment, a synthetic dataset is generated, and the 3DETR-P network is
trained on this dataset to detect 3D objects in the scene and estimate the associated
PSML parameters.

4.3.1. Synthetic Dataset Generation

An experiment is conducted to demonstrate that object models can be used to synthe-
size training data for DL systems, improving current 3D model databases which use static
3D models and therefore lack geometric diversity.

A PSML program of the indoor room scene is written that involves six other PSML
programs of common indoor furniture: table, chair, couch, bookshelf, window, and door.
The proposed human-in-the-loop approach fixes various attributes of this shape-generation
process and allows other aspects to vary. Fixed aspects include the size of the room and
some relative and physical constraints between objects, including that (1) all of the objects
are on the ground, (2) bookshelves are always against the wall, and (3) solid objects do
not overlap with each other. The variations include the occurrence, location, orientation,
and structural characteristics of the furniture. This is achieved by controlling the PSML
parameters for each object type. These parameters are set to follow uniform distributions
and to ensure realism while adhering to relative constraints within and among objects.
For example, the length and width of the table object are uniformly generated from 1.5
to 2.5 units. Similarly, the height of the chair seats ranges from 0.5 to 0.8 units, reflecting
real-world proportions, where chairs typically sit lower than adjacent tables.

An RGB-D image dataset of the room scene is generated using the method in Section 3.4.
The dataset is then utilized in a deep learning task for detecting 3D objects within the room,
where the objective is to predict the 3D bounding boxes for each object based on the input
point cloud. The point cloud data are derived from the depth data using the cameras’
intrinsic parameters. Ground truth data are generated for each sample, comprising a
semantic label, 3D bounding box (location, orientation, and size), and 5 PSML parameters.
Specifically, for the bookshelf object, these PSML parameters include length, width, height
(to define the object’s 3D dimensions), number of horizontal panels, and vertical panels (to
describe its structural characteristics). While the bookshelf necessitates all five parameters
for PSML generation, it is important to note that not all objects require the same number
of parameters. For instance, the door object in Algorithm 2 only requires three parameters
as program arguments; in such cases, the two extra parameters are set to 0. In the dataset
generated, non-zero PSML parameters always precede zero parameters within the param-
eter vector. Among the six object classes—table, chair, couch, bookshelf, window, and
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door—the respective counts of non-zero PSML parameters are 4, 3, 5, 5, 4, and 3. The DL
estimation of PSML parameters can be adjusted by increasing or decreasing the parameters
for prediction. For example, limiting DL models to estimate only three parameters will
result in less constraint within the DL solution space.

Figure 12 shows the RGB-D image pair and associated point cloud of 3 samples from
the dataset containing 2000 samples. It can be seen that the occurrence of the objects, their
shapes (length, width, height, etc.), positions, and orientations are different in the room
space but still obey the physical constraints. Different data types serve distinct purposes
across various tasks, depending on the inputs involved. For instance, point cloud data can
serve as input for deep learning models engaged in tasks such as 3D object segmentation
and scene completion. RGB and depth image data can be utilized either independently or
collectively as inputs for deep learning models focusing on 2D image data tasks, such as
2D object segmentation and scene reconstruction from image(s). The generated synthetic
dataset demonstrates the application of PSML to deep learning systems.

Figure 12. Examples in the synthetic dataset. Each row is one sample from the dataset. The images on
each row from left to right are the RGB image, depth image, and point cloud, with the 3D bounding
box ground truth shown in green. The point clouds are reconstructed from the depth image using the
intrinsics of the simulated cameras. The orientation of the point clouds is adjusted so that the floor
plane is positioned horizontally relative to the viewer’s perspective, facilitating easier interpretation
and analysis of the spatial layout of the scene.

Throughout our experiments, the point cloud data are exclusively used as input,
aligning with the architectural design of the 3DETR-P network. The point clouds are
reconstructed from the depth image using the intrinsics of the simulated cameras. Both
RGB and depth images are rendered at a resolution of 640 × 480. The total processing time,
including rendering and file writing, for each sample ranges from 1 to 2 s on an NVIDIA
GeForce RTX 4090 GPU.

4.3.2. Three-Dimensional Object Detection and Shape Estimation

An experiment is conducted to demonstrate the capability of the proposed DL fusion
in computer vision tasks, specifically detecting objects and estimating their parametric
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representation. Key metrics for the model estimates are presented, highlighting the benefits
of this approach.

The original 3DETR implementation [40] is adapted and modified for the implementa-
tion of 3DETR-P using PyTorch. The standard “nn.MultiHeadAttention” module is used
to implement the Transformer architecture. To process the input point cloud data, a sin-
gle set aggregation operation is used to reduce the number of points to 2048 and extract
256-dimensional point features. Dropout [41] regularization for all MLPs and self-attention
modules in the model, with a dropout rate of 0.1, except in the decoder, with a dropout rate
of 0.3, is used to prevent overfitting. For optimization, the AdamW optimizer [42] is used
with a learning rate decayed by a cosine learning rate schedule [43] to 10−6, a weight decay
of 0.1, and gradient clipping at an L2 norm of 0.1. The weight for LPSML loss in Equation (1)
is set to 3. The training is performed on a NVIDIA GeForce RTX 4090 GPU for 350 epochs
with a batch size of 16. Other parameters are configured to be consistent with the [36].

The dataset generated in Section 4.3.1 is split into train, validation, and test sets with
1200, 400, and 400 samples, respectively (60%–20%–20%). The 3DETR-P network designed
in Section 3.3 is trained to detect 3D objects in the scene and estimate the associated
PSML parameters.

Figure 13 shows the MSE results on the validation set for the estimated five PSML
parameters across training steps. The performance of the 3DETR-P network, as evaluated
by the MSE on the validation set, demonstrates consistent convergence across the five
estimated PSML parameters. All parameters show a steady decline in MSE throughout
the training and validation processes, ultimately converging to values close to 0.1. This
indicates that the 3DETR-P network is able to predict the shape parameters well, achieving
a low error rate on the validation data.

(a) (b) (c)

(d) (e)

Figure 13. (a–e) The MSE results on the validation set for the estimated 5 PSML parameters across
the training steps.

Table 2 shows the testing results of the trained network. Following the practice in [36],
the detection performance is reported on the test set using the mean Average Precision
(mAP) at two different IoU (Intersection of Union) thresholds of 0.25 and 0.5, denoted as
AP25 and AP50. The PSML parameters are evaluated by calculating the mean absolute error
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(MAE) between the estimation and ground truth. The row corresponding to 3DETR-P in
the table presents its performance on the room dataset created within this study. Overall, it
succeeds in detecting objects within the scene, although its performance on door detection
is comparatively lower. This discrepancy may be attributed to the fact that doors in the
scene often (1) lack sufficient thickness to be distinctly separated from the wall they are
embedded within and (2) lack sufficient depth variations within the object to provide more
features for the network to learn the structure. The MAEPSML row denotes the MAE of the
PSML parameters, quantitatively showcasing the success of estimating the 3D shapes from
the input point cloud.

Table 2 also includes the AP25 results of naive 3DETR on other datasets, reported in [36].
The row corresponding to 3DETR-SUN reflects the 3DETR results from [36] on the SUN-
RGBD dataset [44] and the 3DETR-SN row shows results on the ScanNetV2 dataset [45].
Although a direct comparison between the results in this article and theirs is not possible,
it can be seen that 3DETR-P on the generated synthetic dataset achieves comparative
detection performance to 3DETR on the ScanNetV2 dataset for classes like chair, couch, and
door, and outperforms 3DETR for other classes. The detection performance, together with
the MAE results of the estimated PSML parameters, indicates the capability of the proposed
PSML and DL fused system in detecting objects and their parametric representation.

Table 2. Per-class performance for 3D object detection and shape estimation. MAEPSML denotes the
MAE of the PSML parameters. The 3DETR-P results are reported on the dataset generated in this
article. The 3DETR-SUN row shows the 3DETR results from [36] on the SUN-RGBD dataset, where
“-” indicates that such measurement is not available. The 3DETR-SN row shows the results of 3DETR
on the ScanNetV2 dataset.

Table Chair Couch Bookshelf Window Door Overall

3DETR-P
AP25 98.90 87.60 99.30 98.95 93.89 56.84 89.25
AP50 89.64 61.76 95.16 93.96 62.51 13.16 69.36

MAEPSML 0.14 0.11 0.19 0.16 0.23 0.20 0.17

3DETR-SUN AP25 52.6 72.4 65.3 28.5 - - 54.7

3DETR-SN AP25 67.6 90.9 89.8 56.4 39.6 52.4 66.1

Figure 14 visualizes three examples, presenting (1) the RGB image of the scene (left),
(2) the input point cloud to 3DETR-P (middle) with the ground truth (red) and predicted 3D
bounding boxes (green), and (3) the 3D shapes reconstructed using the PSML parameters
estimated by 3DETR-P (right). The appearance of the reconstructed shapes is omitted, as
such information is not estimated by the network in this experiment. The reconstructed 3D
shapes closely resemble those observed in the RGB images and the point cloud, qualitatively
demonstrating the success of 3D shape estimation from the input point cloud.

Table 3 shows the MSE results of the PSML parameter estimation (5 parameters
represented by p1–p5) applied to the three instances depicted in Figure 14. In this analysis,
the MSE values for various objects belonging to the same class are aggregated for clarity. As
indicated in Section 4.3.1, among the objects categorized as table, chair, bookshelf, window,
and door, the counts of non-zero parameters are 4, 3, 5, 4, and 3, respectively. It is worth
noting that within the parameter vector, non-zero parameters consistently appear before
zero parameters. For instance, within the table class, parameters p1 through p4 are non-zero,
while p5 is set to zero. The estimation errors for the zero parameters as shown in the table
range from 0 to 0.02, while MSE values for the non-zero parameters range from 0.06 to 0.17.
These findings further corroborate the performance reported in Table 2, demonstrating the
efficacy of the 3DETR-P network in accurately estimating shape grammar parameters from
3D point data.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 14. RGB image of scenes (a,d,g), input point cloud to the 3DETR-P with the ground truth and
predicted bounding boxes in red and green, respectively (b,e,h), and some of the estimated 3D shapes
reconstructed using the PSML parameters estimated by 3DETR-P and PSML programs (c,f,i).

Table 3. The MSE results from estimating the PSML parameters for the three examples depicted
in Figure 14. In this context, p1–p5 represent the five estimated parameters, with the MSE values
averaged across different objects within the same class.

p1 p2 p3 p4 p5

Exp 1 (Figure 14c)
table 0.13 0.06 0.12 0.12 0
chair 0.10 0.10 0.15 0 0.01

bookshelf 0.08 0.13 0.07 0.11 0.14

Exp 2 (Figure 14f)

table 0.09 0.11 0.08 0.12 0.01
chair 0.07 0.09 0.13 0 0

window 0.17 0.13 0.17 0.15 0
door 0.14 0.16 0.13 0.01 0.01

Exp 3 (Figure 14i)
table 0.12 0.10 0.09 0.11 0
chair 0.12 0.09 0.13 0.01 0
door 0.13 0.15 0.12 0 0.02

5. Conclusions

This article introduced a novel fusion approach that combines a generative formal
model for 3D shapes with deep learning (DL) methods to enhance the understanding of
geometric structures and component relationships within objects. The proposed method
leverages shape grammar programs written in Procedural Shape Modeling Language
(PSML) to encode complex object descriptions. By allowing users to write PSML programs
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that enforce fundamental rules and encode object attributes, this proposed fusion approach
facilitates the generation of parametric representations for 3D shapes. One of the key
strengths of the proposed approach is offering human-in-the-loop control over DL estimates;
users can specify candidate objects, shape variations, and the level of detail, providing
flexibility and control over the generated shapes. By enabling the more accurate and
controllable generation of 3D shapes, this fusion of generative modeling with DL enhances
the interpretability of DL estimates and offers AI models a deeper understanding of object
geometry and relationships, opening up new avenues for applications in computer graphics,
robotics, and virtual reality.
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