Exploring the Impact of the NULL Class on In-the-Wild Human Activity Recognition
Abstract
:1. Introduction
- A fully in-the-wild dataset. First, we present an annotated in-the-wild dataset, which consists of accelerometer and gyroscope data from off-the-shelf smartwatches worn on both wrists. This dataset consists of 106.74 h of data from nine participants behaving naturally and following their personal daily routines in their homes and workplaces.
- An evaluation of existing techniques to handle imbalances in human activity recognition data. Second, we investigate techniques to improve classification performance on activity recognition systems trained on in-the-wild data. These techniques include common methods for dealing with imbalanced classes (e.g., undersampling and oversampling), as well as model training strategies such as cost-sensitive learning. Our experiments show that, in the case of in-the-wild data, these techniques improve the recall of the model at the cost of its precision. As a result, we find that these techniques in isolation are not enough to address the challenges associated with in-the-wild recognition.
- A novel postprocessing technique. Third, we propose a context-based prediction correction method to improve prediction stream stability. We evaluate the performance of this algorithm with five different weighting functions using the best-performing models from the previous experiments with and without preprocessing. Our model achieved an event-based F1-score of over 0.9 for the activities of brushing teeth, combing hair, walking, and washing hands in a user-independent evaluation using both preprocessing and postprocessing techniques.
2. Related Work
2.1. Human Activity Recognition
2.2. General Techniques for Dealing with Data Imbalances
2.3. Handling Data Imbalances in Human Activity Recognition
3. Materials and Methods
3.1. Data Collection
3.2. Activities
3.3. Dataset Metrics
3.4. Activity Recognition Performance Metrics
3.5. Algorithms
3.5.1. Classical Machine Learning Models
3.5.2. Deep Learning Models
3.6. Existing Methods for Addressing Imbalances
3.7. Classification Postprocessing
Algorithm 1: Classification Postprocessing Algorithm |
Input: P: prediction stream, : context window size, : context window scoring function Output: : corrected prediction stream for P
|
Algorithm 2: Context-basedPrediction Correction |
Input: W: context window, : context window size, : context window scoring function Output: p: prediction
|
4. Results
4.1. Impact of Preprocessing Techniques
4.2. Impact of Postprocessing
4.3. Evaluation
5. Discussion
5.1. Challenge of Non-Distinct Minority Classes
5.2. Intraclass Variability in Certain ADLs
5.3. Towards Real-World Human Activity Recognition
5.4. Hardware Considerations
5.5. Future Work
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADL | Activity of Daily Living |
RUS | Random Undersampling |
ROS | Random Oversampling |
CSL | Cost-Sensitive Learning |
References
- Inoue, S.; Lago, P.; Hossain, T.; Mairittha, T.; Mairittha, N. Integrating Activity Recognition and Nursing Care Records: The System, Deployment, and a Verification Study. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2019, 3, 86. [Google Scholar] [CrossRef]
- Cherian, J.; Ray, S.; Hammond, T. An Activity Recognition System for Taking Medicine Using In-the-Wild Data to Promote Medication Adherence. In Proceedings of the IUI ’21: 26th International Conference on Intelligent User Interfaces, College Station, TX, USA, 13–17 April 2021; pp. 575–584. [Google Scholar] [CrossRef]
- Bharti, P.; Panwar, A.; Gopalakrishna, G.; Chellappan, S. Watch-dog: Detecting self-harming activities from wrist worn accelerometers. IEEE J. Biomed. Health Inform. 2017, 22, 686–696. [Google Scholar] [CrossRef] [PubMed]
- Plötz, T.; Hammerla, N.Y.; Rozga, A.; Reavis, A.; Call, N.; Abowd, G.D. Automatic Assessment of Problem Behavior in Individuals with Developmental Disabilities. In Proceedings of the UbiComp ’12: 2012 ACM Conference on Ubiquitous Computing, Pittsburgh, PA, USA, 5–8 September 2012; pp. 391–400. [Google Scholar] [CrossRef]
- Morris, D.; Saponas, T.S.; Guillory, A.; Kelner, I. RecoFit: Using a Wearable Sensor to Find, Recognize, and Count Repetitive Exercises. In Proceedings of the CHI ’14: SIGCHI Conference on Human Factors in Computing Systems, Toronto, ON, Canada, 26 April–1 May 2014; pp. 3225–3234. [Google Scholar] [CrossRef]
- Mendiola, V.; Doss, A.; Adams, W.; Ramos, J.; Bruns, M.; Cherian, J.; Kohli, P.; Goldberg, D.; Hammond, T. Automatic exercise recognition with machine learning. In Proceedings of the International Workshop on Health Intelligence, Honolulu, HI, USA, 27–28 January 2019; pp. 33–44. [Google Scholar] [CrossRef]
- Seuter, M.; Pollock, A.; Bauer, G.; Kray, C. Recognizing Running Movement Changes with Quaternions on a Sports Watch. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2020, 4, 151. [Google Scholar] [CrossRef]
- Mortazavi, B.J.; Pourhomayoun, M.; Alsheikh, G.; Alshurafa, N.; Lee, S.I.; Sarrafzadeh, M. Determining the single best axis for exercise repetition recognition and counting on smartwatches. In Proceedings of the 2014 11th International Conference on Wearable and Implantable Body Sensor Networks, Zurich, Switzerland, 16–19 June 2014; pp. 33–38. [Google Scholar] [CrossRef]
- Hou, J.; Li, X.Y.; Zhu, P.; Wang, Z.; Wang, Y.; Qian, J.; Yang, P. SignSpeaker: A Real-Time, High-Precision SmartWatch-Based Sign Language Translator. In Proceedings of the MobiCom ’19: 25th Annual International Conference on Mobile Computing and Networking, Los Cabos, Mexico, 21–25 October 2019. [Google Scholar] [CrossRef]
- Stiefmeier, T.; Roggen, D.; Ogris, G.; Lukowicz, P.; Tröster, G. Wearable activity tracking in car manufacturing. IEEE Pervasive Comput. 2008, 7, 42–50. [Google Scholar] [CrossRef]
- Leland, J.; Stanfill, E.; Cherian, J.; Hammond, T. Recognizing Seatbelt-Fastening Behavior with Wearable Technology and Machine Learning. In Proceedings of the CHI EA ’21: Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems, Yokohama, Japan, 8–13 May 2021. [Google Scholar] [CrossRef]
- Katz, S. Assessing self-maintenance: Activities of daily living, mobility, and instrumental activities of daily living. J. Am. Geriatr. Soc. 1983, 31, 721–816. [Google Scholar] [CrossRef] [PubMed]
- Branch, L.G.; Jette, A.M. A prospective study of long-term care institutionalization among the aged. Am. J. Public Health 1982, 72, 1373–1379. [Google Scholar] [CrossRef] [PubMed]
- Caffrey, C.; Sengupta, M.; Melekin, A. Residential Care Community Resident Characteristics: United States, 2018. Natl. Cent. Health Stat. Data Brief 2021, 404, 1–8. [Google Scholar] [CrossRef]
- Bao, L.; Intille, S.S. Activity recognition from user-annotated acceleration data. In Pervasive Computing; Springer: Vienna, Austria, 2004; pp. 1–17. [Google Scholar] [CrossRef]
- Kao, T.P.; Lin, C.W.; Wang, J.S. Development of a portable activity detector for daily activity recognition. In Proceedings of the 2009 IEEE International Symposium on Industrial Electronics, Seoul, Republic of Korea, 5–8 July 2009; pp. 115–120. [Google Scholar] [CrossRef]
- Dernbach, S.; Das, B.; Krishnan, N.C.; Thomas, B.L.; Cook, D.J. Simple and complex activity recognition through smart phones. In Proceedings of the Intelligent Environments (IE), 2012 8th International Conference on, Guanajuato, Mexico, 26–29 June 2012; pp. 214–221. [Google Scholar] [CrossRef]
- Weiss, G.M.; Timko, J.L.; Gallagher, C.M.; Yoneda, K.; Schreiber, A.J. Smartwatch-based activity recognition: A machine learning approach. In Proceedings of the 2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), Las Vegas, NV, USA, 24–27 February 2016; pp. 426–429. [Google Scholar] [CrossRef]
- Laput, G.; Harrison, C. Sensing Fine-Grained Hand Activity with Smartwatches. In Proceedings of the CHI ’19: 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019; pp. 1–13. [Google Scholar] [CrossRef]
- Jain, Y.; Tang, C.I.; Min, C.; Kawsar, F.; Mathur, A. ColloSSL: Collaborative Self-Supervised Learning for Human Activity Recognition. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2022, 6, 17. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Adaimi, R.; Thomaz, E. Leveraging Sound and Wrist Motion to Detect Activities of Daily Living with Commodity Smartwatches. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2022, 6, 42. [Google Scholar] [CrossRef]
- Galluzzi, V.; Herman, T.; Polgreen, P. Hand Hygiene Duration and Technique Recognition Using Wrist-Worn Sensors. In Proceedings of the IPSN ’15: 14th International Conference on Information Processing in Sensor Networks, Seattle, WA, USA, 13–16 April 2015; pp. 106–117. [Google Scholar] [CrossRef]
- Mondol, M.A.S.; Stankovic, J.A. Harmony: A Hand Wash Monitoring and Reminder System Using Smart Watches. In Proceedings of the MOBIQUITOUS ’15: 12th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services on 12th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, Coimbra, Portugal, 22–24 July 2015; pp. 11–20. [Google Scholar] [CrossRef]
- Samyoun, S.; Shubha, S.S.; Mondol, M.A.S.; Stankovic, J.A. iWash: A smartwatch handwashing quality assessment and reminder system with real-time feedback in the context of infectious disease. Smart Health 2021, 19, 100171. [Google Scholar] [CrossRef]
- Mondol, M.A.S.; Stankovic, J.A. HAWAD: Hand Washing Detection using Wrist Wearable Inertial Sensors. In Proceedings of the 2020 16th International Conference on Distributed Computing in Sensor Systems (DCOSS), Marina del Rey, CA, USA, 15–17 June 2020; pp. 11–18. [Google Scholar] [CrossRef]
- Cao, Y.; Li, F.; Chen, H.; Liu, X.; Yang, S.; Wang, Y. Leveraging Wearables for Assisting the Elderly with Dementia in Handwashing. IEEE Trans. Mob. Comput. 2022, 22, 6554–6570. [Google Scholar] [CrossRef]
- Kalantarian, H.; Alshurafa, N.; Sarrafzadeh, M. Detection of Gestures Associated with Medication Adherence Using Smartwatch-Based Inertial Sensors. IEEE Sens. J. 2016, 16, 1054–1061. [Google Scholar] [CrossRef]
- Cherian, J.; Rajanna, V.; Goldberg, D.; Hammond, T. Did You Remember to Brush? A Noninvasive Wearable Approach to Recognizing Brushing Teeth for Elderly Care. In Proceedings of the PervasiveHealth ’17: 11th EAI International Conference on Pervasive Computing Technologies for Healthcare, Barcelona, Spain, 23–26 May 2017; pp. 48–57. [Google Scholar] [CrossRef]
- Thomaz, E.; Essa, I.; Abowd, G.D. A practical approach for recognizing eating moments with wrist-mounted inertial sensing. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Osaka, Japan, 7–11 September 2015; pp. 1029–1040. [Google Scholar] [CrossRef]
- Chun, K.S.; Bhattacharya, S.; Thomaz, E. Detecting Eating Episodes by Tracking Jawbone Movements with a Non-Contact Wearable Sensor. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2018, 2, 4. [Google Scholar] [CrossRef]
- Amft, O.; Kusserow, M.; Tröster, G. Probabilistic parsing of dietary activity events. In Proceedings of the 4th International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2007), Aachen, Germany, 26–28 March 2007; pp. 242–247. [Google Scholar] [CrossRef]
- Dong, Y.; Hoover, A.; Muth, E. A device for detecting and counting bites of food taken by a person during eating. In Proceedings of the 2009 IEEE International Conference on Bioinformatics and Biomedicine, Washington, DC, USA, 1–4 November 2009; pp. 265–268. [Google Scholar] [CrossRef]
- Dong, Y.; Hoover, A.; Scisco, J.; Muth, E. A new method for measuring meal intake in humans via automated wrist motion tracking. Appl. Psychophysiol. Biofeedback 2012, 37, 205–215. [Google Scholar] [CrossRef]
- Chun, K.S.; Sanders, A.B.; Adaimi, R.; Streeper, N.; Conroy, D.E.; Thomaz, E. Towards a generalizable method for detecting fluid intake with wrist-mounted sensors and adaptive segmentation. In Proceedings of the 24th International Conference on Intelligent User Interfaces, Marina del Ray, CA, USA, 16–20 March 2019; pp. 80–85. [Google Scholar] [CrossRef]
- Ishimaru, S.; Hoshika, K.; Kunze, K.; Kise, K.; Dengel, A. Towards reading trackers in the wild: Detecting reading activities by EOG glasses and deep neural networks. In Proceedings of the UbiComp ’17: 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2017 ACM International Symposium on Wearable Computers, New York, NY, USA, 11–15 September 2017; pp. 704–711. [CrossRef]
- Foerster, F.; Smeja, M.; Fahrenberg, J. Detection of posture and motion by accelerometry: A validation study in ambulatory monitoring. Comput. Hum. Behav. 1999, 15, 571–583. [Google Scholar] [CrossRef]
- Lorena, A.C.; Garcia, L.P.F.; Lehmann, J.; Souto, M.C.P.; Ho, T.K. How Complex Is Your Classification Problem? A Survey on Measuring Classification Complexity. ACM Comput. Surv. 2019, 52, 107. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, D.; Yao, L.; Guo, B.; Yu, Z.; Liu, Y. Deep Learning for Sensor-Based Human Activity Recognition: Overview, Challenges, and Opportunities. ACM Comput. Surv. 2021, 54, 77. [Google Scholar] [CrossRef]
- Guo, Y.; Chu, Y.; Jiao, B.; Cheng, J.; Yu, Z.; Cui, N.; Ma, L. Evolutionary dual-ensemble class imbalance learning for human activity recognition. IEEE Trans. Emerg. Top. Comput. Intell. 2021, 6, 728–739. [Google Scholar] [CrossRef]
- Alharbi, F.; Ouarbya, L.; Ward, J.A. Comparing sampling strategies for tackling imbalanced data in human activity recognition. Sensors 2022, 22, 1373. [Google Scholar] [CrossRef]
- Vaizman, Y.; Weibel, N.; Lanckriet, G. Context Recognition In-the-Wild: Unified Model for Multi-Modal Sensors and Multi-Label Classification. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2018, 1, 168. [Google Scholar] [CrossRef]
- Van Laerhoven, K.; Cakmakci, O. What shall we teach our pants? In Proceedings of the Digest of Papers. Fourth International Symposium on Wearable Computers, Atlanta, GA, USA, 18–21 October 2000; pp. 77–83. [Google Scholar]
- Tryon, W.W. Activity Measurement in Psychology and Medicine; Plenum Press: New York, NY, USA, 1991. [Google Scholar]
- Bulling, A.; Blanke, U.; Schiele, B. A tutorial on human activity recognition using body-worn inertial sensors. ACM Comput. Surv. 2014, 46, 1–33. [Google Scholar] [CrossRef]
- Abdallah, Z.S.; Gaber, M.M.; Srinivasan, B.; Krishnaswamy, S. Activity recognition with evolving data streams: A review. ACM Comput. Surv. 2018, 51, 71. [Google Scholar] [CrossRef]
- Sousa Lima, W.; Souto, E.; El-Khatib, K.; Jalali, R.; Gama, J. Human activity recognition using inertial sensors in a smartphone: An overview. Sensors 2019, 19, 3213. [Google Scholar] [CrossRef] [PubMed]
- Branco, P.; Torgo, L.; Ribeiro, R.P. A survey of predictive modeling on imbalanced domains. ACM Comput. Surv. 2016, 49, 1–50. [Google Scholar] [CrossRef]
- Krawczyk, B. Learning from imbalanced data: Open challenges and future directions. Prog. Artif. Intell. 2016, 5, 221–232. [Google Scholar] [CrossRef]
- Das, S.; Datta, S.; Chaudhuri, B.B. Handling data irregularities in classification: Foundations, trends, and future challenges. Pattern Recognit. 2018, 81, 674–693. [Google Scholar] [CrossRef]
- Japkowicz, N. The class imbalance problem: Significance and strategies. In Proceedings of the Int ’l Conference on Artificial Intelligence, Vancouver, BC, Canada, 13–15 November 2000; Volume 56, pp. 111–117. [Google Scholar]
- Hart, P. The condensed nearest neighbor rule (Corresp.). IEEE Trans. Inf. Theory 1968, 14, 515–516. [Google Scholar] [CrossRef]
- Tomek, I. Two modifications of CNN. IEEE Trans. Syst. Man Cybern. 1976, 6, 769–772. [Google Scholar] [CrossRef]
- Devi, D.; kr. Biswas, S.; Purkayastha, B. Redundancy-driven modified Tomek-link based undersampling: A solution to class imbalance. Pattern Recognit. Lett. 2017, 93, 3–12. [Google Scholar] [CrossRef]
- Lin, W.C.; Tsai, C.F.; Hu, Y.H.; Jhang, J.S. Clustering-based undersampling in class-imbalanced data. Inf. Sci. 2017, 409–410, 17–26. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Bunkhumpornpat, C.; Sinapiromsaran, K.; Lursinsap, C. DBSMOTE: Density-based synthetic minority over-sampling technique. Appl. Intell. 2012, 36, 664–684. [Google Scholar] [CrossRef]
- Raghuwanshi, B.S.; Shukla, S. SMOTE based class-specific extreme learning machine for imbalanced learning. Knowl. Based Syst. 2020, 187, 104814. [Google Scholar] [CrossRef]
- Ramentol, E.; Caballero, Y.; Bello, R.; Herrera, F. SMOTE-RSB*: A hybrid preprocessing approach based on oversampling and undersampling for high imbalanced data-sets using SMOTE and rough sets theory. Knowl. Inf. Syst. 2012, 33, 245–265. [Google Scholar] [CrossRef]
- Sáez, J.A.; Luengo, J.; Stefanowski, J.; Herrera, F. SMOTE–IPF: Addressing the noisy and borderline examples problem in imbalanced classification by a re-sampling method with filtering. Inf. Sci. 2015, 291, 184–203. [Google Scholar] [CrossRef]
- Ling, C.X.; Sheng, V.S. Cost-sensitive learning and the class imbalance problem. Encycl. Mach. Learn. 2008, 2011, 231–235. [Google Scholar]
- Cheng, F.; Zhang, J.; Wen, C.; Liu, Z.; Li, Z. Large cost-sensitive margin distribution machine for imbalanced data classification. Neurocomputing 2017, 224, 45–57. [Google Scholar] [CrossRef]
- Krawczyk, B.; Woźniak, M.; Herrera, F. Weighted one-class classification for different types of minority class examples in imbalanced data. In Proceedings of the 2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), Orlando, FL, USA, 9–12 December 2014; pp. 337–344. [Google Scholar] [CrossRef]
- Datta, S.; Das, S. Near-Bayesian support vector machines for imbalanced data classification with equal or unequal misclassification costs. Neural Netw. 2015, 70, 39–52. [Google Scholar] [CrossRef]
- Liu, X.Y.; Wu, J.; Zhou, Z.H. Exploratory undersampling for class-imbalance learning. IEEE Trans. Syst. Man Cybern. Part B 2008, 39, 539–550. [Google Scholar] [CrossRef]
- Seiffert, C.; Khoshgoftaar, T.M.; Van Hulse, J.; Napolitano, A. RUSBoost: A hybrid approach to alleviating class imbalance. IEEE Trans. Syst. Man Cybern. Part Syst. Huma. 2009, 40, 185–197. [Google Scholar] [CrossRef]
- Chawla, N.V.; Lazarevic, A.; Hall, L.O.; Bowyer, K.W. SMOTEBoost: Improving prediction of the minority class in boosting. In Proceedings of the European Conference on Principles of Data Mining and Knowledge Discovery, Cavtat-Dubrovnik, Croatia, 22–26 September 2003; Springer: Berlin/Heidelberg, Germany, 2003; pp. 107–119. [Google Scholar] [CrossRef]
- Wang, S.; Yao, X. Diversity analysis on imbalanced data sets by using ensemble models. In Proceedings of the 2009 IEEE Symposium on Computational Intelligence and Data Mining, Nashville, TN, USA, 30 March–2 April 2009; pp. 324–331. [Google Scholar] [CrossRef]
- Ni, Q.; Fan, Z.; Zhang, L.; Nugent, C.D.; Cleland, I.; Zhang, Y.; Zhou, N. Leveraging wearable sensors for human daily activity recognition with stacked denoising autoencoders. Sensors 2020, 20, 5114. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Shen, C. Performance analysis of smartphone-sensor behavior for human activity recognition. IEEE Access 2017, 5, 3095–3110. [Google Scholar] [CrossRef]
- Nguyen, K.T.; Portet, F.; Garbay, C. Dealing with imbalanced data sets for human activity recognition using mobile phone sensors. In Proceedings of the 3rd International Workshop on Smart Sensing Systems, Rome, Italy, 25–28 June 2018. [Google Scholar]
- Wu, D.; Wang, Z.; Chen, Y.; Zhao, H. Mixed-kernel based weighted extreme learning machine for inertial sensor based human activity recognition with imbalanced dataset. Neurocomputing 2016, 190, 35–49. [Google Scholar] [CrossRef]
- Gao, X.; Chen, Z.; Tang, S.; Zhang, Y.; Li, J. Adaptive weighted imbalance learning with application to abnormal activity recognition. Neurocomputing 2016, 173, 1927–1935. [Google Scholar] [CrossRef]
- Santos, M.S.; Abreu, P.H.; Japkowicz, N.; Fernández, A.; Soares, C.; Wilk, S.; Santos, J. On the joint-effect of class imbalance and overlap: A critical review. Artif. Intell. Rev. 2022, 55, 1–69. [Google Scholar] [CrossRef]
- Polar Electro. Polar M600 User Manual. Available online: https://support.polar.com/e_manuals/M600/wear-os/polar-m600-user-manual-english/Content/introduction.htm (accessed on 12 June 2024).
- Ward, J.A.; Lukowicz, P.; Gellersen, H.W. Performance Metrics for Activity Recognition. ACM Trans. Intell. Syst. Technol. 2011, 2, 6. [Google Scholar] [CrossRef]
- Figo, D.; Diniz, P.C.; Ferreira, D.R.; Cardoso, J.M. Preprocessing techniques for context recognition from accelerometer data. Pers. Ubiquitous Comput. 2010, 14, 645–662. [Google Scholar] [CrossRef]
- Lara, O.D.; Labrador, M.A. A survey on human activity recognition using wearable sensors. Commun. Surv. Tutor. IEEE 2013, 15, 1192–1209. [Google Scholar] [CrossRef]
- Vavoulas, G.; Chatzaki, C.; Malliotakis, T.; Pediaditis, M.; Tsiknakis, M. The mobiact dataset: Recognition of activities of daily living using smartphones. In Proceedings of the International Conference on Information and Communication Technologies for Ageing Well and e-Health, Rome, Italy, 21–22 April 2016; Volume 2, pp. 143–151. [Google Scholar] [CrossRef]
- Alamudun, F.; Yoon, H.J.; Hudson, K.B.; Morin-Ducote, G.; Hammond, T.; Tourassi, G.D. Fractal analysis of visual search activity for mass detection during mammographic screening. Med. Phys. 2017, 44, 832–846. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the KDD ’16: 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Ordóñez, F.J.; Roggen, D. Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition. Sensors 2016, 16, 115. [Google Scholar] [CrossRef] [PubMed]
- Abedin, A.; Ehsanpour, M.; Shi, Q.; Rezatofighi, H.; Ranasinghe, D.C. Attend and Discriminate: Beyond the State-of-the-Art for Human Activity Recognition Using Wearable Sensors. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2021, 5, 1. [Google Scholar] [CrossRef]
- Guan, Y.; Plötz, T. Ensembles of Deep LSTM Learners for Activity Recognition Using Wearables. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2017, 1, 11. [Google Scholar] [CrossRef]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch: An imperative style, high-performance deep learning library. arXiv 2019, arXiv:1912.01703. [Google Scholar]
- Lemaître, G.; Nogueira, F.; Aridas, C.K. Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning. J. Mach. Learn. Res. 2017, 18, 1–5. [Google Scholar]
- Xu, X.; Gong, J.; Brum, C.; Liang, L.; Suh, B.; Gupta, S.K.; Agarwal, Y.; Lindsey, L.; Kang, R.; Shahsavari, B.; et al. Enabling Hand Gesture Customization on Wrist-Worn Devices. In Proceedings of the CHI ’22: 2022 CHI Conference on Human Factors in Computing Systems, New Orleans, LA, USA, 30 April–5 May 2022. [Google Scholar] [CrossRef]
- Riboni, D.; Murtas, M. Sensor-based activity recognition: One picture is worth a thousand words. Future Gener. Comput. Syst. 2019, 101, 709–722. [Google Scholar] [CrossRef]
- Yang, J.B.; Nguyen, M.N.; San, P.P.; Li, X.L.; Krishnaswamy, S. Deep Convolutional Neural Networks on Multichannel Time Series for Human Activity Recognition. In Proceedings of the IJCAI ’15: 24th International Conference on Artificial Intelligence, Buenos Aires, Argentina, 25–31 July 2015; pp. 3995–4001. [Google Scholar]
- Cao, H.; Nguyen, M.N.; Phua, C.; Krishnaswamy, S.; Li, X.L. An integrated framework for human activity classification. In Proceedings of the UbiComp ’12: 2012 ACM Conference on Ubiquitous Computing, Pittsburgh, PA, USA, 5–8 September 2012; pp. 331–340. [Google Scholar] [CrossRef]
Activity Label | Total Data Size (H) | IR | |
---|---|---|---|
BT | Brushing Teeth | 0.24 | 500.72 |
CH | Combing Hair | 0.23 | 457.15 |
DR | Drinking | 0.21 | 509.85 |
EA | Eating | 2.13 | 48.83 |
NU | NULL | 100.90 | - |
TM | Taking Medication | 0.29 | 364.25 |
WA | Walking | 2.32 | 44.78 |
WH | Washing Hands | 0.44 | 239.08 |
- | Overall | 106.74 | 309.23 |
# | Feature Name | ||
---|---|---|---|
(A) | Average Jerk | (K) | Standard Deviation of the Number of Peaks |
(B) | Average Height | (L) | Number of Valleys |
(C) | Standard Deviation Height | (M) | Average Number of Valleys |
(D) | Energy | (N) | Standard Deviation of the Number of Valleys |
(E) | Entropy | (O) | Spectral Centroid |
(F) | Average | (P) | Spectral Spread |
(G) | Standard Deviation | (Q) | Spectral Rolloff (<85%) |
(H) | Root-Mean-Square | (R) | Axis Overlap |
(I) | Number of Peaks | (S) | Fractal Dimension |
(J) | Average Number of Peaks |
# | Type | Formula |
---|---|---|
W1 | Normal | |
W2 | Normal Inverted | |
W3 | Squared | |
W4 | Log | |
W5 | Log Inverted |
Trial | Algorithm | PMacro | RMacro | F1Macro | Pevent | Revent | F1event |
---|---|---|---|---|---|---|---|
Baseline | Naive Bayes | 0.22 | 0.54 | 0.15 | 0.11 | 0.99 | 0.16 |
SVM | 0.23 | 0.36 | 0.23 | 0.13 | 0.51 | 0.17 | |
Random Forest | 0.61 | 0.25 | 0.30 | 0.56 | 0.57 | 0.51 | |
XGBoost | 0.52 | 0.29 | 0.34 | 0.47 | 0.69 | 0.52 | |
DeepConvLSTM | 0.36 | 0.43 | 0.36 | 0.28 | 0.89 | 0.36 | |
Attend&Discriminate | 0.37 | 0.38 | 0.36 | 0.29 | 0.84 | 0.39 | |
RUS | Naive Bayes | 0.22 | 0.56 | 0.18 | 0.11 | 1.00 | 0.17 |
SVM | 0.25 | 0.47 | 0.29 | 0.15 | 0.65 | 0.22 | |
Random Forest | 0.31 | 0.51 | 0.34 | 0.22 | 0.82 | 0.30 | |
XGBoost | 0.30 | 0.52 | 0.34 | 0.20 | 0.90 | 0.29 | |
DeepConvLSTM | 0.25 | 0.53 | 0.28 | 0.14 | 0.89 | 0.21 | |
Attend&Discriminate | 0.25 | 0.48 | 0.29 | 0.15 | 0.86 | 0.23 | |
ROS | Naive Bayes | 0.22 | 0.53 | 0.14 | 0.11 | 0.99 | 0.16 |
SVM | 0.19 | 0.46 | 0.19 | 0.07 | 0.90 | 0.12 | |
Random Forest | 0.51 | 0.30 | 0.35 | 0.45 | 0.68 | 0.49 | |
XGBoost | 0.46 | 0.33 | 0.36 | 0.40 | 0.77 | 0.50 | |
DeepConvLSTM | 0.31 | 0.42 | 0.33 | 0.22 | 0.93 | 0.31 | |
Attend&Discriminate | 0.24 | 0.55 | 0.28 | 0.13 | 0.97 | 0.21 | |
CSL | Naive Bayes | - | - | - | - | - | - |
SVM | 0.06 | 0.60 | 0.10 | 0.07 | 0.99 | 0.13 | |
Random Forest | 0.41 | 0.35 | 0.36 | 0.34 | 0.76 | 0.43 | |
XGBoost | 0.38 | 0.37 | 0.36 | 0.30 | 0.82 | 0.40 | |
DeepConvLSTM | 0.27 | 0.53 | 0.31 | 0.17 | 0.95 | 0.24 | |
Attend&Discriminate | 0.24 | 0.63 | 0.26 | 0.13 | 0.98 | 0.20 |
Trial | Postprocessing | PMacro | RMacro | F1Macro | Pevent | Revent | F1event |
---|---|---|---|---|---|---|---|
Baseline | - | 0.52 | 0.29 | 0.34 | 0.47 | 0.69 | 0.52 |
Baseline | W4, 160 s | 0.72 | 0.29 | 0.35 | 0.69 | 0.65 | 0.60 |
ROS | - | 0.46 | 0.33 | 0.36 | 0.40 | 0.77 | 0.50 |
ROS | W4, 170 s | 0.71 | 0.33 | 0.39 | 0.68 | 0.74 | 0.64 |
Trial | Postprocessing | PMacro | RMacro | F1Macro | Pevent | Revent | F1event |
---|---|---|---|---|---|---|---|
Baseline | - | 0.55 | 0.31 | 0.35 | 0.49 | 0.63 | 0.53 |
Baseline | W4, 160 s | 0.60 | 0.30 | 0.33 | 0.55 | 0.61 | 0.56 |
ROS | - | 0.51 | 0.33 | 0.37 | 0.45 | 0.63 | 0.51 |
ROS | W4, 170 s | 0.61 | 0.33 | 0.37 | 0.56 | 0.63 | 0.58 |
Activity | Pevent | Revent | F1event | |||
---|---|---|---|---|---|---|
− | +Post | − | +Post | − | +Post | |
Brushing Teeth | 0.94 | 0.98 | 1.00 | 1.00 | 0.97 | 0.99 |
Combing Hair | 0.70 | 0.97 | 1.00 | 1.00 | 0.82 | 0.99 |
Drinking | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Eating | 0.06 | 0.14 | 0.43 | 0.43 | 0.10 | 0.21 |
Taking Medication | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Walking | 0.70 | 0.84 | 1.00 | 1.00 | 0.82 | 0.91 |
Washing Hands | 0.77 | 0.94 | 1.00 | 1.00 | 0.87 | 0.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cherian, J.; Ray, S.; Taele, P.; Koh, J.I.; Hammond, T. Exploring the Impact of the NULL Class on In-the-Wild Human Activity Recognition. Sensors 2024, 24, 3898. https://doi.org/10.3390/s24123898
Cherian J, Ray S, Taele P, Koh JI, Hammond T. Exploring the Impact of the NULL Class on In-the-Wild Human Activity Recognition. Sensors. 2024; 24(12):3898. https://doi.org/10.3390/s24123898
Chicago/Turabian StyleCherian, Josh, Samantha Ray, Paul Taele, Jung In Koh, and Tracy Hammond. 2024. "Exploring the Impact of the NULL Class on In-the-Wild Human Activity Recognition" Sensors 24, no. 12: 3898. https://doi.org/10.3390/s24123898
APA StyleCherian, J., Ray, S., Taele, P., Koh, J. I., & Hammond, T. (2024). Exploring the Impact of the NULL Class on In-the-Wild Human Activity Recognition. Sensors, 24(12), 3898. https://doi.org/10.3390/s24123898