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Abstract: For the RRT* algorithm, there are problems such as greater randomness, longer time con‑
sumption, more redundant nodes, and inability to perform local obstacle avoidance when encoun‑
tering unknown obstacles in the path planning process of autonomous vehicles. And the artificial
potential field method (APF) applied to autonomous vehicles is prone to problems such as local op‑
timality, unreachable targets, and inapplicability to global scenarios. A fusion algorithm combining
the improved RRT* algorithm and the improved artificial potential field method is proposed. First
of all, for the RRT* algorithm, the concept of the artificial potential field and probability sampling
optimization strategy are introduced, and the adaptive step size is designed according to the road
curvature. The path post‑processing of the planned global path is carried out to reduce the redundant
nodes of the generated path, enhance the purpose of sampling, solve the problem where oscillation
may occur when expanding near the target point, reduce the randomness of RRT* node sampling,
and improve the efficiency of path generation. Secondly, for the artificial potential field method, by
designing obstacle avoidance constraints, adding a road boundary repulsion potential field, and op‑
timizing the repulsion function and safety ellipse, the problem of unreachable targets can be solved,
unnecessary steering in the path can be reduced, and the safety of the planned path can be improved.
In the face of U‑shaped obstacles, virtual gravity points are generated to solve the local minimum
problem and improve the passing performance of the obstacles. Finally, the fusion algorithm, which
combines the improved RRT* algorithm and the improved artificial potential field method, is de‑
signed. The former first plans the global path, extracts the path node as the temporary target point
of the latter, guides the vehicle to drive, and avoids local obstacles through the improved artificial po‑
tential fieldmethodwhen encounteredwith unknown obstacles, and then smooths the path planned
by the fusion algorithm, making the path satisfy the vehicle kinematic constraints. The simulation
results in the different road scenes show that the method proposed in this paper can quickly plan a
smooth path that is more stable, more accurate, and suitable for vehicle driving.

Keywords: autonomous vehicle; RRT* algorithm; path planning; fusion algorithm; curvature;
artificial potential field method

1. Introduction
The casualties and economic losses caused by road traffic accidents are increasing

year by year. Every year, there are traffic accidents caused by improper driving behavior
and other related reasons [1]. Driverless cars can well reduce road congestion and greatly
reduce traffic accidents caused by human errors [2].

One of the crucial technologies for self‑driving vehicles is path planning [3]. It plans
the safe driving path according to the map information, sensor data, and target location
information and controls the steering and speed of the vehicle to ensure that the vehicle
runs safely and efficiently to the destination [4]. The commonly used path‑planning algo‑
rithms are the intelligent method, the random sampling method, the curve interpolation
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method, and so on. It can also be classified by global path planning and local path plan‑
ning. The global path planning algorithm has two methods: random sampling and graph‑
based search, such as the Dijkstra algorithm [5], the A* algorithm [6], PRM algorithm [7],
and the RRT* algorithm [8]. Among them, the RRT* algorithm finds extensive applica‑
tion in the realm of mobile robots and unmanned vehicles, and many researchers have
improved the RRT* algorithm. The RRT* algorithm proposed by Karaman et al. [9] intro‑
duces the functions of a reselection parent node and reconnection to optimize the search
results. However, its search efficiency is suboptimal. Cong et al. [10] proposed an RRT*
algorithm based on a hybrid sampling strategy, which effectively reduced the sampling
randomness of the algorithm. The HBAI‑RRT* algorithm proposed by Lin et al. [11] in
their study combines the greedy heuristic method with an adaptive adjustment strategy to
reduce the sampling area and improve search efficiency. Local path planning algorithms
more frequently employ the artificial potential field (APF) method, which can lead to local
minima and goal unreachability issues during the planning process [12]. After conducting
an in‑depth study, Li et al. [13] adopted the concept of the artificial potential field and im‑
proved strategies such as adding distance adjustment factors to address the limitations of
the traditional artificial potential field method. Xu [14] engineered a spring mechanism in
the repulsive velocity potential field to effectively eliminate the flutter phenomenon near
the obstacle. Zhai [15] and others added an adjustment factor and a judgement coefficient
to the potential field to optimize the potential field function and improve driving comfort
and the safety of the planned path. Many other researchers have proposed fusion algo‑
rithms combining the advantages of the two algorithms. Huang [16] introduced a fusion
algorithm that merges the RRT algorithm with the artificial potential field method. The
expansion of the RRT random tree incorporates probability values and a gravity compo‑
nent. With this method, simulation results demonstrate notable improvements in time
efficiency, path length, and iteration count. Zhang [17] introduced a novel path‑planning
algorithm that enhances obstacle avoidance speed and quality by combining the A* algo‑
rithm with the artificial potential field method. This fusion also effectively addresses the
inefficiencies of the A* algorithm when dealing with complex scenes. Wu [18] proposed a
path planning algorithm that integrates the artificial potential field method with the par‑
ticle swarm optimization algorithm. This approach allows for the real‑time generation of
obstacle avoidance paths and significantly improves the vehicle’s stability when avoiding
obstacles. Dasiah et al. [19] proposed an improved RRT* algorithm that realizes directional
fast search based on sampling angle constraints, which can effectively find better paths in
complex environments and significantly improve the convergence rate of the algorithm.
In terms of optimality and optimization in path planning problems, Nguyen et al. [20]
proposed a research method that integrates formation control and optimal control, taking
into account the kinematic and dynamic models of each vehicle. Experiments showed the
effectiveness of the control strategy. Shi et al. [21] studied the distributed time‑varying
output formation tracking problem of heterogeneous multi‑agent systems with different
dimensions and parameters. They designed an optimal tracking controller by adopting
model‑free reinforcement learning technology and designing the compensation input for
each follower. The simulation results show that the output formation tracking error even‑
tually approaches zero.

Although the above scholars have improved the path planning algorithm, there are
still problems that cannot deal with the unknown obstacles emerging in the environment
and cannot be applied to structured roads. Although some scholars consider real‑time ob‑
stacle avoidance, the vehicle collision range is not taken into account, and the final path
is not optimized. After consulting the literature, there is little research on the path plan‑
ning algorithm in the curved structured road scene, and there are some problems, such
as low search efficiency. Compared with the optimization of the path tracking control
in study [20] and study [21], this paper mainly studies the efficiency and quality of the
planned path of an unmanned vehicle, which provides a high‑quality path for tracking
control and improves the efficiency and stability of tracking. Therefore, this paper designs
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a method of vehicle driving guided by global path nodes and local planning to avoid ob‑
stacles. In order to solve the above path planning problems, this is necessary. The RRT*
global path planning algorithm with more sampling nodes is adopted to ensure that more
nodes play a guiding role, and the APF local path planning algorithm, which is better at
considering the collision range of obstacles and structured road constraints, is adopted to
solve the path planning problem of unknown obstacles on structured curved roads. This
paper proposes a fusion algorithm that combines the Improved RRT* algorithm and the
Improved Artificial Potential Field method. The objective is to tackle the path planning
challenge that arises when encountering a prominently unknown obstacle on a structured
road. By introducing the concepts of gravitational and repulsive fields into RRT* node
sampling, adding probabilistic sampling optimization, and enhancing the purposefulness
of node sampling, we improve the RRT* algorithm. Considering the curvature of the road
and designing the adaptive step size, which makes the sampling more efficient and time‑
consuming and solves the problem of possible oscillation when expanding near the target
point, subsequently, the nodes of the planned path undergo branching and constraints
to finalize the path post‑processing phase, enhancing the overall path quality. Enhance‑
ments to the artificial potential field method include the design of obstacles, optimization
of obstacle avoidance constraints, addition of a road boundary repulsive potential field
and optimization of the repulsive function, and the introduction of virtual gravitational
points. The goal unreachability problem is solved, and the local optimum is reduced to
improve the quality of locally planned paths. Finally, the fusion algorithm significantly
improves the performance of obstacle avoidance on structured roads. The planned roads
are smoothed to ensure that they are suitable for vehicles.

2. Traditional Algorithm
2.1. RRT* Algorithm

The RRT algorithm conducts random sampling in unoccupied space and continu‑
ously expands random tree branches until a branch contains or approaches the target
point, or until the algorithm reaches its iteration limit, at which point the planning pro‑
cess concludes [22].

From reference [9], it is known that the RRT* algorithm has the following theorems:

Theorem 1.  (asymptotic optimality of the RRT* algorithm): when the number of iterations tends
to infinity, the path quality of the RRT* algorithm tends to be optimal; that is, the algorithm has
asymptotic optimality.

Theorem 2.  (probabilistic completeness of the RRT* algorithm): if there is a feasible path from the
starting point to the end point, the RRT algorithm will almost certainly find a feasible path with an
infinite number of iterations.

In the RRT algorithm, the root node of the random tree is the starting point xstart, and
a random point xrand is generated in the blank area of the map. Then, the whole random
tree is searched, and xnearest is selected as the nearest node to xrand. Connect xrand and
xnearest, and expand a new node on the connected straight line at a set step size of xnew.
Next, we subject the new node to collision detection. If it does not collide with an obstacle,
we add it to the randomly expanded tree. If a collision occurs, then we delete the new
node. Continue the described steps until either the target node is appended to the random
tree node or the search concludes upon reaching the specified number of iterations. The
plannedpath is derived by retracing from the target point to the starting point. The random
sampling process is illustrated in Figure 1.
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The RRT* algorithm enhances the RRT algorithm by incorporating improved strate-
gies for parent node selection and reconnecting when sampling new nodes [23], which 
reduces the generated redundant paths and makes the planned paths better. The proce-
dure for reselecting parent nodes is depicted in Figure 2. 
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With node newx  as the center of the circle, form a constrained search range within 
the defined radius, as shown in Figure 2a. The neighboring nodes in it are used as candi-
dates for the parent node of newx . When solving for taking each candidate as a parent 
node, the cost from the starting point to newx  is calculated and compared with the cost of 
the original path; the candidate node with the lowest cost is chosen as the new parent 
node. This results in the least costly path within the constrained radius size at this point 
in time, and the candidate node for the path at this point in time is selected in place of the 
original node [24]. The path cost with the candidate point as the parent node is shown in 
Table 1, and the parent node should be updated to node 5, as shown in Figure 2b. 

Table 1. Constrained range path cost. 

Candidate Point Trails Path Distance 
5 0-5-9 0-5-9 = 8 
6 0-4-6-9 0-4-6-9 = 16 
8 0-5-8-9 0-5-8-9 = 9 

After completing the parent node reselection, a reconnection process is also required 
to prune the random tree [25], thereby further reducing the path length. Within the same 
constraints, as shown in Figure 3a, find all the neighboring nodes of node newx  with newx  
as the parent of each neighboring node and find the cost of each path, i.e., if the cost is less 
than the cost of the path of the original parent of the neighboring node, update its parent 
to node newx . The reconnection process is shown in Figure 3. From Table 2, the parent 
node of node 6 should be updated to node 9, as shown in Figure 3b. 

Figure 1. The node extension process.

The RRT* algorithm enhances the RRT algorithm by incorporating improved strate‑
gies for parent node selection and reconnecting when sampling new nodes [23], which
reduces the generated redundant paths and makes the planned paths better. The proce‑
dure for reselecting parent nodes is depicted in Figure 2.
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Figure 2. The process of reselecting the parent node: (a) the constrained search range when reselect‑
ing parent nodes; (b) the node situation after reselecting the parent node.

With node xnew as the center of the circle, form a constrained search range within the
defined radius, as shown in Figure 2a. The neighboring nodes in it are used as candidates
for the parent node of xnew. When solving for taking each candidate as a parent node,
the cost from the starting point to xnew is calculated and compared with the cost of the
original path; the candidate node with the lowest cost is chosen as the new parent node.
This results in the least costly path within the constrained radius size at this point in time,
and the candidate node for the path at this point in time is selected in place of the original
node [24]. The path cost with the candidate point as the parent node is shown in Table 1,
and the parent node should be updated to node 5, as shown in Figure 2b.

Table 1. Constrained range path cost.

Candidate Point Trails Path Distance

5 0‑5‑9 0‑5‑9 = 8
6 0‑4‑6‑9 0‑4‑6‑9 = 16
8 0‑5‑8‑9 0‑5‑8‑9 = 9

After completing the parent node reselection, a reconnection process is also required
to prune the random tree [25], thereby further reducing the path length. Within the same
constraints, as shown in Figure 3a, find all the neighboring nodes of node xnew with xnew
as the parent of each neighboring node and find the cost of each path, i.e., if the cost is less
than the cost of the path of the original parent of the neighboring node, update its parent to
node xnew. The reconnection process is shown in Figure 3. From Table 2, the parent node
of node 6 should be updated to node 9, as shown in Figure 3b.
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Table 2. Reconnection process path cost.

Neighboring Node Original Consideration New Pathway New Price

4 10 0‑5‑9‑4 0‑5‑9‑4 = 12
6 10 + 5 = 15 0‑5‑9‑6 0‑5‑9‑6 = 9
8 3 + 5 + 1 = 6 0‑5‑9‑8 0‑5‑9‑8 = 11

Parent node reselection and reconnection strategies complement and interact with
each other to significantly improve the path quality.

Although the parent node reselection and reconnection strategy in RRT* can improve
the path quality, it increases the time cost and still has a slow convergence speed, which
requires a large number of iterations to approach the better path. When dealing with a
complex obstacle environment, especially in the case of a narrow or curved channel, there
are some problems, such as unstable path quality, low algorithm efficiency, even planning
failure, redundant nodes, and an unsmooth path, and there is still a lack of targeted sam‑
pling. Therefore, the improved strategy should be introduced into the RRT* algorithm
according to Lemma 1.

Lemma 1.  (improving the efficiency of the RRT* algorithm): the improved RRT* algorithm reduces
the number of invalid sampling points by introducing heuristic information or an optimization
strategy, thus improving the efficiency of the algorithm.

2.2. Traditional Artificial Potential Field Method
The artificial potential field method views the vehicle motion space as a virtual force

field space, with the target point on the vehicle producing gravitational force and the ob‑
stacle producing repulsive force. Therefore, the vehicle moves under the effect of these
two forces.

Within the virtual realm of a force field, the attraction of a target point to a vehicle
is directly proportional to the distance between them. The equation for the gravitational
potential field function is provided below.

Uatt(d) =
1
2

kattd2(p, pg) (1)

where katt is the gravitational potential field gain coefficient, p is the current location of the
vehicle, pg denotes the position of the target point, and d(p, pg) is a vector of magnitude
representing the distance between the vehicle and the target point in the direction of the
vehicle pointing to the target point. The gravitational force function is obtained from the
above equation, as shown in the following equation.

Fatt(d) = kattd(p, pg) (2)
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When the vehicle is out of its repulsive potential field’s range, the obstacle exerts no
repulsive force. Only within the range of the repulsive potential field will the obstacle’s
repulsive force affect the vehicle; the greater the distance between the two, the smaller the
vehicle’s exposure to the repulsive potential energy value, and vice versa. The following
equation illustrates the repulsive potential field function.

Ureq(d) =

{
1
2 krep(

1
d(p,p0)

− 1
d0
)

2 1
d2(p,p0)

, 0 ≤ d(p, p0) ≤ d0

0, d(p, p0) > d0
(3)

where krep is the repulsive potential field gain coefficient, p is the current position of the
vehicle, pg denotes the position of the target point, and d(p, pg) is a vector of magnitude
representing the Euclidean distance between the vehicle and the obstacle in the direction
of the vehicle pointing towards the obstacle. The repulsive force function on the vehicle
can be calculated from the above equation as follows:

Freq(d) =

{
krep(

1
d(p,p0)

− 1
d0
), 0 ≤ d(p, p0) ≤ d0

0, d(p, p0) > d0
(4)

In the process of driving, the vehicle will be affected by both the gravitational field
and the repulsive field. The combined potential field to which it is subjected is as follows:

U(d) = Uatt(d) + ∑n
i=0 Urep(d) (5)

where n is the number of obstacles that have a repulsive effect on the vehicle.
From the combined potential field, we can obtain the combined force applied to

the vehicle during its motion, and the combined force expression is given in the
following equation:

F(d) = Fatt(d) + ∑n
i=0 Frep(d) (6)

However, the traditional artificial potential field method is prone to local minimum
problems and unreachable targets. As a result, the unmanned car may fall into a “trap
area” (where the resultant force on the vehicle is zero). For example, in the face of U‑
shaped obstacles, it is easy to fall into the local minimum area, so that the target point
cannot be reached. It is also possible that the unmanned vehicle cannot reach the target
position because the strong repulsive force will produce concussive behavior, which will
eventually lead to the failure of path planning.

3. Improved RRT* Algorithm
3.1. Introducing the Concept of Artificial Potential Fields
3.1.1. Introducing the Gravitational Component

In the RRT* algorithm, the gravitation between the random node and the target point
is increased to guide the random tree to grow to the target point more rapidly and reduce
the randomness. The schematic diagram is shown in Figure 4. In order to change the
resultant force of the growth direction, the gravity function G(n) is added to each new
node n as follows:

F1(n) = Rd(n) + G(n) (7)

where F1(n) is the function of the new node, Rd(n) is the random function of new nodes,
and G(n) is the objective gravity function.

The gravity function G(n) is as follows:

G(n) = ρ × g ×
xgoal − xnear∣∣∣ xgoal − xnear

∣∣∣ (8)
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where ρ is the step size, g is the gravity gain factor, xgoal is the target position vector,∣∣∣xgoal − xnear

∣∣∣ is the magnitude of the geometric distance between node xgoal and
node xnear.

Random function Rd(n):

Rd(n) = ρ ×
xgoal − xnear∣∣∣ xgoal − xnear

∣∣∣ (9)
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3.1.2. Introduction of Repulsive Force Component
When the RRT* algorithm expands the tree, it makes the random tree have a certain

distance from the obstacle by increasing the repulsive component, as shown in Figure 5.
The repulsive force component is added to the new nodes generated in the process of ran‑
dom tree expansion. Add the repulsion function T(n) at node n, as follows:

F2(n) = Rd(n) + T(n) (10)

where F2(n) is the new node in the search process, Rd(n) is the random growth function,
and T(n) is the repulsion function.
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The obstacle repulsion function T(n) is as follows:

T(n) =

{
0, p(x) > p0

ρkrep(
1

p(x) −
1
p0
) 1

p(x)2
∂(xnear−xobstacle)

∂xnear
, p(x) ≤ p0

(11)

where krep is the repulsive force gain coefficient, p(x) is the shortest distance from xrand
to the obstacle, p0 is the distance affected by the obstacle on the node, and xobstacle is the
position vector of the obstacle.

The new node generating function F(n) is as follows:

F(n) = F1(n) + F2(n) (12)
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where F1(n) represents the new node function of the random tree in the gravitational field,
and F2(n) represents the new node function of the random tree in the repulsion field.
It is known that F(n) is not only determined by xrand, which avoids random sampling
of the RRT*.

3.2. Probabilistic Sampling Optimization
Because of the strong randomness in sampling, the RRT* algorithm often causes ran‑

dom trees to deviate from growth, which seriously affects the efficiency of the algorithm.
It can be seen from Theorem 2 that in order to find a feasible path faster, the random tree of
the algorithm can grow more purposefully, according to Lemma 1. Therefore, probabilis‑
tic sampling optimization is designed to improve target orientation and reduce redundant
searches [26].

Firstly, the obstacle‑free area of the target point is determined, that is, the minimum
distance from target xgoal to all obstacles, which is called the convergence radius of target
point Rg. As depicted in Figure 6, a region circle is generated with Rg as the radius and
xgoal as the center, and the inner circle is the convergence region of the target point. Its
characteristic is that when the random tree grows within this range, it can direct itself to
the end point.
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Figure 6. Schematic diagram of convergence region of target point.

In the strategy of target bias, a target bias probability value ptarget is randomly gen‑
erated by using the random number generating function, and then a random probability
value p is obtained, which is greater than 0 and less than 1. When p ≥ ptarget is obtained,
then the sampling point is randomly generated. If p < ptarget is in the convergence region
of the target point, the random extension tree grows near the target point with a certain
probability by randomly generating a point as a sampling point. This method can accel‑
erate the convergence rate to the target node. The sampling point‑generating function
is as follows:

Xrand =

{
GoalArea(), p < ptarget
Sample(), p ≥ ptarget

(13)

where the GoalArea function represents the random generation of a sampling point in the
convergence region of the target point, the sample function represents the random genera‑
tion of a sampling point in the global range, and xrand represents the randomly generated
sampling point.

The probabilistic sampling optimization of the global path search is carried out [27].
When p ≤ ptarget, the target offset sampling is adopted, that is, a point is randomly gener‑
ated in the target convergence domain as the sampling point. When ptarget < p ≤ pgoal ,
there is uniform random sampling in the search space.

When a new node coordinate xnew is generated, it is determined whether the xnew is
in the target point convergence region. If so, the xnew is directly connected to the terminal
xgoal , but the step size ρ may be set to be larger than the target convergence radius Rg,
causing the random tree to oscillate when it expands near the xgoal . This will cause the
random tree to have limitations at the target point, as depicted in Figure 7.
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In order to avoid this situation andmake it get the optimal path faster, when p ≥ pgoal
occurs, all of the random tree nodes are traversed to find the node xk with the lowest cost
of cmin, as shown in the following formula:

cmin = Ck + d
(
xk, xgoal

)
(14)

where Ck is the actual path cost from xinit to xk, and d
(
xk, xgoal

)
is the Euclidean distance

from node xk to target point xgoal . Connect xk and xgoal , then perform collision detection
on the path from xk to xgoal . If no collision occurs, xk is directly used as the parent node of
xgoal , and then the path is generated. If a collision occurs, it is changed to uniform random
sampling, where ptarget and pgoal are between 0 and 1.

In the initial target offset strategy, the target bias probability of the RRT* algorithm is
fixed, and its adaptability to the scene is poor. In order to improve adaptability, a proba‑
bility adaptive target bias strategy is designed to expand the tree growth combined with
the gravity component constraints mentioned above to shorten the planning time [28].

Before generating a new sampling point, a decision circle is generated with the center
of xnew as the center and the connection between xnear and xnew as the radius R, as shown
in Figure 8.
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In Figure 8, xnew is the center of the circle, R is the radius, and S is the area of the
obstacle in the circle. The proportional value P can be obtained from the area value S, as
shown in the following formula:

P =
S

(π ∗ R)2 (15)

Then change the scale value P to the target offset probability value ptarget; the formula
is as follows:

ptarget = 1 − e−(P∗4.5) (16)

In the process of determining circle generation, the proportional value P will change
with the change of radius R and occupied area value S, while the probability value ptarget
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will change with the change of proportional value P, so as to realize the self‑adaptation of
target bias probability. After the target bias probability value ptarget is obtained and com‑
pared with the random probability value p, sample according to the probability sampling
optimization method mentioned above.

When the target offset sampling is adopted, the expansion tree grows to the target
point, and the random node xrand will appear in the direction of the xgoal and xnear connec‑
tions. Set the step size to ρ, and generate the formula for the new node xnew as follows:

xnew = xnear +
xrand − xnear

∥xrand − xnear∥
∗ ρ (17)

When uniformly randomly sampled in the search space, the extension tree grows in
the direction of the resultant force of random and gravitational components, so that the
expansion of the new node will not deviate from the shortest path and enhance the goal
bias of path sampling. The diagram of the new node is shown in Figure 4 above. The
following formula will generate the new node xnew:

xnew = xnear +

 xrand − xnear

∥xrand − xnear∥
∗ ρ +

xgoal − xnear∥∥∥xgoal − xnear

∥∥∥ ∗ g ∗ ρ

 (18)

3.3. Adaptive Step Size Strategy
In the process of global planning sampling, it can be seen from Theorem 1 that the

algorithm should speed up the search speed, make its iterative progress faster, and im‑
prove the path quality. Therefore, in this improvement, the adaptive step size should be
designed according to Lemma 1, so as to accelerate the sampling efficiency and improve
the path quality. Different road environments need different steps. If the step size is too
short, when there are few obstacles near the vehicle, or if the curvature of the road is small,
the search takes a long time and reduces the search efficiency. If the step size is too large,
there aremany obstacles in the environment, or if the road has a large curvature, it may fall
into a stagnant state and be unable to generate a feasible path. In order to further optimize
the step size selection, an adaptive step size strategy is proposed. The step size ρ uses the
number of obstacles near the vehicle and the curvature of the road so as to improve the
adaptability of the vehicle to the environment. The formula for calculating curvature k is
as follows:

k =

..
y(

1 +
( .
y
)2
) 3

2
(19)

where y is the road function. As the vehicle runs, there is continuous acquisition of vehicle
location information and lane conditions, and the curvature of the lane is calculated.

The adaptive step size policy formula is as follows:

ρ = ρ0eλ(p−k−q) (20)

where ρ0 is the initial step, p is the threshold of the number of obstacles, k is the curvature
of the road, q is the number of obstacles, and λ is a value between 0 and 1.

When the number of obstacles around vehicle q and the road curvature k are zero,
more than double the initial step size of ρ0 is selected to generate new nodes. When the
number of obstacles q is less than or equal to the threshold p and the curvature of the road is
small, it means that the vehicle is driving on a road similar to a straight line and the number
of obstacles around is small, and a new node is created by using a step close to the initial
step size of ρ0. When the number of obstacles q is greater than the threshold p, it shows that
there are a large number of obstacles around the vehicle. When there is a large curvature
on the road, itmeans that the road environmentwhere the vehicle is located is a large curve.
Consider that the vehicle cannot come into contact with obstacles; a new node is created
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by 0–1 times the initial step length of ρ0. After the above process, the sampling step size
can automatically change the applicable value in different road environments, improving
the adaptability of the algorithm and enhancing the robustness of path planning.

When the target point is on the straight road and there are few obstacles nearby, a
longer step size should be selected, but using a larger expansion step size will produce the
oscillation phenomenon shown in Figure 7, resulting in an increase in path planning time
and redundant nodes. In the optimization of probabilistic sampling, although it is possible
to take xgoal as the parent node near the target point, there is still probability. Therefore, it is
necessary to further optimize the algorithm’s performance. The distance Distance between
xnearest and xgoal is calculated before each expansion. If Distance > ρ, the expansion step
size remains the same; otherwise, the expansion step size is adjusted to the Distance more
suitable for growing near xgoal , and the oscillation problem is solved.

3.4. Global Path Post‑Processing
After the above‑mentioned improvement strategies, the algorithm in this paper can

quickly plan the initial path, but theremay still be some tortuous paths and a large number
of unnecessary nodes [29]. First of all, for the redundant paths, the triangle principle is
used to design the optimization node strategy, and then for some of the tortuous paths,
the constraint based on the minimum turning radius is established [30].

3.4.1. Node Pruning Strategy
The principle of the node pruning strategy is depicted in Figure 9. The dashed line

represents the initial path planned by the improved RRT* algorithmwithout incorporating
a node pruning strategy. The planning path is formed by the nodes in the initial node set
{Q1, Q2, Q3, Q4, Q5, Q6}, where Q1 and Q6 are the starting point and target point, respec‑
tively. After introducing the node pruning strategy, take the target point Q6 as the root
node, and each node in the initial node set is connected successively based on Q6, and col‑
lision detection is carried out. It is found that line segment Q6Q1, line segment Q6Q2, and
Q6Q3 will collide with obstacles, but there is no collision when Q6 is directly connected to
Q4, so Q4 is added to the set of optimized nodes. Then, taking Q4 as the starting point of
collision detection, Q4 can only connect with Q3 without collision, so Q3 is added to the
set of optimized nodes. Connect each node in the original path in turn and carry out a new
round of collision detection. We can know that when Q1 can be directly connected to Q3,
when the starting point is added to the optimized node set, it indicates that the node recon‑
nection ends, that is, Q1 is put into the optimized node set. According to the order of the
nodes in the optimized node set, the optimization path is obtained. The path is depicted
by the solid line in Figure 9. Compared with the original path, it is observed that the op‑
timized path features a substantial reduction in node count and effectively decreases the
path’s length cost.
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3.4.2. Node Optimization
After the path is treated by the node branch and shear, the joint angle of part of the

path cannot meet the vehicle dynamics constraint, so it is necessary to optimize the route
with too large a bend angle to ensure that the turning angle at the turning point of the
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path satisfies the vehicle kinematic constraints [31]. And the continuous folding angle is
optimized to make the turning angle more uniform and stable. The process is illustrated
in Figure 10.
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As shown in Figure 10a, in the planned path, the angle between node 2 and node 3
and node 4 and node 5 does not conform to the vehicle kinematic constraint, so it needs to
be optimized. This problem is solved by adding auxiliary nodes, such as nodes 3, 4, and
5 in Figure 10b, which flatten the initial angle so as to meet the minimum turning radius
constraint of the vehicle.

4. Improved Artificial Potential Field Method
4.1. Obstacle Avoidance Constraint

When modelling obstacles in the road environment, the threat in the longitudinal
direction is generally greater than that in the horizontal direction, so the longitudinal dis‑
tance between themain vehicle and the environmental obstacles should be fully considered
when establishing obstacle avoidance constraints. Therefore, the surrounding obstacles
are modelled as ovals. The major axis of the ellipse corresponds to the longitudinal axis of
the obstacle, and the short axis of the ellipse corresponds to the horizontal axis of the ob‑
stacle. Considering that the obstacle has speed, this will impact the main vehicle’s obstacle
avoidance performance. Therefore, a dynamic ellipse model of environmental obstacles,
which can change with speed, is designed. The long axis length of the ellipse is associated
with the velocity parameter. Thus, velocity is directly related to the length of the dynamic
ellipse’s major axis, indicating that a larger influence area corresponds to a lower collision
probability [32]. Environmental obstacles are depicted, as illustrated in Figure 11.
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The major and minor axes of the dynamic ellipse are denoted as follows:

a =
L
2
+ ka + krv (21)

b =
W
2

+ kb (22)

where L represents the length of the obstacle, W represents the width of the obstacle, v
denotes the speed of the obstacle, ka and kb are horizontal and vertical security redundancy
distances, and kr is the safety redundancy time.
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In the above modelling, the collision can be judged by judging whether there is an
overlap between the main vehicle and the ellipse boundary. The boundary of the ellipse is
divided into many circles, and several circles are made on the boundary line of the ellipse
with a width of 1/2 of the vehicle as the radius, thus forming a new ellipse, that is, the ex‑
tended ellipse. It is equivalent to increasing the collision range by half a vehicle’s width on
the basis of the original obstacle ellipse. The distance between the vehicle and the obstacle
is increased, and the path safety is improved. The extended ellipse is shown in Figure 12.
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The major and minor axes of an extended ellipse are expressed as follows:

ak =
L
2
+ ka + krv + Rob (23)

bk =
W
2

+ kb + Rob (24)

When the vehicle is driving on the planned path, the point mass model is used to sim‑
plify the vehicle, and collision detection is performed by assessing the spatial relationship
between the point mass model and the extended ellipse. If the center of mass lies within or
on the extended ellipse, a collision is deemed to have occurred, and the collision constraint
is not met. Conversely, if the center of mass is located outside the extended ellipse, no
collision is considered to have taken place, and the collision constraint is satisfied.

4.2. Road Repulsion Potential Field
Duringmain car operation on a two‑lane road, the lane line and lane boundary should

cause repulsion to the moving vehicle, and when there are no obstacles in the road, the ve‑
hicle should not leave the current lane unless it is necessary to change laneswhen obstacles
are encountered. Vehicles are not allowed to press the line or cross the road boundary to
avoid traffic accidents.

In the road repulsion potential field model design, ensuring that the repulsion poten‑
tial field at the lane boundary is the highest serves to confine the vehicle within the lane
boundary [33]. While preserving the boundary repulsion potential field, the lane repul‑
sion potential field is incorporated. To ensure smooth lane changes for the main vehicle,
themaximumvalue of the lane’s repulsive potential fieldmust be lower than that of the ob‑
stacle. A novel road repulsion potential field is formulated to prevent vehicle lane changes
in the absence of obstacles. The repulsion potential field for a vehicle travelling along the
centerline of the current lane is minimized to constrain the vehicle’s ability to remain in
the lane’s centerline. The road repulsion potential field Uroad is obtained by superposing
the lane line potential field Ul and the road boundary potential field Ur. The formula for
the road repulsion potential field Uroad is expressed as follows:

Uroad = Ul + Ur (25)

The lane line potential field Ul can make the vehicle keep a certain distance from the
lane andmake it move towards the center of the lane. It should be guaranteed to overcome
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the potential fieldwhen encountering obstacles, which requires that the lane potential field
be small enough to ensure driving safety. The lane line potential field established in this
paper is expressed by the following formula:

Ul =
Nls−1

∑
i

Ul,i (26)

Ul,i = Al exp

(
− (y − yc,i)

2

2σ2

)
(27)

where Al represents the intensity coefficient of the lane potential field, yc,i is the central
position of the Gaussian function, the i lane coordinate is generally set on the centerline
of the lane, and σ determines the range of the potential field, that is, the sensitivity of the
vehicle to the lane centerline.

Set the road boundary potential field Ur to infinity to limit vehicle crossing, as shown
in the Ur expression:

Ur =
N

∑
j

Ur,j (28)

Ur,j =
1
2

η

(
1

y − y0,j

)2

(29)

where η is the potential field factor of the boundary road, y0,j is the y coordinate of the j
road boundary, and N represents the number of road boundaries. Figure 13 shows the
road potential field diagram of the Dow repulsion.
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4.3. Increase Distance Factor
To address the issue that the target point is unreachable, it is necessary to optimize the

repulsion function and add the distance factor d2
g [34]. The improved repulsive potential

field function is as follows:

Urep(d, α) =


1
2 kαkrep

(
1

d(p,p0)
− 1

d0

)2
d2

g, 0 ≤ d(p, p0) ≤ d0

α ∈ (0, π)
0 , d(p, p0) > d0

(30)

After introducing the distance factor d2
g, the repulsion from the obstacle and the at‑

traction from the target point will both diminish to zero only when the vehicle reaches
the target point. This resolves the issue of the target being unreachable when the obsta‑
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cle is in close proximity to the target point. However, when there are multiple obstacles,
they may lead to local minima because their repulsion and gravity may be in the opposite
direction. Therefore, the repulsion function of the obstacle is improved, and a repulsion
term pointing to the target point is added. The enhanced repulsion function is defined
as follows:

Frep(d, α) =

{
Frep1 + Frep2, 0 ≤ d(p, p0) ≤ d0 ∩ α ∈ (0, π)

0, d(p, p0) > d0
(31)

The Frep1 and Frep2 expressions are as follows:

Frep1 = kαkrep

(
1

d(p, p0)
− 1

d0

)
d2

g (32)

Frep2 =
kα

2
krep

(
1

d(p, p0)
− 1

d0

)
dg (33)

where d0 represents the range of the obstacle’s repulsive potential field, d denotes the dis‑
tance between the obstacle and the vehicle, dg represents the distance from the vehicle to
the target point, krep is the repulsive gain coefficient, kα is the repulsive potential field con‑
straint factor, Frep1 is the repulsive force of the obstacle pointing to the vehicle, and Frep2
is directed from the vehicle to the target point. Figure 14 shows the force analysis of the
improved vehicle.
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4.4. Virtual Target Point
In the artificial potential field method, the vehicle moves from the high potential field

to the low potential field, and the target point is the global minimum point of the potential
field, so the vehicle should stop moving at the target point. When there are U‑shaped
obstacles in the road, the interior is the local minimum region, and the global minimum
is the target point. Therefore, the minimum point will not only be at the target point; in
this environment, the vehicle driving in the direction of low potential energy will enter
the local minimum area of the U‑shaped obstacle, which will cause the vehicle to stop
or oscillate around this area. The overall potential field featuring a U‑shaped obstacle is
depicted in Figure 15.

To address this issue, a virtual target point is introduced to steer the vehicle away from
obstacles. The potential field is adjusted to improve the passing capacity of the vehicle near
the local minimum so as to plan a more reasonable path. When setting the virtual target
point, the point is too far from the obstacle, which will lead to the planned path being
too long, resulting in an increase in the amount of calculation. The point too close to the
obstaclemay reduce the safety of the path or even collide with the obstacle. The processing
flow for encountering a U‑shaped obstacle is shown in Figure 16.
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Before introducing the virtual target point near the obstacle, first of all, judge whether
the vehicle meets the local minimum point or not, and the discrimination condition is
as follows: ∣∣∣∣∣Fatt +

n

∑
j=1

Frep,j

∣∣∣∣∣ < ε (34)

|x − xa| < αsa (35)

where j is the number of obstacles, ε is a small positive number, α is a positive number
between 0 to 1, xa is a certain state of the vehicle, and sa represents the total distance of the
vehicle from xa to the current position x in the process of vehicle movement.
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When the determination condition is established, it means that the virtual resultant
force on the vehicle is close to 0, and the vehicle has moved for a long distance but its dis‑
placement is very small, so it can be considered that the vehicle stops or oscillates around
the local minimum [35]. When introducing the virtual target point, the role of the target
gravitational potential field is ignored until the vehicle successfully reaches the virtual
target point, so as to get rid of the predicament of falling into local optimization in the U‑
shaped obstacle. The virtual target point is selected where the distance from the obstacle
is L2 longitudinally and L1 horizontally. The calculation method is as follows:

L1 = λa (36)

L2 = µb (37)

L =
√

L2
1 + L2

2 (38)

where λ and µ are the distance expansion coefficients. According to the danger degree of
the obstacle, the safe distance can be adjusted dynamically by changing the value of λ.

Through the above formula, the potential field function can be obtained:

Uvir = kvir

√
|x − x0 − L|2 + |y − y0|2 (39)

where kvir represents the coefficient representing the potential energy increase of the vir‑
tual target point.

Following the identification of the local minimum point, the vehicle becomes influ‑
enced by the potential field of the virtual target point. Considering that the target may
be unreachable, a circle with a radius of Rv is established as the virtual target area, with
the virtual target point as the center. Guided by the global path, the vehicle encounters
a U‑shaped obstacle and introduces the virtual target point. When the vehicle runs into
the area of the virtual target point, it will deactivate the virtual target point and proceed to
utilize either the original target point or the updated target point until reaching the global
target point. The virtual target point selection method is shown in Figure 17.

Sensors 2024, 24, x FOR PEER REVIEW 19 of 33 
 

 

 
Figure 17. Virtual target point selection method. 

On the road, the vehicle is mainly affected by the gravitational potential field, the 
repulsive potential field, and the road potential field. If the virtual target point is intro-
duced, all the potential fields in the road environment are shown as follows: 

all att rep road virU U U U U= + + +  (40)

4.5. Elliptical Groove Treatment 
On structured roads, obstacles typically pose a greater threat in the longitudinal di-

rection than in the lateral direction [36], so this paper uses the obstacle avoidance con-
straint mentioned in Section 3.1 for the obstacle model. However, when driving on a 
curved road, the extended elliptical boundary of the obstacle cannot be deflected by the 
curvature of the road, so it will affect the trajectory of the main vehicle in the lane, result-
ing in unreasonable planning and even local minimums, as depicted in Figure 18a. 

  
(a) (b) 

Figure 18. A comparison diagram of elliptical groove treatment: (a) a schematic diagram of the lim-
itations of the repulsive domain of elliptical obstacles; (b) a schematic diagram of an elliptical 
groove. 

Figure 17. Virtual target point selection method.



Sensors 2024, 24, 3899 18 of 31

On the road, the vehicle is mainly affected by the gravitational potential field, the re‑
pulsive potential field, and the road potential field. If the virtual target point is introduced,
all the potential fields in the road environment are shown as follows:

Uall = Uatt + Urep + Uroad + Uvir (40)

4.5. Elliptical Groove Treatment
On structured roads, obstacles typically pose a greater threat in the longitudinal direc‑

tion than in the lateral direction [36], so this paper uses the obstacle avoidance constraint
mentioned in Section 3.1 for the obstacle model. However, when driving on a curved road,
the extended elliptical boundary of the obstacle cannot be deflected by the curvature of the
road, so it will affect the trajectory of themain vehicle in the lane, resulting in unreasonable
planning and even local minimums, as depicted in Figure 18a.
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To address this issue, the extended ellipse boundary is processed by an elliptical
groove by considering the curvature of the road. The center of curvature of the road is
taken as the center of the two long boundaries of the elliptical groove, and the bending
degree of the two boundaries of the elliptical groove is consistent with the bending degree
of the lane line, and then the two long boundaries are closed and connectedwith two small
arcs. Finally, an elliptical groove is formed, as depicted in Figure 18b.

5. Fusion Algorithm
5.1. Analysis of the Limitation of the Algorithm

In addition to the local minimum situation encountered by the artificial potential field
method described above, the target is unattainable and there is the problem of facing U‑
shaped obstacles. There are also algorithmic limitations caused by road conditions.

As the distance between the vehicle and the target point increases, so does the gravi‑
tation in the potential field. Affected by the road conditions, when driving on the turning
road, A is the starting point and C is the target point. The distance AC between the main
car A and the target point C is less than the distance BC between the point B on the way
and the target point C. Therefore, the potential field of point B will be larger than that of
point A, and it is impossible to travel from the low potential field to the high potential field
in the APF potential field, so there will be a local minimum, as illustrated in Figure 19.
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In the actual driving scene, the environment is usually partially known, but there
are often unknown obstacles. Therefore, path planning needs to consider global and local
factors. Global path planning algorithms can usually find feasible paths in the whole envi‑
ronment but may not be able to deal with environmental changes and unknown obstacles.
The local path planning algorithm can usually quickly respond to environmental changes
and obstacle movement, but it only considers local factors, is likely to encounter local opti‑
mization, and so on. Therefore, as a local path planning algorithm, the artificial potential
field method often falls into the local minimum point in a complex environment and can‑
not reach the target point smoothly due to insufficient global information. As a global
algorithm, the RRT* algorithm is effective in static path planning when the road environ‑
ment information is known. However, it lacks real‑time obstacle avoidance capabilities
when confronted with unknown obstacles.

5.2. Algorithm Fusion Strategy
To simultaneously accomplish global path optimization and local avoidance of un‑

known obstacles, this paper proposes a hybrid path planning approach integrating en‑
hancements to the RRT* algorithm and the artificial potential field method. The RRT* al‑
gorithm is improved by using the strategies of probability sampling optimization, adaptive
step size, and path post‑processing, and the artificial potential field concept is introduced
to expedite the discovery of the global path within the road environment. The artificial po‑
tential field method is a local obstacle avoidance algorithm for the real‑time generation of
obstacle avoidance paths that realizes path planning according to the motion state and en‑
vironment information of the controlled object. Therefore, combining the improved RRT*
algorithm and the enhanced artificial potential field approach suggests a fusion algorithm,
which can combine the benefits of both global and local path planning algorithms. Be‑
fore applying the artificial potential field method to dynamic path planning, the improved
RRT* algorithm is used for the global path planning of static known environment roads,
and the global path node sequence is extracted.

The initial and final points in the node sequence also serve as the starting and ending
points for vehicle path planning. Make each node of the node sequence a temporary tar‑
get point, and when the vehicle is driving along the path, the enhanced artificial potential
field method is used to guide the vehicle by taking each node in the node sequence as the
target point in turn. Once the vehicle reaches a node, the subsequent node is designated
as a temporary target point until the vehicle reaches the global target point. When un‑
known obstacles are encountered in the driving process, the enhanced artificial potential
field method is employed to locally plan the path, thereby accomplishing obstacle avoid‑
ance. Upon encountering a local minimum value, the improved RRT* global path is au‑
tomatically re‑planned, or the virtual target point is introduced to update the temporary
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target point position and direct the vehicle away from the local minimum region, thus
solving the local minimum problem of the artificial potential field method and enhancing
the vehicle’s obstacle avoidance performance. The final fusion algorithm’s workflow is
depicted in Figure 20.
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5.3. Path Smoothing Strategy
After the above path optimization, the path produced by the RRT* algorithm exhibits

a turning angle, and the turning angle is too large, which is not suitable for vehicles. The
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Bezier curve only needs a few control points to generate amore complex, smooth curve [37].
The smooth processing of the path is realized by fitting the points on the path using the
n‑order Bezier curve. The vehicle can run smoothly.

Given points P0, P1, … Pn, the nth‑order Bezier curve is as follows:

P(t) =
n

∑
i=1

PiBiN(t), t ∈ [0, 1] (41)

where Pi is the vertex coordinate, BiN(t) represents the n‑degree Bernstein polynomial, and
its basis function is as follows:

BiN(t) =
n

∑
i=0

(
n
i

)
(1 − t)n−iti (42)

where
(

n
i

)
= n!

i!(n−i)! ; Formula (42) represents the n‑th order formula of the Bezier curve

determined by point P0P1 . . . Pn; P0, and Pn are the starting point and ending point, respec‑
tively; and P1 . . . Pn−1 is called the intermediate control point. Each Bezier curve is defined
by a set of intermediate control points. In order to make the connection of a multi‑segment
curve smooth, the end control point and the first end control point of the adjacent segment
should be selected so that the tangent direction and curvature of the connection point are
continuous and a smooth path can be generated [38].

6. Simulation Analysis
In order to verify whether the improved RRT* algorithm and the fusion algorithm can

search the target point and generate the path more effectively at the starting point of the
space, the simulation experiments of the improved RRT* algorithm and the fusion algo‑
rithm are carried out on the turning road. In order to further verify the performance of the
fusion algorithm, the simulation experiments are carried out in a more complex S‑bend.
The computer is configured with a Windows 11 operating system, an Intel (R) Core (TM)
i5‑8300H CPU in Dell, Texas, USA, a main frequency of 2.30 GHz, and a running memory
of 16.0 GB. The simulation environment is built in the MATLABR2022b environment, and
the simulation experiments of the improved RRT* algorithm and fusion algorithm are re‑
alized. In order to compare the experimental results, the simulation parameters of each
algorithm are unified. The following are the simulation experiment condition settings and
parameter selections:

The size of the simulation map in turn is 15 × 16. The starting node is (0, 0), and
the target node is (9, 0). The size of the simulation map in the S‑bend is 26 × 32. The
starting node is (0, 0), and the target node is (21, 0). The white dotted line and the white
solid line are the lanes that can be crossed by vehicles and the lanes that cannot be crossed
by vehicles. The grey road area is represented as a safe area, and the black boundary on
both sides means that vehicles are not allowed to touch the road boundary. The black
rectangular object and the black U‑shaped object are unknown obstacles and U‑shaped
unknown obstacles, respectively, and the red dotted line around the rectangular obstacle
is the influence area of the obstacle. The initial step size, the initial target bias probability,
the gravitational gain coefficient, the repulsion gain coefficient, the repulsive force range,
the maximum number of nodes, and the maximum number of iterations are 0.5, 1.05, 1.15,
and 1.25. The maximum number of nodes is 3000, and the maximum number of iterations
is 7000. The position of the starting point is represented by a blue solid dot, while the
position of the target point is represented by a red solid dot. Considering the randomness
of RRT series algorithms, 50 simulation experiments are carried out on each algorithm,
and the effectiveness of the improved algorithm is verified by comparing and analyzing
the four performance indexes, namely, the average path length, the average number of
nodes, the average simulation time, and the average number of iterations.
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6.1. Simulation Analysis of Improved RRT* Algorithm
This simulation experiment is divided into Experiments 1 and 2. Experiment 1 is the

simulation experiment of the improved RRT* algorithm before path post‑processing, and
Experiment 2 is the simulation experiment of path post‑processing.

6.1.1. Experiment 1
To evaluate the effectiveness of the improved RRT* algorithm proposed in this paper,

an analysis was conducted. Simulation experiments were conducted on the conventional
RRT algorithm, the RRT* algorithm, and the proposed improved algorithm outlined in
this paper. Among them, the traditional improved RRT algorithm, which introduces the
concept of potential fields, is used to compare with the improved algorithm in this paper,
which is commonly used in the improvementmethod of theRRT algorithm. The above four
RRT algorithms are simulated, respectively, and the average path length, average number
of nodes, average simulation time, and average number of iterations are compared and
analyzed. To further confirm the efficacy of the enhanced algorithm, the improved algo‑
rithm is simulated and compared with the Dijkstra algorithm, the ant colony algorithm,
the A* algorithm, and the improved A* algorithm, and the four performance indicators
of each algorithm are analyzed. Figure 21 below displays the simulation outcomes of the
aforementioned four algorithms. The solid blue line is the search path, and the red solid
line is the final search path. Table 3 shows the comparison of the experimental data for
the average path length, average number of nodes, average simulation time, and average
number of iterations of the four algorithms.

Table 3. Comparative analysis table of performance indexes of RRT algorithm.

Algorithm Average Path
Length

Average Number of
Nodes

Average Simulation
Time (s)

Average
Iterations

RRT algorithm 37.92 81 29.61 6150
RRT* algorithm 34.05 42 20.09 5590

Traditional improved RRT algorithm 33.89 47 2.24 575
This paper improves the algorithm. 32.47 12 1.21 279
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Compared to the traditional RRT algorithm, the improved RRT* algorithm presented
in this paper reduces the average path length by 14.37%, 4.64%, and 4.19% for the RRT* al‑
gorithm and the traditional improved RRT algorithm. The reduction in path length is not
obvious. This occurs due to the excessive randomness inherent in the RRT algorithm, and
there will still be redundant nodes. Moreover, the algorithm enhanced in this paper has
not yet undergone the post‑processing stage so far in the simulation experiment. However,
in terms of the average number of nodes, comparedwith the RRT algorithm, the RRT* algo‑
rithm, and the traditional enhanced RRT algorithm, they were reduced by 85.19%, 71.43%,
and 77.47%, respectively. This suggests that the enhanced RRT* algorithm significantly im‑
pacts the optimization strategy for redundant path branches, greatly reducing the number
of redundant nodes. In terms of average simulation time, the average simulation time is
reduced by 95.91%, 93.98%, and 45.98%, respectively, with the RRT algorithm, the RRT* al‑
gorithm, and the traditional improved RRT algorithm. At the same time, because the RRT
algorithm is a random search algorithm, it also notably diminishes the path’s randomness
attributed to time cost and can find the global search path more quickly. In terms of the
average number of iterations, compared to the RRT algorithm, the RRT* algorithm, and
the traditional improved RRT algorithm, the average number of iterations is reduced by
95.46%, 95%, and 51.48%, respectively, and the average number of iterations is significantly
reduced, indicating that the path generation speed of the enhanced algorithm is faster, the
time cost is lower, and the randomness of the RRT algorithm is reduced. Combined with
Figure 21d, it can be seen that while ensuring a safe distance at the road boundary, the
improved RRT* algorithm can generate the path more quickly and accurately, and the
improved RRT* algorithm significantly reduces redundant nodes in the path, minimizes
lateral fluctuations, and enhances path stability. Observation of Figure 21a–c shows that it
is obvious that these algorithms have many redundant nodes, have a large invalid search
range, and even extend to the opposite lane. The performance indicator comparison of the
four algorithms is presented in Table 3.

As depicted in Figure 22, the blue dotted line, purple dashed line, yellow dashed line,
black dashed line, and red solid line are the paths planned by the A* algorithm, the im‑
proved A* algorithm, the ant colony algorithm, the Dijkstra algorithm, and the improved
RRT* algorithm, respectively. it is evident that the improved RRT* algorithm can rapidly
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plan the global path compared to the other four algorithms while still maintaining a cer‑
tain safety margin from the road boundary; it does not encroach on the opposite lane, and
the vehicle tends towards the centerline of the lane in which it is situated, and the planned
path hasmore accurate nodes, which play an accurate guiding role for the following fusion
algorithm. Among them, the improved A* algorithm takes into account the lane boundary
constraints. Although the Dijkstra algorithm and the A* algorithm have a slightly smaller
average path length, they do not take into account the impact of the lane boundary on the
path. The planned path cannot avoid driving along the lane boundary and colliding with
the lane boundary, resulting in a risky path. Due to the influence of the level of pheromone,
the path planned by the ant colony algorithm has some limitations, such as a return path, a
long planning time, many path turning points, and so on. The enhanced A* algorithm con‑
siders the safe distance from the lane boundary andmitigates the risk of driving close to or
along the boundary, but does not consider the opposite lane, resulting in the encroachment
of the opposite lane; thus, the risk path appears. In comparison to the enhanced RRT* algo‑
rithm outlined in this study, the other four algorithms obviously show poor ability to deal
with the turning road. The comparison of performance indicators of the five algorithms is
depicted in Table 4.
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Figure 22. The improved algorithm in this paper and the overall effect simulation path of the
four algorithms.

Table 4. Comparative analysis table of performance indexes of five algorithms.

Algorithm Average Path
Length

Average Number of
Nodes

Average Simulation
Time (s)

Average
Iterations

Dijkstra algorithm 31.49 7 1.42 313
A* algorithm 31.65 6 1.37 175

Ant colony algorithm 32.93 16 3.47 ‑
Improved A* algorithm 31.78 4 1.15 116

This paper improves the algorithm. 32.47 12 1.21 279

6.1.2. Experiment 2
To evaluate the efficacy of the enhanced RRT* algorithm’s path post‑processing and

the effect of the node pruning strategy and node optimization, the enhanced RRT* algo‑
rithm and the enhanced RRT* algorithm with path post‑processing are both subjected to
simulation experiments within identical scenarios to facilitate comparative analysis.
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According to Figure 23, it is evident that the average number of nodes after path post‑
processing is 25% less than that of the original path, and the average path length exhibits
a reduction of 18.32% compared to the original path. There are fewer redundant nodes
in the optimized path, and the corner of the original path becomes smoother in the bend,
which adheres more closely to the vehicle’s kinematic constraints, and the updated node
is more accurately close towards the centerline of the lane, which lays a better founda‑
tion for the future fusion algorithm. The results indicate that the path generated by the
enhanced RRT* algorithm with path post‑processing is superior, which is more suitable
for guiding vehicles in the future fusion algorithm and directly verifies the effectiveness of
path post‑processing. The comparative analysis table of path post‑processing performance
indicators is depicted in Table 5.
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Table 5. Comparative analysis table of performance index of path post‑processing.

Algorithm Average Path
Length

Average Number of
Nodes

This paper improves the algorithm. 32.47 12
An improved algorithm after node optimization 26.52 9

6.2. Simulation Analysis of Fusion Algorithm
In order to verify the effectiveness of the improved RRT* and improved APF fusion

algorithms, the road environments of turning back and S turning are established, respec‑
tively, to verify the passing ability of the fusion algorithm for turning back and S turning
and to set up sudden, unknown obstacles at different positions on the road. Further anal‑
ysis of the fusion algorithm ensures that it can pass through the turn while avoiding un‑
knownobstacles smoothly. Finally, a path‑smoothing strategy is introduced to the planned
path. With or without unknown obstacles and unknown obstacles in straight roads or
bends and road scenes with complex obstacles, the passability and obstacle avoidance abil‑
ity of the fusion algorithm are analyzed and verified. Figure 24 show the simulation results
of experiments under different obstacles. Among them, the blue solid line, black point, and
red solid line are the paths planned by the improved RRT* algorithm, the fusion algorithm,
and the smooth fusion algorithm, respectively.
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obstacle; (b) simulation path of obstacle fusion algorithm on straight road; (c) limited simulation
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bends; (e) simulation path of road fusion algorithm with U‑shaped obstacles; (f) simulation path of
road fusion algorithm with complex obstacles.
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Through the above five groups of simulation experiments, from Figure 24a, it is ev‑
ident that when utilizing the fusion algorithm, the vehicle can navigate the curved road
more smoothly than with the traditional APF algorithm. On the road without unknown
obstacles, both the enhanced RRT* algorithm and the fusion algorithm can generate a path
from the initial point to the final destination. However, as can be seen from Figure 24b,e,
after the unknown obstacles appear on the road, the enhancedRRT* algorithmby itself can‑
not adequately evade abrupt unknown obstacles, while the fusion algorithm can evade the
unknown obstacles and satisfy the ellipse collision constraints. As depicted in Figure 24e,
when facing the first U‑shaped obstacle, the vehicle is trapped in the local optimal situation.
Through the action of the fusion algorithm, a virtual target point is introduced in proxim‑
ity to the obstacle, and after guiding the vehicle to near the virtual target point, the global
path re‑planning is realized, and the temporary target point is updated to keep the vehicle
going. For the second U‑shaped obstacle, it is because the global path is re‑planned. By
making a detour, the vehicle can be guided to avoid it; additionally, the fusion algorithm
demonstrates robustness in obstacle avoidance. As can be seen from Figure 24c,d, before
the elliptical slot processing is introduced into the algorithm, the obstacles have some lim‑
itations in the curve, which could impact the driving of the main vehicle and make the
planned path turn unnecessarily. It even makes the main car fall into the local optimal
situation. After the introduction of elliptical slot processing, the path will not be disturbed
by obstacles, and the vehicle can navigate the road smoothly. To further validate the effi‑
cacy of the fusion algorithm, all obstacles are put on the same turning road. As shown in
Figure 24f, the fusion algorithm can avoid unknown obstacles in complex scenes and sat‑
isfy collision constraints. The two U‑shaped obstacles are also reasonably avoided. When
reaching near the virtual target point, it can re‑plan a global path and successfully guide to
the target point. Simultaneously, the path planned by the above experiment is smoothed
to meet the requirements of vehicle tracking.

To further corroborate the effectiveness and robustness of the fusion algorithm, the
road scene is changed from a single U‑turn to a complex S‑bend. The simulation results
from Figure 25 show that no matter the barrier‑free S‑bend road, the simple obstacle S‑
bend road, or the complex obstacle S‑bend road, the fusion algorithm can still safely and
reasonably avoid random obstacles and reach the target point. In Figure 25c, when the last
obstacle is planned by the fusion algorithm, the improved RRT* is re‑planned twice. In
the first re‑planning, the path node falls within the scope of the collision constraint, so it is
eliminated. After the second re‑planning, the node is outside the constraint range, and the
vehicle is successfully guided to avoid the obstacle. At the same time, the above S‑bend
road simulation experiments ensure the smoothness of the planned path to fulfil the ve‑
hicle’s tracking requirements. All of the aforementioned experimental results underscore
the indispensability and superiority of the fusion algorithm.
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7. Conclusions
For the purpose of solving the path planning problem of highlighting unknown ob‑

stacles on the structured road, this paper takes the improved RRT* algorithm and the im‑
proved artificial potential field method as the main body of research, examines the path
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planning algorithm, improves the global path search efficiency and path quality of the
RRT* algorithm, and solves the limitations of the artificial potential field method of local
path planning. Combinedwith the two algorithms, a fusion algorithm is devised for global
dynamic scene path planning.

(1) Targeting the deficiencies of the RRT* algorithm, such as strong randomness, slow
convergence speed, poor path feasibility, and poor ability to deal with corners, the
RRT* algorithm is improved, and the concepts of artificial potential field and proba‑
bilistic sampling optimization are introduced tomake RRT* node samplingmore pur‑
poseful, probabilistic sampling applicability stronger, and sampling efficiency better.
Considering the constraint imposed by the fixed step size, the adaptive step size is
designed according to the road curvature to solve the problem that oscillation may
occur near the target point, improve the adaptability to each road scene, and achieve
rapid convergence towards the target point accurately. The path planned by the im‑
proved RRT* is post‑processed to minimize the number of redundant nodes along
the path and optimize the global path quality.

(2) In view of the problems that the artificial potential field method is prone to local op‑
timization, the target is unreachable, and it is not suitable for the global scene, an
enhanced artificial potential field method is introduced, which adds obstacle avoid‑
ance constraints to obstacles and formulates a road boundary repulsion potential field
to delineate the risk boundaries within the road space. The distance factor is added
to the repulsion function to solve the problem of target unreachability. In the face of
U‑shaped obstacles, virtual gravity points are introduced to solve the local minimum
problem and improve the performance of obstacle avoidance. For the case where the
obstacle is located in the bend, the safety ellipse of the obstacle is treated with an
elliptical slot to reduce unnecessary steering on the planned path.

(3) Aiming at the emergingunknownobstacles, complex obstacles, and other road scenes,
a fusion algorithmof improvedRRT* and an improved artificial potential fieldmethod
is proposed. The enhanced RRT* algorithm is employed for generating the global
path, and the nodes of the global path are extracted to serve as temporary target
points for the artificial potential field method, which guides the vehicle to drive, re‑
duces the occurrence of the local minimum, uses the artificial potential field method
to avoid the local pathwhen encounteredwith unknown obstacles, and carries on the
path smoothing processing to the planned path to satisfy the vehicle’s driving. The
simulation results in different scenarios demonstrate that the fusion algorithm can
successfully plan a smoother and more feasible path and verify its effectiveness and
robustness.

Currently, this study has its limitations. In our future work, we will consider adding
the fusion algorithm to decisionmaking inmore complex road environments, such as cross‑
roads, and analyze its path‑planning effect.
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