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Abstract: Universal image restoration (UIR) aims to accurately restore images with a variety of
unknown degradation types and levels. Existing methods, including both learning-based and
prior-based approaches, heavily rely on low-quality image features. However, it is challenging to
extract degradation information from diverse low-quality images, which limits model performance.
Furthermore, UIR necessitates the recovery of images with diverse and complex types of degradation.
Inaccurate estimations further decrease restoration performance, resulting in suboptimal recovery
outcomes. To enhance UIR performance, a viable approach is to introduce additional priors. The
current UIR methods have problems such as poor enhancement effect and low universality. To
address this issue, we propose an effective framework based on a diffusion model (DM) for universal
image restoration, dubbed ETDiffIR. Inspired by the remarkable performance of text prompts in the
field of image generation, we employ text prompts to improve the restoration of degraded images.
This framework utilizes a text prompt corresponding to the low-quality image to assist the diffusion
model in restoring the image. Specifically, a novel text–image fusion block is proposed by combining
the CLIP text encoder and the DA-CLIP image controller, which integrates text prompt encoding
and degradation type encoding into time step encoding. Moreover, to reduce the computational
cost of the denoising UNet in the diffusion model, we develop an efficient restoration U-shaped
network (ERUNet) to achieve favorable noise prediction performance via depthwise convolution
and pointwise convolution. We evaluate the proposed method on image dehazing, deraining, and
denoising tasks. The experimental results indicate the superiority of our proposed algorithm.

Keywords: image restoration; diffusion model; text prompt

1. Introduction

High-quality images exhibit clear texture details and more realistic colors, not only
enhancing visual experiences but also facilitating subsequent image processing and analy-
sis. However, image quality is affected during processes such as acquisition, transmission,
and storage, making it challenging to obtain clear, high-quality images. The various types
of degradation of images (such as blur, noise, raindrops, and haze) not only significantly
impact visual perception but also pose difficulties and challenges for subsequent applica-
tions of the images. Therefore, restoring degraded images to high-resolution images while
preserving as much information as possible, and recovering their color and texture, holds
significant research significance.

Given that there are multiple degradation types, single-task image restoration
methods [1–10] involve training a single-task model for each type of degradation. While
such an approach may yield favorable metrics for individual tasks, its applicability to
complex real-world scenarios is challenging. Additionally, if there is a shift in the degrada-
tion type or corruption ratio, the model’s performance could become unsatisfactory. This
dissatisfaction arises due to the misalignment between the actual scenario encountered
and the previously chosen parameters for either model construction or training. More re-
cently, many works have achieved universal image restoration by training a learning-based
model to be effectively capable of recovering images from various types of degradation.
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Methods can be roughly divided into two categories [11]: The first category comprises
methods [12–16] that model image restoration tasks as linear inverse problems, using pre-
trained diffusion models as generative priors to solve any linear inverse problem. However,
these methods require a precise definition of a function for each specific type of degrada-
tion. The second category comprises methods [11,17–21] that explicitly or implicitly train a
degradation-type classifier in an end-to-end manner, using it as the foundation for image
restoration. However, they lack the ability to generate missing or deteriorated details in
images [11].

In summary, an essential aspect of enhancing image restoration lies in effectively model-
ing degradation, especially in intricate application contexts. However, most methods heavily
rely on low-quality (LQ) image features for restoration guidance, which is challenging and
limits restoration performance. In cases of severe image degradation, the degradation pro-
cess may lead to the loss of essential feature information from the original image, making it
challenging for the model to accurately reconstruct the original image. The introduction of
additional prior information can effectively enhance the performance of image restoration.
Recently, text prompts have attracted considerable attention in various fields such as image
segmentation [22], image generation [23,24], and image editing [25]. Inspired by this, we
incorporate text prompts as prior information for image restoration tasks.

In this paper, we propose a framework that utilizes a text prompt corresponding to
a low-quality image to assist the diffusion model in restoring the image. Firstly, we use
the visual language model Minigpt-4 [26] to generate corresponding textual descriptions
for high-resolution images in the dataset. We utilize text prompts to represent the image’s
semantic content to provide additional prior information. Considering that the LR image
can provide the majority of low-frequency [27] and semantic information related to the
content [23], we utilize DA-CLIP [18] to extract features related to the degradation type
from the image and perform classification, facilitating the universal restoration of different
degradation types. Firstly, we input the textual caption into the pretrained CLIP text en-
coder [28] to obtain the text encoding. Subsequently, the LQ image is fed into the pretrained
DA-CLIP image controller to obtain the image degradation embedding. We then combine
the text encoding and degradation embedding, followed by prompt encoding, to obtain
the complete text prompt. In addition, to enhance the performance of the diffusion model
in image restoration tasks, we made improvements to its denoising network. Inspired by
ConvMixer [29] and ConvNeXtV2 [30], we designed a novel module for the denoising
network that functions as both an encoder and a decoder. We further propose a network,
efficient text prompt diffusion image restoration (ETDiffIR), to realize the text prompt
universal image restoration (UIR). ETDiffIR utilizes an advanced score-based diffusion
model [31]. Overall, our main contributions can be summarized as follows:

• We proposed a text prompt diffusion model to solve the universal image restoration
problem. To the best of our knowledge, this is the first attempt to incorporate text
prompts into universal image restoration.

• We pioneered an effective denoising network for diffusion-based image restoration.
By introducing text prior information into the diffusion model using an efficient
restoration block (ERB), ETDiffIR can achieve excellent image restoration results.

• We constructed a combined dataset containing three different degradation types and
generated synthetic captions using the visual-language model Minigpt-4, resulting in
a high-quality dataset comprising paired text and images.

2. Related Work
2.1. Universal Image Restoration

While single-task image restoration methods [1–5,32–35] have matured over time,
universal image restoration methods are currently still in the early stages of development.
Universal image restoration refers to the use of a single model to handle various types of
degradation, also known as “all-in-one” image restoration. Universal image restoration
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methods can be broadly categorized into two categories: methods based on unsupervised
generation priors and methods based on end-to-end training.

Using pretrained diffusion models as generative priors [12–16] for image restoration
has become a popular approach in recent times. These types of methods model image
restoration as a linear inverse problem. Kawar et al. [12], building upon the use of a diffu-
sion model prior, introduced the singular value decomposition of the degradation operator
during the inverse diffusion process to obtain restoration results. Similarly, Wang et al. [13]
refined only the null space content during the inverse diffusion process, obtaining diverse
results that achieved both data consistency and realism. Garber et al. [15] proposed a
guided technique based on preprocessing, which reduces the number of iterations in the
inverse diffusion process and enhances robustness. The mentioned methods require a
manually defined precise degradation function for each degradation type and are limited
to linear degradation.

The second category of methods is based on end-to-end learning, typically utilizing an
explicitly or implicitly embedded degradation classifier within the network to determine
the degradation type of the image, guiding the image restoration process [11,17–21]. For
example, Li et al. [17] designed a contrastive learning-based encoder that leverages the
consistency among images with the same type of degradation and the inconsistency present
among images with different types of degradation to learn degradation representations.
Chen et al. [21] employed knowledge distillation to obtain a universal image restoration
model from multiple image restoration networks specializing in different degradation
types. Jiang et al. [11] designed a blind image quality assessment module that automatically
detects and identifies the degradation type of an image, guiding the diffusion model in
image restoration. Zhang et al. [20] proposed a general image restoration method based
on principal component analysis. This method established a corresponding prior center
for each type of degradation and constructed task-oriented centers as single-component
centers through learnable principal component analysis. Luo et al. [18] designed an
image controller based on CLIP [28]. Through contrastive learning, the controller outputs
degradation features that match the input image’s degradation characteristics, resulting
in a natural classifier for different degradation types. More recently, Yan et al. [36] fine-
tuned language models to identify and restore different types of degradation through
user interaction. However, many methods still face challenges in terms of reconstruction
quality. Our approach utilizes scene descriptions as additional priors to enhance image
reconstruction under severe degradation.

2.2. Diffusion-Based Restoration

Diffusion models employ a fixed Markov chain to optimize the change boundary of
the likelihood function, and they have recently gained increasing attention because of their
outstanding performance in generative tasks [23]. In IR tasks, the application of diffusion
models is still in its early stages. Xia et al. [37] utilized Transformer blocks to simulate long-
range dependencies for noise prediction, achieving effective image reconstruction. Li et al. [38]
introduced residual prediction into a diffusion model for image SR. Luo et al. [31] proposed
the concept of an averaging equation to simulate the image degradation process, concurrently
achieving a faster diffusion process. However, image restoration based on diffusion models
often relies on a complex network to predict noise, which affects the efficiency of the model in
practical applications. To address this, the proposed ETDiffIR utilizes a lightweight network,
ERUNet, to predict noise, achieving satisfactory results.

3. Method

To enhance reconstruction performance in image restoration tasks, based on stochastic
differential equations (SDEs), we design a text-conditioned diffusion model suitable for
universal image restoration. Given a degraded image and a textual description of the scene
in that image, we use the diffusion model to generate a high-quality (HQ) image. We train
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the diffusion model on a synthetic dataset of image–text pairs. In the following sections,
we describe our data processing procedure and the main architecture of the model.

3.1. Preliminary

Here, we describe the main components of the diffusion model relevant to our process.
We adopt a mean-reverting stochastic differential equation (SDE) [31] to define the diffusion
process. Given input data x0 ∼ q sampled from distribution q, after T time steps of
increasing noise in the forward diffusion process, x0 is transformed into a noisy image
xT . The high-quality image IHQ is defined as x0. As shown in Figure 1, SDE can simulate
the degradation process from an HQ image to an LQ image by approximating xT as a
combination of the LQ image µ and pure noise ϵ. Specifically, the forward diffusion process
can be described as

dx = αt(µ − x)dt + βtdw. (1)

Here, αt and βt are two time-dependent parameters, controlling the mean-reversion
speed and the stochastic volatility, respectively. w represents the standard Wiener process.
We set β2

t /αt = 2ρ2 to ensure a closed-form solution for Equation (1), where ρ2 repre-
sents the stationary variance. Given any x0 and time step t ∈ [0, T], the corresponding
intermediate state xt can be expressed by the solution of Equation (1) as follows:

xt = µ + (x0 − µ)e−ᾱt +
∫ t

0
βze−ᾱt dw(z),

xt ∼ qt(x) = N (xt|ut(x), vt),
(2)

where ᾱt is defined to be equal to
∫ t

0 αzdz, and ut = µ + (x0 − µ)e−ᾱt and vt = ρ2(1− e−2ᾱt)
are the mean and variance of this Gaussian distribution, respectively. When t → ∞, ut
converges to µ and vt converges to ρ2.

HR Image

0x

Noisy  Image

Tx

0x 1x 1Tx  Tx

Forward Diffusion Process

Reverse Diffusion Process



LQ Image Pure Noise



 2~ (0, ) d ( )d dt tx x t w    

2d [ ( ) ( )]d dt t x t tx x logq x t w       

Figure 1. An overview of the forward diffusion process and the reverse diffusion process using mean-
reverting stochastic differential equations. The forward diffusion process simulates the degradation
of an HQ image x0 into an LQ image µ via diffusion x0 towards µ + ϵ.

In the inverse diffusion process, the reversal of the process is achieved by iteratively
recovering a signal from xT . With the reversed-time SDE [39], the reverse diffusion process
can be described as

dx = [αt(µ − x)− β2
t∇xlogqt(x)]dt + βtdw̃. (3)

The score ∇xlogqt(x) of the marginal distribution at time step t is the only unknown
in the inference phase. Since the HQ image x0 is available during the training process, we
can train a neural network to predict the unknown score. During the training process, the
ground-truth score can be represented as

∇xlogqt(x|x0) = − xt − ut(x)
v(t)

. (4)
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Furthermore, if xt is reparameterized as xt = ut(x) +
√

vtϵt, where ϵt is noise that
follows a standard normal distribution N (0, I), the ground-truth score can be expressed as
a noise term using

∇xlogqt(x|x0) = − ϵt√
vt

. (5)

Since noise ϵt is the only unknown parameter, we only need to train a conditional
time-dependent noise prediction network f̂ϕ to predict the noise. Similar to DDPM [40],
the training objective for this noise prediction network can be expressed as

L(ϕ) = ΣT
t=0γtE[∥ f̂ϕ(xt, µ, t)∥], (6)

Here, γt is a positive weight.

3.2. Overview

Figure 2 illustrates the architecture of our proposed ETDiffIR. To achieve a better condi-
tion for the noise prediction of the diffusion model, we introduce conditional augmentation
in the input section. The LQ image µ is concatenated with noise image µt (t ∼ [1, T]) as the
input to the ERUNet. The caption c is transformed into embedding by the text encoder. The
image controller predicts the degradation features from the LQ image µ. ETDiffIR takes
the LQ image µ ∈ RCin×Hin×Win and the corresponding textual caption c as inputs, and it
outputs the restored image Ir ∈ RCout×Hout×Wout . We designed a text–image fusion block
(TIFB), which integrates the caption to enhance the restoration effect and extracts damage-
type-related information to guide the diffusion model in image restoration. Specifically,
the TIFB takes the LQ image µ, the corresponding textual caption c, and time step t as the
input, and then it generates a fused time step embedding using the following formula:

t̃ = TIFB(µ, c, t). (7)

Here, TIFB(·) represents TIFB. Subsequently, the LQ image µ, caption c, and fused
time step embedding t̃ are fed into a conditional time-aware network, f̂ϕ, aiming to obtain
pure noise:

ϵ̂t = f̂ϕ(µ
⌢ϵt, c, t̃). (8)

Here, ⌢ represents concatenation. We use an efficient restoration U-shaped network
(ERUNet) to predict the noise, and, finally, we optimize f̂ϕ until convergence.

Efficient Restoration UNet

©

Timestep 
embedding

CLIP Text 
Encoder

Prompt 
embedding

⊕

⊕   Addition
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Image 

Controller

“A steaming train is 
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               Fused Timestep Embedding

t

( 1)T 
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Linear
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T
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Text-Image Fusion Block

te Text Embedding 
from Text Encoder
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Figure 2. The overall architecture of our proposed ETDiffIR. It comprises a text–image fusion block
(TIFB) and ERUNet for noise prediction. The TIFB incorporates a pretrained CLIP text encoder and a
pretrained DA-CLIP image controller, with their weights frozen during training.
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3.3. Text–Image Fusion Block

To leverage text information when recovering degraded images, we encode the caption
and then integrate it into the diffusion model. Additionally, to make the model adaptable
to different degradation types, a degradation-type classifier is required to encode the
degradation type of the image. Our text–image fusion block (TIFB) integrates text encoding
and degradation encoding into the time step encoding of the diffusion model, facilitating
the restoration of images with different degradation types.

Pretrained language models have strong text comprehension capabilities. Therefore,
we use a pretrained text encoder to build our network. As shown in Figure 2, our TIFB uses
a pretrained CLIP text encoder to encode input caption c into a caption embedding, et. It
also uses a pretrained DA-CLIP [18] image controller to discern the degradation features
of the LQ image and obtain the degradation embedding ed. The captions are processed
by the text encoder of CLIP, which is a ViT-B/32 model, producing a 512-dimensional
representation vector. This step encodes textual information into image-level features that
align with high-definition image content, optimizing the restoration results with additional
semantic signals. The LQ images are passed through the DA-CLIP image controller, also
generating a 512-dimensional representation vector ed. The DA-CLIP image controller
is derived from a fine-tuned CLIP image encoder, and its output vectors include image
content features and image degradation features. Then, we concatenate et and ed and embed
them as prompts. The time step t of the diffusion model is encoded as a time embedding
temb. Finally, we add the prompt to the temb of the diffusion model and pass them through a
linear layer to obtain the fused time embedding t̃. The prompt, which combines caption
embeddings and degradation embeddings, can facilitate degradation-type classification in
universal image restoration, thereby improving the restoration results.

3.4. Efficient Restoration Block

To efficiently extract contextual information and reduce the parameter count, inspired
by ConvNeXtV2 [30] and ConvMixer [29], we designed an efficient restoration block (ERB).
The core of the ERB is depthwise separable convolution (DSC), which is the combina-
tion of depthwise convolution and pointwise convolution, which are well known due
to Xception [41] and MobileNet [42]. Depthwise convolution independently convolves
each input channel using filters specific to each channel. Pointwise convolution com-
bines the results of the depthwise convolution through pointwise convolution, utilizing
a 1 × 1 convolution kernel. The separated depthwise convolution is used to extract the
spatial dimension information, and the pointwise convolution is used to amalgamate the
features learned by different channels to form the final output. DSC is commonly employed
in lightweight model design to reduce the number of parameters and calculation quantity.
Figure 3 details the structure of our proposed ERB: we employ depthwise convolution with
a large kernel size to extract global information for each channel, followed by residual
connections. After depthwise convolution, we apply two pointwise convolutions with an
inverted bottleneck design to fully fuse spatial and channel information. The inverted bot-
tleneck design has been explored using ConvNeXt [43]. The expanded hidden dimensions
allow for a comprehensive fusion of the globally extracted spatial information through
depthwise convolution. Additionally, we apply GELU activation and post-activation global
response normalization (GRN) [30] after each convolution to enhance channel contrast and
selectivity. Our ERB is defined as follows:

f
′
l = LN(GELU(DW( fl−1))) + fl−1, (9)

f
′′
l = GRN(GELU(PW( f

′
l ))), (10)

fl = PW( f
′′
l ) + f

′
l , (11)
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Here, fl represents the output feature map of layer l in the ERB, LN represents the
layer normalization layer, GLUE represents the GLUE activate function, DW represents
the depthwise convolution, and PW represents the pointwise convolution.
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Figure 3. Illustration of the efficient restoration U-shaped network (ERUNet).

3.5. Efficient Restoration U-Shaped Network for Noise Prediction

As shown in Figure 3, we introduce the ERB into the encoder–decoder part of the
efficient restoration U-shaped network (ERUNet). Compared to complex UNet architectures
that include self-attention mechanisms, this lightweight design significantly reduces the
computational complexity of the network. In tasks related to image restoration, the majority
of the image pixels are known [44]. Therefore, large models with a high computational
complexity are inefficient for IR tasks. Our ERUNet achieves optimal performance while
remaining relatively lightweight.

As illustrated in Figure 3, our proposed ERUNet consists of a total of five layers
from the top layer to the bottom layer, and it is divided into the encoder stage and the
decoder stage. In the encoder stage, we use the ERB to extract multiscale global context
information. After each ERB, a linear attention module is placed to capture long-range
information, enhancing the model’s understanding of the overall structure of the feature.
Then, a vanilla convolution with a stride of 2 is used to downsample the feature map. Since
the bottom of the U-shaped structure retains high-level abstract features from the input,
providing additional contextual information for the decoder, we utilize a cross-attention
mechanism [45] to map the text embedding et to the intermediate layer of UNet, enhancing
the guidance of the caption in image restoration. In the decoder stage, we utilize multiple
ERBs to decode features, and a nearest-neighbor interpolation is used to upsample the
features, followed by a 3 × 3 convolution operation to adjust the number of channels. The
numbers of ERBs in the encoder and decoder are denoted as [a1, a2, a3, a4] and [b1, b2, b3, b4],
respectively. Additionally, we place k ERBs in the bottom layer of the ERUNet.

3.6. Optimization and Inference

While Equation (6) provides a straightforward optimization objective for the ERUNet,
training can become unstable when the diffusion model encounters complex image degra-
dation. This is because predicting instantaneous noise at a given moment is challenging.
Following previous work [31], we employ a maximum likelihood learning strategy to alter
the optimization objective. To train the ERUNet, we optimize the following function:

L(ϕ) = ΣT
t=0γtE[∥

reversed xt−1︷ ︸︸ ︷
xt − (dxt) f̂ϕ

−x∗t−1∥]. (12)
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Here, x∗t−1 represents the theoretical state reversed from xt. The closed form of x∗t−1
can be represented by the following equation:

x∗t−1 =
1 − e−2ᾱt−1

1 − e−2ᾱt
e−α

′
t (xt − µ) +

1 − e−2α
′
t

1 − e−2ᾱt
e− ¯αt−1(x0 − µ) + µ. (13)

For the proof, please refer to [31]. Briefly, we replace the distance between the pre-
dicted state and the ideal state with the distance between the predicted noise and the
true noise. Given that the majority of pixels are known to be in the reversed state, this
approach helps to stabilize the optimization process. In the inference phase, the pre-
trained f̂ϕ samples the initial state xt, and the Euler–Maruyama method [46] iteratively
solves the SDE. Algorithms 1 and 2 describe the training and inference processes of our
ETDiffIR, respectively.

Algorithm 1 Training of ETDiffIR

Input: LR image µ = ILR, HR image x0 = IHR, text caption c, total step T.
1: Initialization: Random sample ϵt ∼ N (0, ρ2), t ∈ [0, T], T = 100.
2: repeat
3: t̃ = TIFB(µ, c, t); ▷ Enhance
4: ϵ̂t = f̂ϕ(It, c, t̃); ▷ Predict noise
5: dx = [αt(µ − x)− β2

t∇xlogqt(x)]dt + βtdw̃; ▷ Substitute score into Equation (6)

6: L(ϕ) = ΣT
t=0γtE[∥

reversed xt−1︷ ︸︸ ︷
xt − (dxt) f̂ϕ

−x∗t−1∥]; ▷ Loss
7: ∇ϕL; ▷ Gradient descent
8: until converged

Algorithm 2 Inference of ETDiffIR

Input: LR image µ = ILR, text caption c, total step T.
Output: The restored image IHR.

1: Initialization: Random sample xT ∼ N (0, ρ2), fϕ is the pretrained ERUNet, T = 100.
EM is Euler-Maruyama method.

2: for t = T to 1 do
3: t̃ = TIFB(µ, c, t); ▷ Enhance
4: ϵ̂t = f̂ϕ(xt, µ, c, t̃) ▷ Predict noise
5: dx = [αt(µ − x)− β2

t∇xlogqt(x)]dt + βtdw̃; ▷ Substitute score into Equation (6)
6: xt−1 = xt − EM(dxt); ▷ Reverse SDE
7: end for
8: IHR = x0;

4. Experiments

In Sections 4.1–4.3, we introduce the experimental settings, including the experimental de-
tails, hardware specifications, datasets, and evaluation metrics. The performance comparisons
and ablation experiments are specifically described in Sections 4.4–4.6, respectively.

4.1. Datasets

To validate the effectiveness of the ETDiffIR, we evaluated our method on three popular
image restoration tasks: image denoising, image deraining, and image dehazing. We trained
and evaluated the model separately in a universal setting and a single-task setting.

For the universal setting, following Airnet, we used WED [47], BSD400 [48], CBSD68 [49],
Rain100L [50], and SOTS [51] for training and testing. For the image denoising task, we used
the mixed datasets of WED and BSD400. The WED dataset contains 4744 high-quality training
images, while the BSD400 dataset contains 400 training images. We added Gaussian noise
with a variance of 50 to clean images from these datasets to obtain noisy images. The CBSD68
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dataset was used for testing. For the image deraining task, the Rain100L dataset was employed,
which comprises 200 clean–rainy image pairs for training and 100 image pairs for testing. For
the image dehazing task, the SOTS dataset was used, consisting of 72,135 training images and
500 testing images. Finally, to train a unified model in the general setting, we combined the
above datasets and trained a single model, which was then evaluated on multiple tasks.

For the single-task setting, we trained and evaluated the model using more challenging
datasets and compared it against advanced methods for each task. The Rain100H [50]
dataset was used for image deraining in the single-task setting. This dataset comprises
1000 clean–rainy image pairs for training and 100 image pairs for testing. For the image
dehazing task, the RESIDE-6k [51] dataset was utilized, consisting of 6000 training images
and 1000 testing images. For the image denoising task, we continued to train on the WED
and BSD400 datasets, with CBSD68 for testing.

To train the ETDiffIR, we used the advanced visual language model MiniGPT-4 to
generate synthetic captions for the HQ images in the dataset. Following TFRGAN [52], we
also used the captions corresponding to the HQ images as prompts during testing. Since
the inputs were high-resolution images, the generated captions were accurate. As shown
in Figure 4, we directly used these captions to generate the text–image pairs.

MiniGPT-4
Please describe this 
picture in one sentence.

Q

A grey and white cat sitting on a 
couch, looking out the window 
with a curious expression.

A

HQ Image Caption

Generated image–text pair

Figure 4. An example of image–text pair generation using Minigpt-4.

4.2. Implementation Details

In this research, we designed an efficient diffusion probabilistic model guided by text
to recover visually pleasing HQ images from LQ images. The network is designed to receive
3-channel image inputs and tokenized text inputs. During training, we performed data
preprocessing by reading text–image pairs from the dataset. The images were cropped to
256 × 256 pixels patches and the corresponding captions are encoded into 512-dimensional
tokens using CLIP ViT-B/32 text encoder. To enhance the model’s robustness, we performed
random horizontal and vertical flips on the images for data augmentation. To ensure that
our model has an appropriate size, the depth of our ERUNet is set to 4 layers. The
inner-channel number in the ERUNet is set to 64. The number of ERBs in each depth of
[a1, a2, a3, a4] and [b1, b2, b3, b4] is set to [2, 2, 2, 2] and [1, 1, 1, 1], respectively. There are two
ERBs in the bottom layer of the ERUNet. Our experiments were carried out on a Linux
server running Ubuntu 22.04. The CPU version was Intel Xeon w7-3465X, and two NVIDIA
RTX A5000 graphics cards were used. The PyTorch version was 2.1.1, and the Python
version was 3.8.18. We performed 600,000 iterations with a batch size of 12. The initial
learning rate was set to 2 × 10−4. The cosine annealing learning rate adjustment strategy
was employed. We utilized the AdamW optimizer, with β1 set to 0.9 and β2 set to 0.99. The
total time steps for the diffusion process were set to T = 100.
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4.3. Metrics

In this paper, we use five metrics to comprehensively evaluate the performance of the
image restoration model. The peak signal-to-noise ratio (PSNR) and the structural similarity
index (SSIM) [53] are used to measure the low-level difference between the restored result
and the ground truth. To evaluate IR models from a perceptual perspective, we introduce
learned perceptual image patch similarity (LPIPS) [54] and Fréchet inception distance
(FID) [55]. These metrics measure the distance between the distribution of the restored
images and the ground-truth images. Among them, FID considers more comprehensive
feature statistics rather than solely focusing on image quality or diversity, and it is widely
used to assess the generative performance of models.

4.4. Multiple Degradation Universal Restoration Results

We compared our proposed ETDiffIR with fouruniversal methods, namely, Stable
Diffusion (SD) [23], AirNet [17], TKMANet [21], and Universal-IR [18]. These selected
methods, as the mainstream methods in the field, ensure the comprehensiveness of the
evaluation. Among them, SD and Universal-IR are diffusion-model-based methods, with
SD also incorporating text prompts. Specifically, AirNet leverages contrastive learning to
obtain degradation features from images and then restores the images through a series of
regular convolutions and deformable convolutions [56]. TKMANet utilizes knowledge
distillation to learn an universal model from multiple restoration models. Universal-IR
is a diffusion-based model, and it shows good performance across multiple datasets. We
followed the official experimental settings and retrained these comparative methods on a
noisy–rainy–hazy combined dataset.

In Table 1, we report the quantitative comparison results in terms of distortion and
perceptual metrics with the state-of-the-art (SOTA) IR approaches in the universal restora-
tion setting. It can be observed that, in the majority of cases, our method outperforms most
of the baselines in terms of perceptual metrics, while also showing good performance in
terms of distortion metrics. Specifically, our method outperforms the second-best method
(Universal-IR), with an average FID improvement of 2.53 across the three degradation types.
These results indicate that our method is capable of providing a robust high-quality data
distribution for various degradation types, highlighting its strong generative capabilities.
Specifically, ETDiffIR outperforms the second-best method (TKMANet) by 1.16 dB in terms
of the PSNR on the image dehazing task. From the visual comparisons in Figure 5, it can
be observed that our method is able to remove fog at different levels, generating visually
pleasing dehazed images. In Table 1, it can be seen that, on the image deraining task, the
proposed ETDiffIR provides a substantial gain of 0.8 dB compared to Universal-IR [18].
From the visual comparison in Figure 6, it can be observed that ETDiffIR effectively re-
moves rain streaks, demonstrating strong image reconstruction capabilities. Finally, for
the image denoising task, on high-level noise with σ = 50, our method outperforms the
Universal-IR [18] method with a significant improvement of 7.06 in terms of FID. Ours-LQ
represents the results obtained from testing using captions corresponding to LQ images.
When captions corresponding to LQ images are used for restoration, the captions tend to
describe the contents of the image less accurately due to the damage in the LQ images.
Consequently, all the metrics are slightly inferior compared to the results obtained using
the captions corresponding to the HQ images. Figure 7 displays the qualitative comparison
results, demonstrating that our method produces denoised images that are more visually
pleasing and closer to human perception.
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Table 1. Quantitative comparison with state-of-the-art models in the universal restoration setting:
a single universal model is trained on a combined image dataset derived from different degrada-
tion types.

Method
Denoising (CBSD68) Deraining (Rain100L) Dehazing (SOTS)

PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓

SD [23] 20.13 0.476 0.286 109.64 26.21 0.712 0.094 32.62 25.49 0.805 0.098 22.40
AirNet [17] 28.00 0.797 0.209 88.22 34.90 0.968 0.028 19.03 27.94 0.962 0.056 18.39

TKMANet [21] 23.94 0.556 0.275 95.68 34.83 0.970 0.021 13.10 30.38 0.957 0.047 8.84
Universal-IR [18] 24.36 0.579 0.269 75.03 35.28 0.968 0.017 11.78 30.04 0.962 0.038 5.57

Ours-LQ 25.30 0.641 0.261 70.46 36.01 0.966 0.016 11.61 31.21 0.964 0.036 5.46
Ours 25.84 0.653 0.252 67.97 36.08 0.969 0.016 11.55 31.54 0.968 0.034 5.38

Figure 5. Dehazing comparisons for universal methods on images from the SOTS dataset [51]. The
proposed model better preserves image details.

Figure 6. Image deraining comparisons for universal methods on images from the Rain100L
dataset [57]. The proposed method effectively removes rain streaks to obtain rain-free images.
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Figure 7. Image denoising comparisons for universal methods on images from the CBSD68 dataset [49].

4.5. Single Degradation Results

In this section, we evaluate the performance of our ETDiffIR in a single-task setting,
training a separate model for each restoration task. We evaluate our model on three distinct
degradation tasks. For a more comprehensive evaluation of our model’s performance, we
make comparisons using three datasets: we compare image dehazing on the RESIDE-6k
dataset [58], image deraining on the Rain100H dataset [59], and image denoising on the
CBSD68 dataset [49]. For all three tasks, we compare our method with the prevailing
methods in each domain using: GCANet [60], GridDehazeNet [61], and DehazeFormer [62]
for image dehazing, and JORDER [63], PReNet [64], and MPRNet [65] for image deraining.
We also make a comparison with the advanced multiple-degradation-specific method
MAXIM [5] and IR-SDE [31]. Table 2 summarizes the quantitative comparison results on
different datasets. On each dataset, our method demonstrates superior performance in
terms of perceptual metrics.

Table 2. Quantitative comparison with state-of-the-art IR models in single-task setting on RESIDE-6k,
Rain100H, and CBSD68 test sets. The best value is highlighted in bold, while the second-best value
is underlined.

Dataset Method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓

Dehaze

GCANet [60] 26.59 0.935 0.052 11.52
GridDehazeNet [61] 25.86 0.944 0.048 10.62

MAXIM [5] 29.12 0.932 0.043 8.12
DehazeFormer [62] 30.29 0.964 0.045 7.58

IR-SDE [31] 25.25 0.906 0.060 8.33
Ours 30.44 0.934 0.027 5.37

Deraining

JORDER [63] 26.25 0.835 0.197 94.58
PReNet [64] 29.46 0.899 0.128 52.67
MPRNet [65] 30.41 0.891 0.158 61.59
MAXIM [5] 30.81 0.903 0.133 58.72
IR-SDE [31] 31.65 0.904 0.047 18.64

Ours 31.35 0.907 0.038 14.75

Denoising

CBM3D [66] 24.66 0.675 0.467 144.48
DnCNN [67] 28.01 0.802 0.221 87.23
FFDNet [68] 27.97 0.789 0.244 98.76
SUNet [69] 27.88 0.804 0.223 68.76
IR-SDE [31] 25.54 0.689 0.219 97.95

Ours 26.28 0.695 0.213 63.71
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4.6. Ablation Studies

In Section 4.6.1, we describe the ablation experiments conducted to demonstrate the
effectiveness of the guidance generated by the text–image fusion block (TIFB) and efficient
restoration UNet (ERUNet). In Section 4.6.2, we analyze why textual prompts can enhance
image restoration performance.

4.6.1. Importance of TIFB and ERUNet

To investigate the overall effectiveness of each component in ETDiffIR, we removed the
text–image fusion block (TIFB) and efficient restoration UNet (ERUNet) to form the three
models reported in Table 3. Baseline represents the model without TIFB and using vanilla
UNet for noise prediction. By comparing Baseline and Model-1, we found that EANet
demonstrated a 3.4% improvement in terms of FID compared to UNet, while reducing the
parameter count and FLOPS by 31.14% and 41.24%, respectively. By comparing Model-1
and our model, we observed that the parameter count of the model increased after adding
TIFB, mainly due to the inclusion of the pretrained CLIP text encoder and DA-CLIP image
controller in the TIFB. However, the model’s FLOPS only increased by 0.39%, and there
was a significant improvement in FID.

Table 3. Ablation studies of the proposed method. The best performance is shown in bold. Note that
the metrics are the average results on the CBSD68, Rain100H, and RESIDE-6k datasets.

Method TIFB ERBUNet UNet Param. (M) GFLOPS PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓

Baseline % % ! 48.98 129.02 27.66 0.787 0.133 31.11
Model-1 % ! % 33.73 75.81 28.54 0.798 0.135 30.04
Model-2 ! % ! 174.18 129.52 28.86 0.841 0.085 28.76

Ours ! ! % 158.93 76.31 29.36 0.845 0.093 27.94

Furthermore, a visual comparison of the models with and without the proposed
TIFB is shown in Figure 8. Specifically, the restored images using the TIFB exhibit lower
distortion and higher quality. For instance, in the images generated by the TIFB, the color of
the grass is more vivid and distinct. Figure 9 illustrates the training curves of our proposed
model compared to those of the model without the TIFB in three different image restoration
tasks: image denoising, image deraining, and image dehazing. It can be observed that our
model’s training is significantly superior.

Figure 8. Visualization results of ablation experiments on the effectiveness of the proposed TIFB and ERB.

(a) (b) (c)

Figure 9. Training curves of model variations, demonstrating the effectiveness of our TIFBs. (a) image
denoising, (b) image deraining, (c) image dehazing.
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4.6.2. Effect of Text Prompts

In Figure 10, we compare the restoration results using different captions. As shown,
replacing captions with empty text or using inappropriate captions leads to poor image
details, while appropriate prompts yield better restoration results. For the upper example,
using incorrect captions (i.e., “a cup of milk”) results in insufficient dehazing. For the lower
example, using captions results in more accurate details compared to not using captions.
This is because text prompts can provide the model with high-level semantic features.
These results confirm the effectiveness of text prompts.

Input “A cup of milk.” “Pathway bordered   by 
green grass and pink 
flowers.”

GT

Input “” “An otter resting on the 
ground amidst some 
greenery and small 
yellow flowers.”

GT

Figure 10. Visual comparison of different textual prompts.

5. Discussion

The development of deep-learning-based image restoration methods has been rapid
and has achieved good results. Due to the potential severe loss of information in low-
quality images, the development of image restoration methods is limited. In this paper,
we analyzed the limitations of diffusion models in image restoration tasks and proposed a
text-guided diffusion model to overcome these limitations in an universal image restoration
task. We conducted comparative experiments between the proposed method and other
state-of-the-art methods. The experimental results indicate that our model demonstrates
improved performance in image restoration on multiple tasks. Additionally, we anticipate
the potential of using text prompts to assist image reconstruction in obtaining restoration
strategies that are more in line with human visual perception.

The TIFB in ETDiffIR is designed to incorporate text prompts to assist in image
restoration. The ERUNet in ETDiffIR is designed to combine text prompts and predict
noise conditionally. Specifically, the TIFB utilizes a pretrained CLIP text encoder to encode
the textual description corresponding to the image. This encoding is then fused with the
degradation encoding obtained from the pretrained DA-CLIP image controller to generate
a prompt. Finally, we use this prompt, along with a cross-attention mechanism, to assist the
denoising network in obtaining satisfactory results. In the ERUNet, the efficient restoration
module extracts global information for each channel and efficiently integrates spatial and
channel features. We conducted related ablation experiments to elucidate the functionalities
of the TIFB and ERUNet. The related experiments indicate that removing the TIFB and
ERUNet leads to an increase in FID, demonstrating the importance of these two components
for image restoration.
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However, our work still has some limitations. As shown in Tables 1 and 2, the proposed
method achieved competitive results across various metrics for the deraining and dehazing
tasks. However, for image denoising, the proposed method performed poorly in terms
of the distortion metrics, PSNR and SSIM. Following previous work [18], we set the noise
σ value to a challenging 50. While using a lower noise σ value would indeed result in
better distortion metrics, denoising large noise is more valuable for research. As a universal
restoration model, our model needs to consider the universality of restoration, taking into
account the characteristics of other restoration tasks. Additionally, another reason is that
the diffusion process is difficult to recognize from Gaussian noise. When using diffusion
models for image restoration, additional noise introduced from the Wiener process makes it
difficult for the model to distinguish between the Gaussian noise that needs to be restored
and the noise from the diffusion process in image denoising tasks. Additionally, due to the
iterative sampling required by the diffusion model, our method lacks real-time capabilities.
In this paper, we only used synthetic datasets to train the model and did not train it on real
degraded datasets. Therefore, the proposed model may require additional optimization for
specific use cases.

6. Conclusions

In this paper, we designed an effective diffusion probabilistic model guided by text to
recover visually pleasing high-quality images from low-quality images. To achieve this, we
introduced a text–image fusion module to fully exploit textual information. The text–image
fusion block (TIFB) utilizes a pretrained CLIP text encoder to embed textual descriptions
corresponding to the images. These embeddings are then fused with image embeddings
provided by a pretrained DA-CLIP image controller. Additionally, the proposed efficient
restoration U-shaped network (ERUNet) demonstrates superior performance in noise
prediction compared to vanilla UNet. Our extensive experiments demonstrate that our
proposed method is competitive with state-of-the-art approaches.
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