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Abstract: Mental fatigue during driving poses significant risks to road safety, necessitating accurate
assessment methods to mitigate potential hazards. This study explores the impact of individual
variability in brain networks on driving fatigue assessment, hypothesizing that subject-specific
connectivity patterns play a pivotal role in understanding fatigue dynamics. By conducting a linear
regression analysis of subject-specific brain networks in different frequency bands, this research aims
to elucidate the relationships between frequency-specific connectivity patterns and driving fatigue.
As such, an EEG sustained driving simulation experiment was carried out, estimating individuals’
brain networks using the Phase Lag Index (PLI) to capture shared connectivity patterns. The results
unveiled notable variability in connectivity patterns across frequency bands, with the alpha band
exhibiting heightened sensitivity to driving fatigue. Individualized connectivity analysis underscored
the complexity of fatigue assessment and the potential for personalized approaches. These findings
emphasize the importance of subject-specific brain networks in comprehending fatigue dynamics,
while providing sensor space minimization, advocating for the development of efficient mobile sensor
applications for real-time fatigue detection in driving scenarios.

Keywords: mental fatigue; driving; EEG; Phase Lag Index (PLI); brain networks; frequency bands

1. Introduction

Driving is a multifaceted and exceptionally demanding activity carried out on a daily
basis by numerous individuals worldwide. Operating a vehicle necessitates drivers to
proficiently perceive and comprehend various aspects related to their driving capabilities,
the condition of the driver, vehicle performance, and traffic dynamics [1]. This entails
maintaining attentiveness and cognitive sharpness while rapidly processing multiple
sources of information to navigate safely and effectively [2]. Conversely, extended periods
of driving can induce mental fatigue, which refers to a condition wherein heightened mental
strain and drowsiness reduce the driver’s capacity to respond efficiently to unforeseen or
critical circumstances, thereby compromising driving safety [3].

In general, mental fatigue is a cognitive state resulting from prolonged mental activity,
characterized by a decline in cognitive performance and increased feelings of tiredness
and lack of energy. It has been shown to significantly impact various cognitive functions,
including attention, working memory, and executive function [4].
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To evaluate fatigue during driving, many strategies have been proposed, including
estimation through subjective measures (such as self-reported questionnaires) [5] or physio-
logical examination of mental fatigue (heart rate variability and skin electrical potential) [6].
Other approaches include the estimation of the brain electrical signals (via electroen-
cephalography, EEG) for the purpose of measuring and identifying drivers’ fatigue [7]. It
should be noted that although self-perceived assessment usually fails to overcome sub-
jective perception concerning the individuality of the subjects [8], utilizing physiological
measures can provide insights into the actual impact of mental fatigue on cognitive func-
tioning, independently of individuals’ subjective perceptions [9]. In fact, cortical variability
in states of fatigue is well-documented across multiple studies, demonstrating significant
differences in how individuals’ brain activity changes in response to fatigue [10,11]. In this
regard, Lim et al. [12] found that individuals exhibit considerable variability in specific
EEG brain waves, presenting differentiations in power during prolonged cognitive tasks,
with some showing rapid onset of fatigue indicators and others maintaining stable EEG
patterns over time. Furthermore, Borghini et al. [13] observed significant differences in how
fatigue affected brain connectivity, with some drivers showing marked reductions in the
fronto-parietal network, while others exhibited minimal changes.

As such, the development of objective mental fatigue estimation systems is crucial
to enhance road safety. This, combined with current developments in technology such as
mobile sensors, can mitigate the risk of accidents due to impaired driving performance,
promptly alerting drivers to their cognitive exhaustion level [14,15]. Specifically, regard-
ing the development of wearable EEG technologies, considerable research efforts have
been directed towards overcoming limitations and facilitating the long-term, non-invasive
recording of brain signals during individuals’ mobility outside laboratory settings [16].
Some solutions have focused on advancements in the development and refinement of
materials and techniques for creating stretchable circuits, which include methods like
mask deposition, laser patterning, and printing methods [2]. Concurrently, other studies
have concentrated on reducing the number of electrodes to aid developers of future EEG
applications in choosing the optimal electrode positions [17].

To further enhance the efficiency of mental fatigue detection, recent studies have per-
formed band specific identification of the alterations in brain function. Different brain wave
frequencies, such as theta, alpha, beta, delta, and gamma, have been associated with various
cognitive states and processes, including fatigue [18,19]. As such, focusing on specific brain
waves in fatigue detection can provide more targeted and nuanced assessments of fatigue
levels [20]. Although, several studies propose that all frequency bands could potentially be
utilized in identifying driving fatigue [21,22], the majority suggest that measures within
the theta, alpha, and beta bands are more closely associated with it, with fewer studies
referencing delta or gamma activity as potential contributors [23,24]. In addition, analysis
of brain operations as having a structured organization can highlight detailed patterns,
comprising distinct regions that collaboratively interact to establish expansive distributed
networks [25]. These networks pertain to collections of cerebral regions that contribute
to the execution of specific interconnected tasks or a designated array of functions, while
quantifying statistical similarities in brain activity, thereby revealing the intricate neural
processes [26,27]. The differences within the brain networks have also been examined
to distinguish between different cognitive states. In fact, Tompson et al. [28] conducted
a review on the temporal dynamics of dynamic brain networks, noting that variations
in both the strength and adaptability of evolving brain networks play a role in shaping
individual disparities in executive function, attention, working memory, and learning
abilities. In another study, Li et al. [11], employed a long-term driving EEG task, reporting
significantly increased patterns in functional connectivity in theta, alpha, beta, and gamma
bands, suggesting a compensation effect to attenuate the effects of driving fatigue.

Human EEG data research traditionally concentrates on the analysis of data aggre-
gated across groups, a practice that constrains the level of detail, specificity, and clinical
applicability of task-based functional connectivity maps [29]. However, despite the con-
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siderable volume of relevant research, the inter-subject variability of the brain networks
during different tasks and cognitive states renders universal approaches inconclusive. In
fact, Andrew James et al. [30] employed a comparative analysis of two methodologies for
constructing a human brain atlas applicable to both resting-state and task-state conditions.
Their findings demonstrated that an individualized approach yielded more statistically
significant results. In addition, Fin et al. [31] illustrated that distinct functional connectivity
profiles serve as unique “fingerprints”, facilitating precise identification of subjects within a
sizable cohort. They proposed that an individual’s connectivity profile is inherent and can
effectively distinguish them irrespective of the brain’s state during imaging. Furthermore,
Tavor et al. [32] suggested that individual variances in brain responses are predominantly
intrinsic to the brain and can be anticipated based on task-independent measurements
obtained during rest. By employing a diverse range of task conditions spanning multiple
domains, they predicted individual differences in brain activity and revealed a link be-
tween brain connectivity and function that can be captured at an individual subject level.
Moreover, Sun et al. [33] employed a combination of individualized prediction models with
quantitative graph theoretical analysis across schizophrenia symptom categories. Their
analyses of individual-specific functional connectivity provided significant distinctions
among cortical circuits linked to positive and negative symptoms, shedding light on how
circuits underlying symptom manifestation may differ depending on the underlying cause
of the illness.

Although fatigue states exhibit notable differences compared to rested states, sug-
gesting significant disparities [34], sustained attention during long-term driving does not
always display monotonic development trends [35]. This is often attributed to factors
irrelevant to mental fatigue such as shifts of attentional control induced by additional
activities or unrelated visual and auditory stimuli [36].

Taking the above into consideration, we hypothesized that assessing monotonic alter-
ations in brain activation would eliminate extraneous cognitive procedures and therefore
enable the assessment of the neuronal connections specific to mental fatigue, investigating
individual subject deviations. As such, we employed an EEG sustained driving simulation
experiment, while conducting a linear regression analysis of the entire duration of the
experiment, incorporating individual distinct task considerations. In this regard, we utilize
an individual participant network analysis based on the Phase Lag Index (PLI), to enhance
the validity of our findings. This amalgamation yields a comprehensive network capturing
shared connectivity patterns across the entire participant group, providing a collective
snapshot of neural dynamics. Moreover, by focusing on the common connections of the
EEG-derived brain networks, we provided indications for feature space minimization,
therefore allowing for mobile sensor-based effective fatigue detection in real-time.

2. Materials and Methods
2.1. Participants

In this study we recruited 21 individuals (average age 25.2 ± 6.1 years, all right-
handed) from the National University of Singapore (NUS), including students and staff
members. All participants held valid driver’s licenses and had either normal or corrected-
to-normal vision. Before the experiment, participants completed a self-administered ques-
tionnaire to ensure they met inclusion criteria, which included the absence of fatigue-related
disorders and chronic physical or mental illnesses, no long-term medication usage, avoid-
ance of caffeine or alcohol consumption, and obtaining more than 7 h of sleep in the two
days preceding the experiment. Individuals who did not meet these criteria were excluded.
Prior to the start of the experiment, all participants provided informed written consent,
and they were compensated SGD 10 per hour for their participation. The research protocol
was approved by the Institutional Review Board of NUS.
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2.2. Experimental Design

The experimental procedure was designed to elicit mental fatigue based on the premise
that sustained attention while driving (even with low demands for complex cognitive
processing) can lead to monotony, a significant contributor to mental fatigue. Relevant
studies have indicated that performance and alertness can decline significantly even within
a relatively short period, such as 20–30 min, due to the repetitive and unstimulating nature
of the task [37]. In this regard, participants operated the driving simulation for 1 h, using a
driving wheel, pedals, and a gear box (Logitech G27 Racing Wheel). The unvaried route
chosen for the task encompassed both a motorway and a rural road, primarily characterized
by straight sections with minimal traffic, aimed to induce a state of drowsiness among the
participants. Participants received instructions to maintain stable driving conditions, with
a maximum speed limit of 100 km/h. The simulated driving task involved the utilization
of City Car Driving software (Version 1.5, http://citycardriving.com/) with adherence to
Singapore’s driving rules. To minimize participant movements and consequently reduce
the potential for significant electromyography (EMG) artifacts, an automated clutch system
was implemented. A visual representation of the experimental design can be seen in
Figure 1.
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the SSSQ is designed to evaluate the subjective state of individuals in stressful environ-
ments. It comprises 24 questions that measure three factors: Engagement (assessing the 
level of arousal, motivation, and concentration necessary for task completion), Distress 
(encompassing unpleasant mood and tension, alongside a lack of confidence stemming 
from perceived lack of control over work), and Worry (involving cognitive aspects such 
as attention, self-esteem, and cognitive interference), with each factor being assessed 
through 8 specific questions. The SSSQ was applied twice, before and after the driving 
simulation session. 

Figure 1. A schematic of the experimental design: (a) the driving simulation setup; (b) the predefined
route over the simulation map is presented with red; and (c) the duration of the driving simulation was
1 h, continuously recording EEG. In the subsequent analysis, EEG was divided in 5 min segments with
50% overlap (green), while segments that corresponded to the first and last 5 min (red) were excluded.

2.3. Behavioral Assessment

To evaluate if the experimental procedure was effective in inducing mental fatigue, the
Short Stress State Questionnaire (SSSQ) was filled out by each participant [38]. Briefly, the
SSSQ is designed to evaluate the subjective state of individuals in stressful environments.
It comprises 24 questions that measure three factors: Engagement (assessing the level of
arousal, motivation, and concentration necessary for task completion), Distress (encompass-
ing unpleasant mood and tension, alongside a lack of confidence stemming from perceived
lack of control over work), and Worry (involving cognitive aspects such as attention, self-
esteem, and cognitive interference), with each factor being assessed through 8 specific
questions. The SSSQ was applied twice, before and after the driving simulation session.

http://citycardriving.com/
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2.4. EEG Acquisition and Pre-Processing

During the driving simulation experiment, EEG data were collected employing
64 Ag/AgCl scalp electrodes (Waveguard from ANT B.V., Hengelo, The Netherlands)
following the standard 10–20 system [39]. Data collection was implemented at a sampling
rate of 512 Hz, while maintaining electrode impedance levels below 10 kOhms throughout
the entire recording process. Common sources of interference were diligently addressed
by applying a band-pass filter (0.5–70 Hz) and a 50 Hz notch filter. Concurrently, bipo-
lar horizontal and vertical electrooculogram (EOG) signals were recorded to detect eye
blinks that usually result in EEG artifacts [40]. A previously validated EEG pre-processing
pipeline was utilized that included down-sampling, filtering, re-referencing, and artifact
removal [41]. Specifically, the raw EEG data were down-sampled to 256 Hz, re-referenced
to the average of electrodes located on the left and right mastoid, and band-pass (FIR)
filtered within the frequency range of 1 to 45 Hz. Then artifact removal was applied with
the use of Independent Components Analysis (ICA) to identify and eliminate components
exhibiting high correlation with EOG signals. Baseline correction involved estimation and
removal of baseline fluctuations of the entire duration of each epoch. To further ensure high
data quality, continuous data quality control measures were enacted by excluding data
segments manifesting power levels exceeding 6 decibels (dB) within high-frequency bands
(20–40 Hz). All data pre-processing procedures were implemented in MATLAB Version
R2022b (Mathworks Inc., Natick, MA, USA) through the EEGLAB tool [42].

2.5. Functional Connectivity Based on PLI Networks

For the purpose of connectivity estimation, the time-series data were systematically
partitioned into consecutive 5 min intervals, each with a 50% temporal overlap. To eliminate
subjective phenomena relevant to experimental engagement, the first and the last 5 min
intervals were discarded, resulting in 20 overall EEG epochs (Figure 1c). Subsequently, a
Phase Lag Index (PLI) network was calculated for each participant across each epoch in
different frequency intervals (i.e., delta band (0.5–4 Hz) theta band (4–7 Hz), alpha band
(8–12 Hz), beta band (13–30 Hz), and gamma band (31–45 Hz)) as described below.

The selection of PLI for EEG connectivity analysis was motivated by its ability to
assess the phase synchronization in EEG signals, while minimizing false positives due to
volume conduction, its robustness against noise and artifacts, and its focus on capturing
true functional connectivity with non-zero phase lag [29,43].

This is accomplished by discounting phase differences (angles) of zero and π radians.
PLI quantifies the asymmetry in the distribution of instantaneous phase differences, which
are determined through the application of the Hilbert transformation. Specifically, for any
arbitrary EEG signal x(t), the analytic signal w(t) is constructed with a complex function
of time:

w(t) = x(t) + ixH(t) = x(t) + iπ−1pv
∫ +∞

−∞

x(s)
t − s

ds (1)

where xH(t) is the Hilbert transform of c(t), and pv denotes the Cauchy principal value.
The Hilbert transform is virtually the convolution of x(t) with 1/πt.

The instantaneous amplitude A(t) and instantaneous phase ϕ(t) of x(t) can be derived
in terms of the analytic signal’s polar form:

w = A(t) eiφ(t) (2)

In turn, the phase is uniquely determined as follows:

φ(t) = arctan (
xH(t)
x(t)

) (3)

From the phases of two EEG signals xa(t) and xb(t), the phase difference or relative
phase is formed as follows:

φab(t) = φα(t)−φb(t) (4)
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Then, the PLI is defined as an asymmetry measure for the phase difference distribution
using the following equation:

PLIab =

∣∣∣∣∣ 1
N

N−1

∑
n=0

sign(φab(n))

∣∣∣∣∣ (5)

A symmetric distribution, centered around zero, may indicate spurious connectivity,
while a flat distribution signifies the absence of connectivity. Departures from symmetry
indicate interdependencies among sources. PLI values are bounded between 0 and 1. A
value of 0 signifies either no coupling or coupling with phase differences predominantly
centered around zero, whereas a value of 1 indicates precise phase locking at a non-zero
phase difference. PLI values in proximity to 1 suggest robust non-zero phase locking. The
extracted networks are represented as weighted undirected triangular adjacency matrices
(with the dimensions in this paper being 62 × 62). As mentioned above, in order to facilitate
a comprehensive exploration of functional connectivity dynamics across distinct frequency
bands, the PLI functional brain networks were computed within the spectral domains of
the delta, theta, alpha, beta, and gamma bands.

2.6. Individual and Global Network Analysis

Within the scope of our study, we implemented an individual participant network
analysis (IN) and a Global Network analysis (GN). These terminologies aim to bring clarity
to the distinction between analyses conducted at the group level, where EEG-derived
brain networks are collectively examined, and analyses undertaken at the individual level,
focusing on the personalized EEG-derived brain networks for each participant. Specifically,
the IN entailed analyzing EEG data for each participant separately, constructing unique
brain networks customized to the intricate features of each individual’s neural patterns. As
such, IN included the 5 min time interval network of each participant for each frequency
band, to illuminate subject-specific variations.

Conversely, the GN analysis involved the aggregation of EEG-derived brain networks
from all participants. This amalgamation yields a comprehensive network capturing shared
connectivity patterns across the entire participant group, providing a collective snapshot of
neural dynamics. In this regard, the GN analysis included the construction of an average
grid, calculated as an average of individual PLI networks (i.e., determining the mean value
of the interconnected edges of all participants) for each frequency band.

2.7. Network Assessment

As mentioned above, the PLI networks were computed within each participant’s
dataset to quantify phase relationships among the 62 scalp electrodes’ signals. To ascertain
the significance of the network edges, we conducted a linear regression analysis, systemati-
cally assessing the relationships between all possible pairs of sensors. A flowchart of the
analysis framework is presented in Figure 2. Briefly, linear regression serves as a statistical
modelling tool for examining and quantifying the relationships in complex systems [44].
This entails fitting a linear equation to observed data points, aiming to elucidate the un-
derlying pattern governing the association between variables. The fitting line represents
the optimal mathematical approximation (defining the best-fitting line) that minimizes the
overall difference between observed data points and their corresponding values, deter-
mining the coefficients of the equation (such as the slope and intercept). The optimization
process involves minimizing the sum of squared differences between observed and pre-
dicted values, employing the least squares method. Moreover, to provide insights into the
strength, direction, and significance of network relationships, a hypothesis evaluation was
implemented, testing the null hypothesis that the independent variable has no correlation
with the dependent variable. Linear regression was performed by fitting a linear model to
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the data by minimizing the sum of the squared residuals. The general form of the model
was as follows:

y = β0 + β1x1 + β2x2 + · · ·+ βkxk + ϵ (6)

where y represents the dependent variable and x1, x2, . . ., xk are the independent variables,
β0, β1, . . ., βk are the regression coefficients, and ϵ is the error term.
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This function estimates the coefficient β of the linear model using the Ordinary Least
Squares (OLS) method:

β =
(

XTX
)−1

XTy (7)

where X is the matrix of independent variables, and y is the vector of the dependent variable.
As mentioned in Section 1, the rationale for this procedure stems from evidence in-

dicating that fatigue states exhibit notable dissimilarities compared to rested states, thus
implying statistical differences [34]. In addition, during sustained fatigue-inducing tasks,
cognitive drain (excluding irrelevant stimuli) is expected to increment continuously [45].
Consequently, as mental resources progressively deteriorate, the corresponding neural con-
nections (in our study the PLI network edges) should demonstrate a discernible deviation
from previous states, following an increasing or decreasing trajectory. It is important to
note that the patterns analyzed here do not imply that mental fatigue dynamics present a
linear behavior, since similar studies denote nonlinear trends [46]. However, linear regres-
sion can elucidate the way (driving) mental fatigue affects brain connectivity over time,
identify critical brain networks affected, and help us understand individual differences in
susceptibility to fatigue.

Accordingly, the 62 × (62 − 1)/2 = 1891 unique connections were calculated across
20 epochs of PLI networks. Subsequently, linear regression analysis was conducted on each
connection (treating PLI values as dependent variables and time intervals as independent
variables) to assess an increasing or decreasing trend of the PLI connection weights. In
this study, a critical threshold for connection strength was established utilizing the R-
squared (R2) statistical measure [47]. R2 is a measure that represents the proportion of the
variance for a dependent variable. As such, it provides an indication of how well data
points fit a statistical model. In this study, an R2 value greater than 0.25 corresponds to
a p-value less than 0.05 (p < 0.05), denoting less than a 5% probability that the observed
correlation occurred by chance. By setting these thresholds (R2 > 0.25 and p < 0.05), we
ensured that only connections with a certain level of explanatory power and statistical
significance were considered meaningful for subsequent analysis. Connections exhibiting
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correlations surpassing this threshold were considered highly significant and were retained
for further examination. In both IN and GN, we estimated time-dependent significant
changes, by utilizing the R2 and p value criteria between the different 5 min epochs, to
assess the connections that exhibited significant differences throughout the entirety of the
driving simulation.

3. Results
3.1. Behavioral Results

To investigate the subjective effect of the experimental design with regards to mental
fatigue, we statistically assessed the SSSQ scores. As such, we applied a One-Way Analysis
of Variance (ANOVA) comparing pre-task and post-task Engagement scores. ANOVA
revealed a significant difference (p < 0.01) indicating the experimental design was effective
in inducing mental fatigue.

3.2. Individual Participant Network Analysis

Following the threshold assessment of the linear regression procedure, the significant
connections (across the 5 min PLI networks for each frequency band) were investigated
in terms of shared attributes between the different subjects. Interestingly, no connections
exhibited significant changes common to all subjects across any of the frequency bands
studied. Further analysis indicated a consistent pattern, where the significant changes
across all time frames encompasses roughly 50% of the subjects (10 out of 21). This was
consistent in all frequency bands, with no significant edges being observed for over half
of the subjects, where two shared connections were detected in 50–60% of individuals
(Figure 3). In this regard, we arbitrarily decided to further analyze the PLI edges that were
present for at least 40% of the subjects. Figure 4 displays the common connections shared
over the 40% threshold for each frequency band).
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Concerning the distinct pairs of electrodes within the alpha band, a collective count
of 33 PLI connections was observed across 40 unique nodes (Figure 4c). Notably, a con-
siderable majority of connectivity changes were intra-hemispheric. Further investigation
in all electrode positions presented a left hemisphere dominance, with a relatively lower
occurrence in the right areas. Within the theta band, 21 connections were identified across
22 unique nodes (Figure 4b), with a significant proportion (>50%) of the observed connec-
tions being localized to electrodes positioned along the midline, spanning both hemispheres.
In the beta band, a cumulative total of 11 connections was noted across 20 unique nodes
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(Figure 4d), where the majority of connections were constrained within the same hemi-
sphere. In both the delta (10 connections were observed across 17 unique nodes) and
gamma bands (9 connections were observed across 16 unique nodes) (Figure 4a,d), a note-
worthy spatial tendency was observed. Specifically, a substantial proportion of electrode
connections in these frequency bands predominantly involve the right hemisphere.
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To further assess the connection alterations, we examined the slopes obtained via
the linear regression approach, offering a focused insight into the overall increases or
decreases in particular connections. Specifically, under the >40% threshold, a pattern could
be discerned within the alpha band, with the majority (24 out of 33) of PLI edges showing an
upward slope. Conversely, within the theta band, a downward inclination of the regression
line was displayed in 18 out of 21 connections. Interestingly, in all beta, gamma, and delta
frequency bands, approximately half of the connections demonstrate a negative and the
remaining half a positive slope (beta: six negative/five positive; gamma: five negative/four
positive; delta: four negative/six positive).

3.3. Association of Individual to the Global Network

To estimate the interrelationships between subject variability and the average brain
network (pertaining mental fatigue), the GN was also examined with the same R2 and
p value criteria (i.e., p < 0.05 and R2 > 0.25). The number of connections exhibiting significant
alterations for delta, theta, alpha, beta, and gamma bands is presented in Figure 5 below.
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Remarkably, the delta band demonstrated the largest count of connections (440) ex-
hibiting significant alterations across our experimental conditions, while the gamma band
exhibited the least number of connections (Table 1).

Table 1. Number of significant connections (p < 0.05 and R2 > 0.25).

Frequency Band Number of Connections

delta 440
theta 287
alpha 361
beta 313

gamma 275

Subsequently, the association between the GN and IN was investigated. As such,
we compared the IN to the GN, to establish the association between average and subject-
specific networks. Specifically, the connections exhibiting significant alterations were
compared to the average network, calculating the number of PLI edges that were included
in both the IN and GN (Table 2). From this perspective, subject variability was further
emphasized with different individuals illustrating various levels of shared connections. In
detail, the highest number of shared connections were included in the alpha band (21.5%),
ranging from individuals with 7.8% to 47.37% common connections between the IN and
GN. On the contrary, the gamma band displayed the lowest number of mutually shared
connections (16.3%), nevertheless demonstrating significant range (7.8% to 36.95%).
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Table 2. The shared connections between the IN and GN.

Frequency Band Mean Percentage 1 (%) Min Percentage (%) Max Percentage (%)

delta 17.5 ± 6 10.00 29.09
theta 18.3 ± 7 9.76 32.06
alpha 21.5 ± 11 7.8 47.37
beta 18.4 ± 6 10.54 35.14

gamma 16.3 ± 7 7.80 36.95
1 The standard deviation is presented next to the mean percentage value after the ± symbol.

4. Discussion

In this study we aimed to illustrate the intricacies of subject variability in brain
connectivity with respect to driving fatigue. As such, we implemented a comprehensive
analysis focusing on subject-specific brain networks derived via a linear regression method.
Our analysis elucidated the distribution of subject-specific slopes, revealing insights into
the variability and trends in connectivity dynamics specific to each frequency band. These
indicators provide valuable insights into the nuanced relationships between frequency and
connectivity patterns in the context of driving fatigue. In addition, our approach addresses
the variations in individual brain networks, thereby enhancing the accuracy of fatigue
assessment by considering these variations rather than disregarding them. Moreover, the
identification of a small subset of distinctive network edges holds significant advantages
for mobile sensor-based applications, particularly in the context of efficiency, resource
optimization, and real-time processing.

As previously stated, we employed linear regression analysis in the PLI network
edges to estimate significant differences of a monotonic fashion. As such, we hypothesized
that sustained attention in driving would consistently allocate and deplete finite cognitive
resources, inevitably inducing mental fatigue in a continuous manner [48]. However, re-
cent studies report non-monotonic fatigue-related development trends at the individual
level [10,49]. This is attributed to fatigue adaptation or self-regulation (involving and
implementing strategies and behaviors to prevent or mitigate the negative effects of fa-
tigue), optimizing performance amidst conditions that induce fatigue [50,51]. Although
this is the case in real-word scenarios (shifting attentional control induced by additional
activities, such as advanced road familiarization, listening to music or media, adjusting
windows, readjusting sitting position, etc.) [36], our study aimed to assess mental fatigue,
only focusing on experimental factors and thus excluding non-fatigue-related operations.
From this standpoint, by exclusively estimating significant connections that exhibit an
increasing or decreasing trend over the entire duration, we can avoid incorporating fatigue
characteristics that could be internally regulated [11].

A key finding from our study underscores the efficacy of subject-specific networks
for analyzing fatigue-related brain dynamics, undergoing alterations during the fatigue-
inducing driving task. This was indicated in all frequency bands examined, corroborated
with functional connectivity driving-fatigue studies [52,53]. Regarding the shared con-
nections between all subjects, the alpha band displayed the highest sensitivity to the
driving simulation. This is supported by other studies, reporting significant alterations
in the alpha frequency band [54]. The analysis of the common (in >40% of subjects) PLI
connections presented a left lateralization that could potentially be indicative of specific
cognitive processes associated with fatigue, possibly related to attention and alertness [55].
Conversely, the right hemisphere exhibits a comparatively lower incidence of alterations,
suggesting a hemisphere-specific response to driving-induced fatigue [10]. Interestingly,
the majority of the significant alpha band edges where interhemispheric, a pattern which
is in agreement with similar studies [56]. In terms of theta band shared connections, the
majority were located in the frontal and prefrontal area of the brain, aligning with previous
research findings [18,57,58]. Further analysis revealed a notable prevalence of connections
along the midline regions of the brain. This prominence underscores their potential role
in mediating cognitive processes (such as attention and executive function), suggesting
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a specific sensitivity or susceptibility of midline structures to changes in fatigue-induced
connectivity [59]. The beta band exhibits a distinct trend with alterations primarily confined
within the same hemisphere. This observation emphasizes the potential regional specificity
inherent in beta frequency alterations, suggesting that changes in beta oscillations may be
more concentrated within specific brain regions or networks [43,60]. Furthermore, in the
context of driving-induced fatigue, it indicates that the functional reorganization of the
brain, particularly within specific hemispheres, could play a critical role in modulating
neural activity associated with fatigue [61]. The distinctive spatial preference detected
within the delta and gamma frequency bands (with a pronounced impact on the right
hemisphere), signifies a specific pattern of connectivity adjustments. This finding under-
scores the intricate interplay between neural networks of low- and high-frequency brain
dynamics, shedding light on how hemispheric differences contribute to overall connectivity
and its implications for cognitive processes and behaviors, particularly in contexts such as
driving fatigue, where precise neural coordination is paramount [62,63].

In the GN analysis, it becomes apparent that the delta band exhibits the highest
proportion of significantly altered connections. This could indicate drowsiness, consistently
associated the delta band, which is a well-documented phenomenon frequently observed
during extended periods of driving [64–66]. Notably, however, this correlation between
delta band activity and drowsiness is not obvious in the analysis conducted in the IN.
This intriguing finding underscores the considerable subject variability in the experience
of drowsiness during driving experiments, thus shedding light on the diverse effects of
individuality within the scope of this study.

Further investigation of the individualized connectivity associated with the GN also
revealed subject-specific complexities of fatigue assessment in the context of driving fa-
tigue. As such, the average number of network connections reflecting each individual’s
brain network (1/5 of the total connections) shows variations in the individual network
constructions. This is in line with other relevant research works that state that average
networks in functional connectivity analyses may fail to reveal actual independent human
brain network procedures [67,68]. In fact, recent studies have highlighted the substantial
magnitude of cross-individual variation in functional connectivity strength, surpassing
variations observed within subjects across different states [69]. This emphasizes the concept
that variability in functional connectivity functions as a metric at the trait level, adept at
correlating with various trait-level measures across individuals. Moreover, a substantial
body of research substantiates the notion that these variances are indeed associated with
individual disparities in cognitive functions [70,71].

The interplay between the IN and GN is crucial in understanding the neural basis
of driving fatigue. Mental fatigue impacts both localized brain activities and large-scale
neural interactions, disrupting the functional integration necessary for effective driving [72].
Within this study, the subject variability observed when analyzing the IN patterns and
their associations with the GN (with some participants displaying significant decreases
in connectivity, while others maintain more stable patterns) suggests that fatigue impacts
brain connectivity differently across individuals. Some individuals might employ adaptive
strategies to cope with fatigue (such as using mental techniques to maintain alertness), thus
contributing to individual differences in fatigue susceptibility and neural responses [73].
Future work can offer valuable insights into the neural mechanisms underlying subject-
specific driving fatigue and develop interventions to mitigate its effects.

Taken the above into consideration, it can be inferred that individual-specific analysis
could enhance driving-fatigue detection utility. By prioritizing the most relevant network
edges, mobile sensor-based applications can swiftly extract meaningful patterns or anoma-
lies from sensor data, enabling rapid responses to changing conditions or events. Moreover,
the expedited data transmission and analysis resulting from focusing on a small subset of
network edges can contribute to faster insights and actionable information. These notions,
paired with network metrics (due to the small wordless characteristics in fatigue states [27])
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could significantly enhance the development of more effective and resource-efficient appli-
cations that can address a wide range of real-world challenges.

Certain limitations have to be taken into consideration when interpreting the results of
this study. Firstly, our study incorporated exclusively male subjects. This was implemented
due to the consistently reported existence of sexual dimorphism in brain structures that
could contribute to variations in behavior and cognitive function [74]. By only enrolling
male participants we aimed to investigate the intrinsic impact of mental fatigue, indepen-
dent of potential gender-related influences. Another important limitation is the relatively
small sample size (albeit carefully selected), that may pose constraints on the generalizabil-
ity of the findings. Further research with larger and more diverse samples, incorporating
real-world driving conditions, will be essential to validate and extend our findings.

5. Conclusions

This study focuses on the significance of subject-specific brain networks in under-
standing connectivity dynamics related to driving fatigue. These findings highlight the
variability in individual brain networks across different frequency bands, shedding light on
the relationships between frequency and connectivity patterns in the context of fatigue as-
sessment. By focusing on distinct network edges and employing linear regression analysis,
this study highlights the potential of subject-specific networks in analyzing fatigue-related
brain dynamics. Moreover, the identification of shared connections between participants
provides insights for feature space minimization, laying the groundwork for effective
fatigue detection using mobile sensor-based applications.
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