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Abstract: The remarkable human ability to predict others’ intent during physical interactions develops
at a very early age and is crucial for development. Intent prediction, defined as the simultaneous
recognition and generation of human–human interactions, has many applications such as in assistive
robotics, human–robot interaction, video and robotic surveillance, and autonomous driving. However,
models for solving the problem are scarce. This paper proposes two attention-based agent models
to predict the intent of interacting 3D skeletons by sampling them via a sequence of glimpses. The
novelty of these agent models is that they are inherently multimodal, consisting of perceptual and
proprioceptive pathways. The action (attention) is driven by the agent’s generation error, and not by
reinforcement. At each sampling instant, the agent completes the partially observed skeletal motion
and infers the interaction class. It learns where and what to sample by minimizing the generation
and classification errors. Extensive evaluation of our models is carried out on benchmark datasets
and in comparison to a state-of-the-art model for intent prediction, which reveals that classification
and generation accuracies of one of the proposed models are comparable to those of the state of the
art even though our model contains fewer trainable parameters. The insights gained from our model
designs can inform the development of efficient agents, the future of artificial intelligence (AI).

Keywords: embodied AI agent; intent prediction; human–human interaction recognition; human–human
interaction generation; attention; perception; proprioception; multimodal; variational autoencoder;
recurrent neural network (RNN); long-short term memory (LSTM)

1. Introduction

Humans possess a remarkable ability to predict the intentions of others during physical
interactions, a skill that is crucial for seamless social interactions, collaborative tasks, and
competitive scenarios [1–4]. The ability to perceive others as intentional agents is innate and
crucial to development [5]. Humans begin to understand others’ intentions during physical
interactions within the first year of life. Infants start to attribute intentions to others’ actions
as they develop their motor skills and engage in social interactions. By around five months
of age, infants begin to produce smooth object-directed reaches, which is a milestone in their
ability to produce coordinated goal-directed actions [6]. This development in their actions
could provide information to structure infants’ perception of others’ actions, suggesting
that as infants become more capable of intentional actions such as reaching or tool use, they
may also start to understand the intentions behind others’ actions [6].

In artificial intelligence (AI) and related areas, human intent prediction has been
extensively studied in the context of different applications such as assistive robotics
(e.g., [7]), human-robot interaction (e.g., [8]), video and robotic surveillance (e.g., [9]),
and autonomous driving (e.g., [10]). Following [11], we define “intent prediction” as the
problem of simultaneously inferring the action/interaction class and generating the involved persons’
future body motions. Models that perform both generation and recognition of human-human
interactions are scarce.

Sensors 2024, 24, 3922. https://doi.org/10.3390/s24123922 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24123922
https://doi.org/10.3390/s24123922
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0428-1044
https://doi.org/10.3390/s24123922
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24123922?type=check_update&version=1


Sensors 2024, 24, 3922 2 of 35

This paper proposes two attention-based agent models that sample 3D skeleton(s) via
a sequence of glimpses for predicting the intent of the skeleton(s). The models implement
a perception-action loop to optimize an objective function. At each sampling instant, the
models predict the interaction class and complete the partially observed skeletal motion
pattern. The action (attention) is modeled as proprioception in a multimodal setting and is guided
by perceptual prediction error, not by reinforcement. This kind of embodied agent model
was first introduced in [12], and has since been used for handwriting generation from
images and videos [13], handwriting recognition [14], human interaction generation [15],
human interaction recognition [11], and speech emotion recognition [16]. As in [11], at
each sampling instant, our models simultaneously predict the interaction class and the
motion of both 3D skeletons. The models are used in both first-person (FP) and third-person
(TP) environments. Unlike large AI models, the proposed models actively and selectively
sample their environment, which allows them to be efficient in terms of model size (number
of trainable parameters), data size (number of skeleton joints sampled at each glimpse on
average), and training time. On comparing the proposed models (say, M2 and M3) with
that in [11] (say, M1), our findings are as follows:

1. The efficiency, and generation and classification accuracy on benchmark datasets of
the three models (M1, M2, M3) are analyzed in both FP and TP environments. M1
yields the highest classification accuracy, followed closely by M2. In each environment,
the accuracies are correlated with the number of trainable parameters. No model is
the clear winner for generation accuracy.

2. Three action selection methods (where to attend to) are analyzed for each of M1, M2,
M3. Classification accuracy is comparable when sampling locations are determined
from prediction error (without any weighting) or from learned weights (without
involving prediction error); however, the latter is less efficient in terms of model size.

The rest of this paper is organized as follows. The next section presents a review of
the literature on related work. The proposed agent models are described in Section 3 and
evaluated on benchmark datasets in Section 4. The paper concludes in Section 6. Objective
function derivations are included in the Appendix A.

2. Related Work

While a number of models have been reported for intent prediction from body motions
and/or eye gaze (see [17,18] for related reviews), few of them perform action classification
and generation simultaneously. A large volume of work has been reported on generating
actions using only one 3D skeleton (e.g., [15,19–21]) or on generating human motion in
crowded scenes (e.g., [22–27]). Comparatively, much less has been reported on generating
interaction of two persons using 3D skeletal data (e.g., [28–30]).

The models in [28,30] generate the 3D pose of one of the skeletons upon observing
the motions of the other. Given a sequence of 3D skeletal interactions of two persons, the
model in [29] generates their 3D skeletal interaction data for future time-steps. Some of
these models use attention. For example, temporal attention is used in [21,25], an attention
mechanism that weighs different modalities is used in [22,23], and spatiotemporal attention
is used in [24].

There is also a large volume of work on two-person interaction classification from
videos (e.g., [31]) and skeletal data (e.g., [32–39]). Some of these models incorporate
temporal [31,37], spatial and temporal [34], or multilayer feature [35] attention mechanisms.

Models for two-person interaction generation (e.g., [11,15,29,40]), reaction generation
(e.g., [28,30,41,42]), and two-person interaction recognition (e.g., [11,32,34,35,37–39]) using
3D skeletal data have been widely reported in the artificial intelligence (AI) and machine
learning (ML) literature. Interaction generation is more challenging than reaction generation
as the former requires generating the interaction sequence of both skeletons, while the
latter requires generating the reaction sequence of one skeleton given the action sequence
of the other.
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As noted in [11], the environment in these works is viewed from one of two perspec-
tives: first person (FP), where one of the interacting persons is the observer while the other
constitutes his environment (e.g., [11,28,30,42]), or third person (TP), where a person, such
as an audience, is the observer and the two interacting persons constitute the observer’s
environment (e.g., [11,29]).

Very few end-to-end AI/ML models perform both generation and recognition. In a
model, generation and recognition can be performed either separately, such as in [41], or
simultaneously, such as in [11,42] and our current work. In [11], both interacting skeletons
in both FP and TP are generated by utilizing a variational recurrent neural network (RNN)-
based model. In [42], only the reacting skeleton in FP is generated using a generative
adversarial network. To the best of our knowledge, the model reported in [11] is the only
one that performs simultaneous generation and recognition of two-person interactions.

Some of these models are attention-based. They utilize different attention mecha-
nisms, such as temporal (e.g., [21,25,31,37,42]), spatiotemporal (e.g., [11,24,34]), multimodal
(e.g., [22,23]), or multilayer (e.g., [35]). In most models, attention is implemented by strate-
gically introducing additional learnable parameters. For example, a transformer-based
attention mechanism is used in [41], and a sequence-to-sequence long short-term memory
(LSTM)-based attention layer is used in [42], both of which introduce additional attention
parameters learned during training. As a consequence, the model size may increase exorbi-
tantly to the extent that the execution of its software code for learning and inference requires
specialized hardware resources, as in the case of many transformer-based large language
models. In [11] as well as in this paper, attention is computed directly from the generation
error, which is why generation is necessary. Learnable attention parameters may or may
not be used in the models in [11] and in this paper. We show that these models yield state-
of-the-art recognition accuracy while being efficient, and learnable attention parameters to
weigh the generation error do not increase the accuracy on benchmark datasets.

3. Models and Methods
3.1. Preliminaries

This section defines a few concepts that are well established in the field and form the
basis of this paper, so that there is no ambiguity in the meaning of these terms.

Agent: An agent is anything that can be viewed as perceiving its environment through
sensors and acting upon that environment through actuators [43].

Perception is the mechanism that allows an agent to interpret sensory signals from
the external environment [44].

Proprioception is perception where the environment is the agent’s own body [12].
Proprioception allows an agent to internally perceive the location and movement of parts
of its body [44].

Generative model: A generative model, pmodel , maximizes the log-likelihood L(x; θ)
of the data, where θ is a set of parameters and x is a set of data points [45].

Evidence lower bound (ELBO): If z is a latent continuous random variable generating
the data x, computing log-likelihood requires computing the integral of the marginal likeli-
hood,

∫
pmodel(x, z)dz, which is intractable [46]. Variational inference involves optimization

of an approximation of the intractable posterior by defining an evidence lower bound
(ELBO) on the log-likelihood, L(x; θ) ≤ log pmodel(x; θ).

Variational autoencoder (VAE) is a deep generative model that assumes the data
consist of independent and identically distributed samples, and the prior, pθ(z), is an
isotropic Gaussian. VAE maximizes the ELBO given by [46]:

L(x; θ) ≤ Eqϕ(z|x)[log pθ(x|z)]− DKL(qϕ(z|x), pθ(z)) (1)

where qϕ(z|x) is a recognition model, pθ(x|z) is a generative model, E denotes expectation,
and DKL denotes Kullback–Leibler divergence.



Sensors 2024, 24, 3922 4 of 35

Saliency is a property of each location in a predictive agent’s environment. The
attention mechanism is a function of the agent’s prediction error [47,48].

3.2. Problem Statement

Let X = {X(1), X(2), . . . , X(n)} be a set of observable variables representing an envi-
ronment in n modalities (or signal types or sources). The variable representing the i-th
modality is a sequence: X(i) = ⟨X(i)

1 , X(i)
2 , . . . , X(i)

T ⟩, where T is the sequence length. Let

x≤t = {x(1), x(2), . . . , x(n)} be a partial observation of X such that x(i) = ⟨x(i)1 , . . . , x(i)t ⟩,
1 ≤ t ≤ T. Let y be a variable representing the class labels. Following [11], we define
the problem of pattern completion and classification as generating X and y as accurately as
possible from the partial observation x≤t. Given x≤t and a generative model pθ with pa-
rameters θ, at any time t, the objective is to maximize the joint likelihood of X and y, i.e.,
arg max

θ
pθ(X, y|x≤t).

3.3. Models

We present two models (M2, M3) for solving this problem and closely compare them
with the model (M1) in [11]. See Figure 1 for block diagrams of the agent within which
these models reside.

Model M1. [11] The completed pattern and class label are generated from the latent
variable z≤t. Mathematically,

arg max
θ

∫
log(pθ(X|x<t, z≤t)pθ(z≤t))dz + arg max

θ

∫
log(pθ(y|x<t, z≤t)pθ(z≤t))dz (2)

The model is trained end-to-end. See Figure 2a. The pseudocodes, borrowed from [11], are
shown in Algorithms 1 and 2.

Algorithm 1 Learning the proposed network
1: Initialize parameters of the generative model θ, recognition model ϕ, sequence length T.
2: Initialize optimizer parameters: β1 = 0.9, β2 = 0.99, η = 0.001, ϵ = 10−10.

3: Initialize W0 values as 1 and x(1:2)
1 ← F(X(1:2)

1 , W(1:2)
0 ), where W(1:2)

0 are the weights for the initial sampling
(ref. experimental setup in Section 4.2) and the function F generates a sample x(i) from the environment X(i)

after assigning weights W(i)
0 to modality i (ref. Action selection in Section 3.4).

4: while true do
5: for τ ← 1 to T do
6: Model M1:
7: X̂(1:2)

1:T , ŷ1:T ← PatComClassModel1(x(1:2)
1:τ )

8: Model M2:
9: X̂(1:2)

1:T , ŷ1:T ← PatComClassModel2(x(1:2)
1:τ )

10: Model M3:
11: X̂(1:2)

1:T ← PatComClassModel1(x(1:2)
1:τ )

12: ŷ1:T ← Classi f ier(X̂1:2
1:T)

Saliency Computation (Section 4 Action selection)

13: S(1:2)
τ ← g1(X(1:2)

τ+1 , X̂(1:2)
τ+1 )

14: W(1:2)
τ ← g2(S

(1:2)
τ )

15: x(1:2)
τ+1 ← F(X(1:2)

τ+1 , Wτ)

Learning
16: Update {θ, ϕ} by maximizing Equations (9), (10) or (11).
17: end for
18: end while
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(a) First person (FP) perspective involving two modalities: visual perception (superscript 1) and
body proprioception (superscript 2). Without loss of generality, here the blue skeleton is

considered as the primary agent (first person) while the red skeleton constitutes its visual
observations. Best viewed in color.

(b) Third person (TP) perspective involving only one modality: visual perception. Hence,
superscript indicating the modality is not shown.

Figure 1. Block diagrams of the proposed attention-based agent applied to two-person interaction
generation and classification. In the benchmark skeleton datasets, there is no information regarding
the appearance of joints (shape, color, texture) but only their location. The appearance constitutes vi-
sual perception (‘what’) while location constitutes visual proprioception (‘where’). The mathematical
symbols used in the diagrams are defined in Section 3.
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(a) Model M1 (b) Model M2 (c) Model M3

Figure 2. Implementation of the “pattern completion” block (ref. Figure 1) for the three models
considered in this paper are shown. The number of encoders (RNNs) is equal to the number of input
modalities (n); one encoder for each input modality. Inputs, completed pattern, and predicted class
label are the same for the three models, shown for time step t. Model M1 was proposed in [11] while
M2 and M3 are proposed in this paper.

Algorithm 2 PatComClassModel1(x(1:2)
1:τ )

1: for t← 1 to T do

2: Recognition Model
3: for i← 1 to 2 do
4: if t > τ then
5: x(i)t ← X̂(i)

t
6: end if
7: [µ

(i)
0,t ; σ

(i)
0,t ]← φprior(h(i)t−1)

8: [µ
(i)
z,t ; σ

(i)
z,t ]← φenc([x(i)t , h(i)t−1])

9: end for

Product of Experts

10: zt ∼ N (µ0,t, Σ0,t), where Σ0,t =
( 2

∑
i=1

Σ(i)
0,t
−2)−1

and µ0,t =
( 2

∑
i=1

µ
(i)
0,t Σ(i)

0,t
−2)

Σ0,t

11: zt|xt ∼ N (µz,t, Σz,t), where Σz,t =
( 2

∑
i=1

Σ(i)
z,t
−2)−1

and µz,t =
( 2

∑
i=1

µ
(i)
z,t Σ(i)

z,t
−2)

Σz,t

Generative Model
12: for i = 1 to 2 do
13: h(i)t ← RNNθ(h

(i)
t−1, [zt, x(i)t ])

14: [µ
(i)
x(i) ,t

; σ
(i)
x(i) ,t

]← φdec([h(i)t−1, zt])

15: X̂(i)
t ← µ

(i)
x(i) ,t

16: end for

Classification Model
17: h(3)t ← RNNθ(h

(3)
t−1, [zt, xt, h(1)t , h(2)t ])

18: ŷ(i)t ← so f tmax([h(3)t−1, zt])
19: end for
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Model M2. The class label is inferred directly from partial observations, and then
passed as an input to the generative model which generates the completed pattern. This is
similar to the model in [49]. Mathematically,

arg max
θ

∫
log(pθ(X|x<t, z≤t)pθ(z≤t))dz + arg max

ϕ
log qϕ(y|x<t) (3)

where qϕ is a recognition model. The model is trained end-to-end. See Figure 2b. The
pseudocodes are shown in Algorithms 1 and 3.

Algorithm 3 PatComClassModel2(x(1:2)
1:τ )

1: for t← 1 to T do

2: Classification Model
3: hcls

t = RNNcls
α (hcls

t−1, x1:t)

4: ŷt = so f tmax(hcls
t )

5: h
′
= tanh(ŷt)

Recognition Model
6: for i← 1 to 2 do
7: if t > τ then
8: x(i)t ← X̂(i)

t
9: end if

10: [µ
(i)
0,t ; σ

(i)
0,t ]← φprior(h(i)t−1)

11: [µ
(i)
z,t ; σ

(i)
z,t ]← φenc([x(i)t , h(i)t−1])

12: end for
13: [µ

(3)
0,t ; σ

(i)
0,t ]← φprior(h

′
)

14: [µ
(3)
z,t ; σ

(i)
z,t ]← φenc([x(1)t , x(2)t , h

′
])

Product of Experts

15: zt ∼ N (µ0,t, Σ0,t), where Σ0,t =
( 3

∑
i=1

Σ(i)
0,t
−2)−1

and µ0,t =
( 3

∑
i=1

µ
(i)
0,t Σ(i)

0,t
−2)

Σ0,t

16: zt|xt ∼ N (µz,t, Σz,t), where Σz,t =
( 3

∑
i=1

Σ(i)
z,t
−2)−1

and µz,t =
( 3

∑
i=1

µ
(i)
z,t Σ(i)

z,t
−2)

Σz,t

Generative Model
17: for i = 1 to 2 do
18: h(i)t ← RNNθ(h

(i)
t−1, [zt, x(i)t ])

19: [µ
(i)
x(i) ,t

; σ
(i)
x(i) ,t

]← φdec([h(i)t−1, zt])

20: X̂(i)
t ← µ

(i)
x(i) ,t

21: end for
22: end for

Model M3. The completed pattern is generated from the latent variable z≤t. The class
label is inferred from the completed pattern. The pattern completion model is pretrained:

arg max
θ

∫
log(pθ(X|x<t, z≤t)pθ(z≤t))dz (4)

Then the classification model is trained:

arg max
π

log(pπ(y|X<t)) (5)

Therefore, the model is not end-to-end. See Figure 2c. The pseudocodes are shown in
Algorithms 1 and 2.

3.4. Agent Architecture

The proposed predictive agent architecture comprises five components: environment,
observation, pattern completion and classification, action selection, and learning, each
of which are explicated in this section. See block diagrams in Figure 1, which show the
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input/output relations between these components. The agent architecture is the same for
the three models (M1, M2, M3) and is borrowed from [11].

1. Environment. The environment is the source of sensory data. It is time-varying.
2. Observation. The agent interacts with the environment via a sequence of eye and

body movements. The observations, sampled from the environment at each time
instant, are in two modalities: perceptual and proprioceptive.

3. Pattern completion. A multimodal variational recurrent neural network (MVRNN)
for variable-length sequences is used for completing the pattern for each modal-
ity. Recognition and generation are the two processes involved in the operation of
an MVRNN.

Recognition (encoder). The recognition models, qϕ(zt|x≤t, z<t) for models M1 and M3
and qϕ(zt|x≤t, z<t, yt) for M2, are probabilistic encoders [46]. They produce a Gaussian
distribution over the possible values of the code zt from which the given observations
could have been generated.

Model M1 [11]. The MVRNN consists of two recurrent neural networks (RNNs),
each with one layer of long short-term memory (LSTM) units. Each RNN generates the
parameters for the approximate posterior distribution and the conditional prior distribution
for each modality, as in [50].

Model M2. In addition to the perceptual and proprioceptive modalities, the class label
is presented as an input modality. A fully connected layer from the class labels generates
the parameters for the approximate posterior density for the class modality. The recognition
model generates the class label.

Model M3. Same as M1.
The distribution parameters from all modalities are combined using product of experts

(PoE), as in [51], to generate the joint distribution parameters for both the conditional prior,
pθ(zt|x<t, z<t) for M1 and M3 or pθ(zt|x<t, z<t, yt) for M2, and the approximate posterior,
qϕ(zt|x≤t, z<t).

The recognition model, similar to that in [50], is mathematically expressed in Lines 3–9
of Algorithm 2 and Lines 6–14 of Algorithm 3. Here, ϕprior generates the mean as a linear
function of its input, ϕenc generates the logarithm of standard deviation as a nonlinear
function of its input, ϕprior accepts the hidden state as input, and ϕenc accepts the hidden
state and the current observation as input.

Generation (decoder). Model M1 [11]. The generative model, pθ(X(1)
t , X(2)

t , yt|x<t, z≤t),
generates the perceptual and proprioceptive data and the class label from the latent vari-
ables, zt, at each time step.

Model M2. The generative model, pθ(X(1)
t , X(2)

t |x<t, z≤t), generates the perceptual
and proprioceptive data from the latent variables, zt, at each time step.

Model M3. Same as M2.
Each RNN in the MVRNN generates the distribution parameters of the sensory data

for a modality. The sensory data are sampled from this distribution. We assume the
perceptual and proprioceptive distributions to be multivariate Gaussian as the skeletal
joints are real-valued. We assume the class label distribution to be multivariate Bernoulli.

The pattern, X, is completed at each time using an iterative method. At any time t,
the model predicts x̂t+1 given the observations xk:t (1 ≤ k < t), then predicts x̂t+2 given
{xk+1:t, x̂t+1}, then predicts x̂t+3 given {xk+2:t, x̂t+1:t+2}, and so on till x̂T is predicted. This
method allows a fixed and finite model to predict a variable- or infinite-length sequence.
Since only the next instant is predicted at any iteration, the model can be size-efficient.

The generative model, similar to that in [50], is mathematically expressed in Lines
12–16 of Algorithm 2 and Lines 17–21 of Algorithm 3. Here, RNNθ represents an LSTM unit,
and ϕdec is the same function as ϕenc.

4. Action selection. In the proposed models, action selection is to decide the weight
(attention) given to each location in the environment in order to sample the current
observation. At any time t, a saliency map S(i)

t is computed for modality i from which
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the action is determined. The saliency map assigns a salience score S(i)
t,l to each location

l. There are 15 locations corresponding to the 15 skeleton joints: head (J1), neck (J2),
torso (J3), left shoulder (J4), left elbow (J5), left hand (J6), right shoulder (J7), right
elbow (J8), right hand (J9), left hip (J10), left knee (J11), left foot (J12), right hip (J13),
right knee (J14), right foot (J15). As in [11], we compute the weights in three ways,
as follows.

Weights are determined by thresholding the prediction error (pe). The threshold is
statistically estimated on the fly and is not predetermined.

S(i)
t = ∥X(i)

t+1 − X̂(i)
t+1∥1

S(i)
t,r = 1

|r| ∑l∈r S(i)
t,l

W(i)
t,l =

{
1, if S(i)

t,l ≥
1
nr

∑nr
i=1 S(i)

t,r

0, otherwise

x(i)t+1 = W(i)
t X(i)

t+1 + (1−W(i)
t )X̂(i)

t+1 (6)

where X(i)
t+1, X̂(i)

t+1 are the true and predicted data (skeleton joint coordinates), respectively,
∥.∥1 denotes L1 norm, |.| denotes the cardinality of a set, nr = 5 is the number of regions in
the skeleton (J1–J3, J4–J6, J7–J9, J10–J12, J13–J15) (see Figure 3), and S(i)

t,r is the mean saliency
over the joints in region r.

Figure 3. Different regions in the skeleton.

At any time, at least one region will be salient. Our experiments show that variable
number of salient regions at each time step is more effective. Fixing the number of salient
regions to a constant value occasionally leads to selection of regions with low saliency or
overlooking regions with high saliency. In the proposed models, only the salient joints are
sampled. For the nonsalient joints, the observation at time t + 1 is the predicted observation
from t.

Weights are learned as coefficients of the prediction error (lwpe).

S(i)
t = Wa(X(i)

t+1 − X̂(i)
t+1)

W(i)
t = σ(S(i)

t )

x(i)t+1 = W(i)
t X(i)

t+1 (7)

where Wa is the weight matrix.
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Weights are learned as coefficients of the hidden states (lw).

S(i)
t = Wah(i)t

W(i)
t = σ(S(i)

t )

x(i)t+1 = W(i)
t X(i)

t+1 (8)

where Wa is the weight matrix.

5. Learning. The objective is to maximize Equations (9)–(11) for models M1 [11], M2,
M3, respectively. The derivation of these equations from the objectives of multimodal
VAE [51], variational RNN [50], and VAE for classification [49] are shown in the
Appendix A.

Eqϕ(z≤T |x≤T)

[ T

∑
t=1

2

∑
i=1

λi log pθ(X(i)
t |z≤t, x<t) + λ3 log pθ(y|z≤T , x<T)

]
− β

T

∑
t=1

DKL
(
qϕ(zt|x≤t, z<t), pθ(zt|x<t, z<t)

)
(9)

where λ1, λ2, λ3, β are the weights balancing the terms.

Eqϕ(z≤T |x≤T ,y≤T)

[ T

∑
t=1

2

∑
i=1

λi log pθ(X(i)
t |z≤t, x<t)

]
+ log pθ(y)

− β
T

∑
t=1

DKL
(
qϕ(zt|x≤t, z<t, yt), pθ(zt|x<t, z<t, yt)

)
+ α log qϕ(y|x≤t) (10)

where α controls the relative weight between generative and purely discriminative learning.

Eqϕ(z≤T |x≤T)

[ T

∑
t=1

2

∑
i=1

λi log pθ(X(i)
t |z≤t, x<t)

]
− β

T

∑
t=1

DKL
(
qϕ(zt|x≤t), pθ(zt)

)
+ log qπ(y|X1:T) (11)

where qπ(y|X1:T) is the classification model.

4. Experimental Results
4.1. Datasets

As in [11], our models are evaluated on two datasets:

(1) The SBU Kinect Interaction Dataset [52] is a two-person interaction dataset comprising
eight interactions: approaching, departing, pushing, kicking, punching, exchanging
objects, hugging, and shaking hands. The data are recorded from seven participants,
forming a total of 21 sets such that each set consists of a unique pair of participants
performing all actions. The dataset has approximately 300 interactions of duration 9
to 46 frames. The dataset is divided into five distinct train–test splits as in [52].

(2) The K3HI: Kinect-Based 3D Human Interaction Dataset [53] is a two-person interaction
dataset comprising eight interactions: approaching, departing, kicking, punching,
pointing, pushing, exchanging an object, and shaking hands. The data are recorded
from 15 volunteers. Each pair of participants performs all the actions. The dataset has
approximately 320 interactions of duration 20 to 104 frames. The dataset is divided
into four distinct train–test splits as in [53].
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4.2. Experimental Setup

We use a single hidden layer, as in [50], for each modality in the MVRNN. Each
modality in the MVRNN has a recurrent hidden layer of 256 units and a latent layer of
20 variables. These parameters are estimated empirically. T is variable, as interaction
videos are of different lengths. Stochastic gradient descent, with a minibatch size of 100,
is used to train the model. Adam optimization with a learning rate of 0.001 and default
hyperparameters (β1 = 0.9, β2 = 0.999) are used. The objective function parameters β,
λ1 and λ2 are fixed to 1 while λ3 and α are fixed to 50. The models are trained until the
error converges. To avoid overfitting, we use a dropout probability of 0.8 for M1 [11], M2,
and M3 at the hidden layer for generation and 0.1 for M1 and M2 at the hidden layer for
classification. All hyperparameters except the defaults are estimated from the training set
by cross validation.

4.3. Evaluation

In the two benchmark datasets, each skeleton consists of 15 joints. The skeletal data
in SBU are normalized. We do not apply any further preprocessing. We standardize
the skeletal data in K3HI. Training models on low-level handcrafted features defeats the
purpose of learning, hence our inclination towards operating on raw skeletal data.

Our experiments are carried out on two settings:

1. First person: Here we model the agent as the first person (one of the two skeletons).
Its body constitutes its internal environment while the other skeleton constitutes its
external (visual) environment. Two modalities are used in our model (see Figure 1a):
(i) visual perception, which captures the other skeleton’s 3D joint coordinates, and
(ii) body proprioception, which captures the first skeleton’s 3D joint coordinates. Here,
i = 1, 2 in the objective function (ref. Equations (9)–(11)).

2. Third person: Here we model the agent as a third person (e.g., audience). The
two interaction skeletons constitute the agent’s external (visual) environment. One
modality is used in our model (see Figure 1b): visual perception, which captures
both the skeletons’ 3D joint coordinates. Here, i = 1 in the objective function (ref.
Equations (9)–(11)).

Model variations: For each of the above two settings, we experiment with the three
action selection methods (ref. “action selection” in Section 3.4): pe, lwpe, and lw.

Ablation study—baseline, bs (without attention): Due to lack of end-to-end models
that simultaneously generate and classify two-person interactions from 3D skeletal data,
our models’ performances are evaluated using an ablation study, referred to as the baseline
(bs). The goal is to understand the utility of attention in our models. For that, we create a
baseline model (bs) where attention (i.e., action selection, ref. Lines 13–15 in Algorithm 1) is
eliminated from the models. The MVRNN is modified such that the observation is sampled
from all the joints (i.e., weight distribution is uniform over all joints) from both the skeletons
at any time. Thus, the models at any time (video frame) observe the entire skeletons.

For a fair comparison, the number of layers and number of neurons in each layer are
the same over all model variants, including the baseline.

Evaluation metrics: We evaluate the generation accuracy using average frame distance
(AFD), as in [28]: 1

T−1 ∑t ∥X
(i)
t − X̂(i)

t ∥2, where X(i)
t and X̂(i)

t are the true and predicted
skeletal joint coordinates, respectively, at time t for modality i, and T is the sequence length.
We evaluate the classification performance using accuracy, recall, precision, and F1 score.

4.4. Evaluation Results
4.4.1. Qualitative Evaluation

From qualitative visualization, all three models (M1 [11], M2, M3) can generate realistic
predictions over space and time for all the cases. As expected, short-term predictions are
more accurate than long-term predictions. Even in the long term, there is continuity,
and the two predicted skeletons are well synchronized. The proposed models’ predicted



Sensors 2024, 24, 3922 12 of 35

action/reaction at each time step complies with the actual interactions. See Figures 4–7 for
samples of generated interactions using M2 with pe action selection method.

(a) Actual

(b) Predicted (30% ground truth given)

(c) Predicted (50% ground truth given)

(d) Predicted (70% ground truth given)

Figure 4. The top row represents true skeletal data for the prediction at alternate time steps for SBU
Kinect Interaction data for exchanging object for first person environment. Each skeleton in rows
2, 3 and 4 shows one step ahead prediction until 30%, 50% and 70% of the ground truth is given
(highlighted by the grey line) respectively. Beyond that, the model uses its own prediction as input
for completing the patterns until the final time step is reached. The salient joints are marked red.

4.4.2. Evaluation for Generation Accuracy

The AFD from the first-person environment is lower than or comparable to that from
the third-person for most cases (see Tables 1–4). Modeling the two skeletons as distinct
modalities helps in learning a better latent representation, resulting in more accurate
generation. First-person models have more parameters than third-person models (see
Table 5), which also explains the lower AFD of the first-person models.
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(a) Actual

(b) Predicted (30% ground truth given)

(c) Predicted (50% ground truth given)

(d) Predicted (70% ground truth given)

Figure 5. The top row represents true skeletal data for the prediction at alternate time steps for SBU
Kinect Interaction data for exchanging object for third person environment. Each skeleton in rows
2, 3 and 4 shows one step ahead prediction until 30%, 50% and 70% of the ground truth is given
(highlighted by the grey line) respectively. Beyond that, the model uses its own prediction as input
for completing the patterns until the final time step is reached. The salient joints are marked red.

First person: AFD is the lowest for lwpe and bs for the SBU Kinect dataset and bs for
the K3HI dataset. AFD is the highest for pe for both datasets.

Third person: AFD is the lowest for bs for the SBU Kinect dataset and lw and bs for
the K3HI dataset. AFD is the highest for pe for both datasets.

Within the same category for action selection, we do not observe much variation in
AFD for the three models for both datasets (see Tables 1–4). The generation (decoder) of
the three models is similar, so their AFDs are comparable for any interaction class and
action selection method. The generation process is more dependent on the action selection
method; hence, we observe higher variation in AFD for different action selection methods
(see Tables 1 and 3).
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Table 1. Generation accuracy (AFD) averaged over all examples for each interaction in the test set and
all train–test splits (mean, std. dev.) for first-person environment for SBU Kinect Interaction Dataset.
(bs), (pe), (lwpe), and (lw) are different action selection methods (ref. Section 4, action selection).
Interactions of approach, shake hands, and exchange object are abbreviated as Appr, Sh Hands, and
Exc Obj, respectively. Average is abbreviated as Avg.

Model Appr Depart Kick Push Sh Hands Hug Exc Obj Punch Avg AFD

M1 (bs) 0.031, 0.02 0.034, 0.02 0.072, 0.04 0.044, 0.02 0.032, 0.01 0.060, 0.02 0.037, 0.05 0.053, 0.02 0.045, 0.01
M2 (bs) 0.026, 0.01 0.028, 0.02 0.064, 0.03 0.043, 0.02 0.031, 0.02 0.055, 0.02 0.032, 0.01 0.046, 0.02 0.041, 0.01
M3 (bs) 0.020, 0.01 0.023, 0.02 0.050, 0.03 0.030, 0.01 0.021, 0.01 0.042, 0.02 0.024, 0.01 0.036, 0.02 0.031, 0.01

M1 (pe) 0.102, 0.07 0.125, 0.10 0.244, 0.27 0.129, 0.10 0.112, 0.06 0.171, 0.11 0.132, 0.10 0.170, 0.11 0.148, 0.04
M2 (pe) 0.092, 0.06 0.100, 0.07 0.228, 0.20 0.131, 0.08 0.113, 0.06 0.170, 0.07 0.126, 0.11 0.159, 0.11 0.140, 0.04
M3 (pe) 0.065, 0.05 0.085, 0.06 0.189, 0.28 0.093, 0.10 0.076, 0.03 0.129, 0.07 0.092, 0.10 0.126, 0.12 0.107, 0.04

M1 (lwpe) 0.028, 0.02 0.033, 0.02 0.071, 0.04 0.043, 0.02 0.032, 0.03 0.059, 0.03 0.035, 0.01 0.052, 0.02 0.044, 0.01
M2 (lwpe) 0.029, 0.02 0.033, 0.02 0.077, 0.04 0.046, 0.02 0.033, 0.03 0.062, 0.02 0.036, 0.01 0.056, 0.02 0.047, 0.02
M3 (lwpe) 0.026, 0.02 0.030, 0.02 0.067, 0.04 0.040, 0.02 0.027, 0.02 0.052, 0.02 0.033, 0.02 0.047, 0.02 0.040, 0.01

M1 (lw) 0.032, 0.02 0.035, 0.02 0.072, 0.04 0.045, 0.02 0.032, 0.02 0.057, 0.02 0.036, 0.02 0.052, 0.02 0.045, 0.01
M2 (lw) 0.061, 0.05 0.066, 0.07 0.146, 0.10 0.102, 0.05 0.076, 0.06 0.125, 0.07 0.082, 0.05 0.113, 0.07 0.096, 0.03
M3 (lw) 0.020, 0.01 0.023, 0.02 0.052, 0.03 0.031, 0.02 0.022, 0.01 0.043, 0.02 0.025, 0.01 0.037, 0.02 0.032, 0.01

(a) Actual

(b) Predicted (30% ground truth given)

(c) Predicted (50% ground truth given)

(d) Predicted (70% ground truth given)

Figure 6. The top row represents true skeletal data for the prediction at every third instant for K3HI
Intersection data for shaking hands for first person environment. Each skeleton in rows 2, 3 and 4
shows one step ahead prediction until 30%, 50% and 70% of the ground truth is given (highlighted by
the grey line) respectively. Beyond that, the model uses its own prediction as input for completing
the patterns until the final time step is reached. The salient joints are marked red.
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(a) Actual

(b) Predicted (30% ground truth given)

(c) Predicted (50% ground truth given)

(d) Predicted (70% ground truth given)

Figure 7. The top row represents true skeletal data for the prediction at every third instant for K3HI
Intersection data for shaking hands for third person environment. Each skeleton in rows 2, 3 and 4
shows one step ahead prediction until 30%, 50% and 70% of the ground truth is given (highlighted by
the grey line) respectively. Beyond that, the model uses its own prediction as input for completing
the patterns until the final time step is reached. The salient joints are marked red.

Table 2. Generation accuracy (AFD) averaged over all examples for each interaction in the test set and
all train–test splits (mean, std dev) for third-person environment for SBU Kinect Interaction Dataset.
(bs), (pe), (lwpe), and (lw) are different action selection methods (ref. Section 4, action selection);
interactions of approach, shake hands, and exchange object are abbreviated as Appr., Sh. Hands, and
Exc. ob., respectively; metric average AFD is abbreviated as Avg. AFD.

Model Appr. Depart Kick Push Sh. Hands Hug Exc. Ob. Punch Avg. AFD

M1 (bs) 0.040, 0.03 0.043, 0.03 0.097, 0.05 0.059, 0.03 0.042, 0.03 0.075, 0.04 0.046, 0.01 0.067, 0.03 0.059, 0.02
M2 (bs) 0.056, 0.04 0.058, 0.04 0.134, 0.08 0.083, 0.04 0.056, 0.05 0.100, 0.05 0.063, 0.02 0.092, 0.05 0.080, 0.03
M3 (bs) 0.026, 0.02 0.030, 0.02 0.072, 0.04 0.042, 0.02 0.028, 0.02 0.056, 0.02 0.034, 0.01 0.049, 0.02 0.042, 0.02

M1 (pe) 0.098, 0.04 0.101, 0.04 0.215, 0.08 0.114, 0.07 0.172, 0.07 0.108, 0.04 0.152, 0.04 0.152, 0.04 0.137, 0.04
M2 (pe) 0.118, 0.06 0.129, 0.06 0.279, 0.11 0.171, 0.08 0.126, 0.08 0.215, 0.06 0.126, 0.04 0.186, 0.04 0.169, 0.06
M3 (pe) 0.068, 0.04 0.079, 0.04 0.184, 0.07 0.107, 0.04 0.082, 0.04 0.141, 0.06 0.082, 0.03 0.120, 0.03 0.108, 0.04

M1 (lwpe) 0.046, 0.04 0.054, 0.05 0.121, 0.06 0.072, 0.03 0.051, 0.03 0.095, 0.04 0.059, 0.02 0.083, 0.03 0.073, 0.02
M2 (lwpe) 0.078, 0.06 0.084, 0.09 0.177, 0.10 0.108, 0.04 0.079, 0.04 0.144, 0.08 0.089, 0.04 0.133, 0.07 0.111, 0.04
M3 (lwpe) 0.038, 0.03 0.044, 0.03 0.095, 0.05 0.055, 0.02 0.039, 0.04 0.073, 0.03 0.046, 0.02 0.065, 0.02 0.057, 0.02

M1 (lw) 0.042, 0.03 0.047, 0.03 0.108, 0.07 0.063, 0.03 0.044, 0.04 0.077, 0.04 0.048, 0.01 0.071, 0.03 0.062, 0.02
M2 (lw) 0.076, 0.09 0.119, 0.22 0.191, 0.18 0.124, 0.10 0.092, 0.08 0.155, 0.14 0.101, 0.10 0.139, 0.11 0.125, 0.04
M3 (lw) 0.028, 0.02 0.033, 0.02 0.078, 0.04 0.042, 0.02 0.029, 0.02 0.057, 0.02 0.034, 0.01 0.050, 0.02 0.044, 0.02
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Table 3. Generation accuracy (AFD) averaged over all examples for each interaction in the test set
and all train–test splits (mean, std dev) for first-person environment for K3HI Interaction Dataset.
(bs), (pe), (lwpe), and (lw) are different action selection methods (ref. Section 4, action selection);
interactions of approach, shake hands, and exchange object are abbreviated as Appr., Sh. Hands, and
Exc. ob., respectively; metric average AFD is abbreviated as Avg. AFD.

Model Appr. Depart Exc. Ob. Kick Point Punch Push Sh. Hands Avg. AFD

M1 (bs) 0.153, 0.99 0.015, 0.01 0.006, 0.01 0.011, 0.01 0.007, 0.00 0.010, 0.01 0.010, 0.00 0.006, 0.00 0.027, 0.05
M2 (bs) 0.146, 1.0 0.016, 0.01 0.006, 0.01 0.012, 0.01 0.008, 0.00 0.010, 0.01 0.010, 0.01 0.006, 0.00 0.027, 0.05
M3 (bs) 0.143, 0.85 0.022, 0.02 0.013, 0.01 0.022, 0.03 0.016, 0.02 0.020, 0.03 0.019, 0.02 0.012, 0.02 0.033, 0.04

M1 (pe) 0.135, 0.74 0.037, 0.03 0.020, 0.01 0.033, 0.02 0.025, 0.02 0.026, 0.02 0.027, 0.01 0.019, 0.02 0.040, 0.04
M2 (pe) 0.136, 0.66 0.048, 0.03 0.029, 0.02 0.052, 0.03 0.038, 0.03 0.039, 0.02 0.041, 0.02 0.031, 0.02 0.052, 0.03
M3 (pe) 0.126, 0.61 0.041, 0.03 0.021, 0.01 0.038, 0.03 0.028, 0.03 .029, 0.03 0.031, 0.02 0.021, 0.02 0.042, 0.03

M1 (lwpe) 0.143, 0.87 0.017, 0.02 0.007, 0.01 0.013, 0.01 0.010, 0.02 0.011, 0.01 0.011, 0.01 0.007, 0.01 0.027, 0.05
M2 (lwpe) 0.148, 0.91 0.020, 0.02 0.009, 0.01 0.016, 0.01 0.012, 0.01 0.013, 0.01 0.013, 0.01 0.009, 0.01 0.030, 0.05
M3 (lwpe) 0.135, 0.75 0.029, 0.03 0.017, 0.02 0.031, 0.05 0.021, 0.03 0.026, 0.04 0.027, 0.04 0.017, 0.03 0.038, 0.04

M1 (lw) 0.164, 1.1 0.016, 0.01 0.006, 0.01 0.012, 0.01 0.007, 0.00 0.009, 0.01 0.009, 0.01 0.006, 0.00 0.029, 0.05
M2 (lw) 0.154, 0.97 0.018, 0.02 0.007, 0.01 0.014, 0.01 0.008, 0.01 0.011, 0.01 0.011, 0.01 0.006, 0.01 0.029, 0.05
M3 (lw) 0.141, 0.85 0.027, 0.02 0.017, 0.02 0.030, 0.05 0.021, 0.03 0.026, 0.04 0.025, 0.04 0.017, 0.03 0.038, 0.04

Table 4. Generation accuracy (AFD) averaged over all examples for each interaction in the test set
and all train–test splits (mean, std dev) for third-person environment for K3HI Interaction Dataset.
(bs), (pe), (lwpe), and (lw) are different action selection methods (ref. Section 4, action selection);
interactions of approach, shake hands, and exchange object are abbreviated as Appr., Sh. Hands, and
Exc. ob., respectively; metric average AFD is abbreviated as Avg. AFD.

Model Appr. Depart Exc. Ob. Kick Point Punch Push Sh. Hands Avg. AFD

M1 (bs) 0.155, 0.96 0.024, 0.01 0.013, 0.01 0.025, 0.02 0.018, 0.02 0.019, 0.02 0.020, 0.01 0.014, 0.01 0.036, 0.05
M2 (bs) 0.155, 0.89 0.026, 0.01 0.016, 0.01 0.027, 0.02 0.023, 0.03 0.022, 0.02 0.023, 0.01 0.019, 0.02 0.039, 0.05
M3 (bs) 0.154, 0.96 0.017, 0.01 0.007, 0.01 0.015, 0.01 0.010, 0.01 0.011, 0.01 0.012, 0.01 0.007, 0.01 0.029, 0.05

M1 (pe) 0.161, 0.75 0.044, 0.02 0.027, 0.02 0.054, 0.03 0.047, 0.04 0.040, 0.02 0.042, 0.02 0.031, 0.02 0.056, 0.04
M2 (pe) 0.169, 0.66 0.047, 0.02 0.031, 0.02 0.062, 0.03 0.055, 0.05 0.046, 0.02 0.048, 0.02 0.035, 0.02 0.062, 0.04
M3 (pe) 0.154, 0.71 0.038, 0.02 0.024, 0.02 0.048, 0.03 0.038, 0.03 0.037, 0.03 0.039, 0.02 0.026, 0.02 0.051, 0.04

M1 (lwpe) 0.159, 0.94 0.024, 0.02 0.013, 0.01 0.026, 0.02 0.022, 0.03 0.019, 0.01 0.021, 0.01 0.014, 0.01 0.037, 0.05
M2 (lwpe) 0.156, 0.92 0.029, 0.02 0.020, 0.02 0.036, 0.03 0.029, 0.03 0.029, 0.02 0.031, 0.02 0.020, 0.01 0.044, 0.04
M3 (lwpe) 0.151, 1.0 0.033, 0.02 0.021, 0.02 0.041, 0.05 0.039, 0.05 0.033, 0.03 0.033, 0.03 0.023, 0.02 0.047, 0.04

M1 (lw) 0.161, 1.0 0.021, 0.02 0.010, 0.01 0.020, 0.01 0.015, 0.02 0.014, 0.01 0.015, 0.01 0.009, 0.01 0.033, 0.05
M2 (lw) 0.154, 0.92 0.024, 0.02 0.012, 0.01 0.024, 0.02 0.019, 0.02 0.018, 0.01 0.019, 0.01 0.012, 0.01 0.035, 0.05
M3 (lw) 0.146, 0.90 0.031, 0.02 0.019, 0.02 0.036, 0.05 0.030, 0.04 0.030, 0.04 0.030, 0.04 0.020, 0.03 0.043, 0.03

In the proposed models (M2, M3), generation is not the primary goal but is necessary
to calculate attention from generation error. That is why such attention-based models
(e.g., [11,14,16]) are said to perform recognition via generation. M2 is unique since recogni-
tion influences generation and vice versa, while in M1 and M3, generation influences
recognition but not vice versa. The models learn the spatiotemporal relations between joint
locations in each skeleton using the VRNN in each modality and between the two skeletons
using the PoE. M1 and M2 are learned end-to-end, while M3 is not.
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Table 5. Number of trainable parameters.

Model First Person Third Person

M1 (bs) [11] 1,656,348 1,089,996
M2 (bs) 1,134,284 833,676
M3 (bs) 1,111,420 827,692

M1 (pe) [11] 1,656,348 1,089,996
M2 (pe) 1,134,284 833,676
M3 (pe) 1,111,420 827,692

M1 (lwpe) [11] 1,657,728 1,092,726
M2 (lwpe) 1,135,664 836,406
M3 (lwpe) 1,112,800 830,422

M1 (lw) [11] 1,657,728 1,092,726
M2 (lw) 1,135,664 836,406
M3 (lw) 1,112,800 830,422

4.4.3. Evaluation for Classification Accuracy

In most cases, the classification accuracy of the three models (M1 [11], M2, M3) in first
person is higher than or comparable to that in third person. Also, the number of trainable
parameters for first-person models is greater than that of third-person models (see Table 5).

In all experiments, the top-performing attention model yields an accuracy either
comparable to or higher than the baseline (bs). The goal of attention in our models is to
foster efficiency, discussed in the next section. Also, our bs’s accuracy is higher than the
state of the art on both datasets on raw skeleton (see Table 6).

First person: Among the three models, M1 yields the highest classification accuracy
for almost all action selection methods for both the datasets, followed closely by M2 (see
Tables 7 and 8). Among the three action selection methods, for the SBU Kinect dataset, bs,
lwpe, and lw yield the highest classification accuracy for M1, M2, and M3, respectively (see
Table 7). For the K3HI dataset, bs yields the highest classification accuracy for M1 and M3,
while pe yields the highest for M2 (see Table 8).

Third person: Among the three models, M1 yields the highest classification accu-
racy for all action selection methods for both the datasets, followed closely by M2 (see
Tables 9 and 10). Among the action selection methods, for the SBU Kinect dataset, bs yields
the highest classification accuracy for M1 and M3, while pe yields the highest for M2. For
the K3HI dataset, pe yields the highest classification accuracy for M2 and bs yields the
highest for M1 and M3, while lwpe yields the lowest classification accuracy for all models.

M1 takes into account the partial observations and the latent variables for predicting
the class, while M2 takes into account only the partial observations. Our results show
that including the latent variables to predict the class can make a significant improvement
in the classification performance. Additionally, in M1, the classification modality shares
parameters with the generation modality, whereas in M2, the classification modality does
not share parameters with the generation modality, though in both cases the generation
modality shares parameters with the classification modality. Thus, it is possible that the
generation modality improves the classification results in M1 as compared to M2. M3
uses the generated data to predict the class. As the generated skeletal data contain less
discriminative features than the true skeletal data, M3’s classification accuracy is low. We
did not observe a consistent pattern in the performance accuracy due to different action
selection methods for the same model. Thus, no action selection method is superior to the
others. Results from pe are comparable to or better than the baseline in all the cases for M1
and M2 (see Tables 7–10). Results from lwpe and lw are comparable to the baseline, bs, for
M1 and M2 for the K3HI dataset (see Tables 8 and 10).
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Table 6. Comparison of classification accuracy. In the table, “our models” refers to the three models
(M1, M2, M3) discussed in this paper, even though M1 was proposed in [11]. The other models cited
in this table ([53–60]) perform classification only (no generation). They take both skeletons as input,
similar to our models. These works do not distinguish between first- and third-person environments.

Dataset
Characteristics

Models Accuracy
Raw

Skeleton
Skeletal
Features

Attention

✓

Other
models

[54] 96.3
✓ [55] 94.12
✓ [56] 94.28

✓ [57] 90.41
✓ [58] 93.3
✓ [57,59] 80.35

SBU ✓ Our
models

(first
person)

M1 (bs) 93.2
✓ ✓ M1 (pe) 93.1
✓ ✓ M2 (lwpe) 93.8
✓ ✓ M1 (lw) 91.5

✓ Our
models
(third

person)

M1 (bs) 93.7
✓ ✓ M1 (pe) 92.5
✓ ✓ M2 (lwpe) 91.4
✓ ✓ M1 (lw) 92.9

✓ [53] 83.33
✓ Other

models
[60] 80.87

✓ [53] 45.2
✓ [60] 48.54

✓ Our
models

(first
person)

M1 (bs) 87.5
K3HI ✓ ✓ M1 (pe) 85.9

✓ ✓ M2 (lwpe) 84.9
✓ ✓ M1 (lw) 86.9

✓ Our
models
(third

person)

M1 (bs) 83.0
✓ ✓ M1 (pe) 82.7
✓ ✓ M2 (lwpe) 82.1
✓ ✓ M1 (lw) 80.8

Table 7. Class prediction results using first-person environment and SBU Kinect Interaction Dataset.
(bs), (pe), (lwpe), and (lw) are different action selection methods (ref. Section 4, action selection);
classification accuracy is abbreviated as Acc.

Model Acc. Recall Precision F1 Score

M1 (bs) 93.2, 4.7 0.934, 0.04 0.931, 0.05 0.928, 0.05
M2 (bs) 91.9, 5.6 0.927, 0.04 0.913, 0.06 0.912, 0.05
M3 (bs) 82.2, 10.1 0.846, 0.09 0.817, 0.11 0.814, 0.11

M1 (pe) 93.1, 3.75 0.940, 0.03 0.924, 0.04 0.925, 0.03
M2 (pe) 89.3, 5.1 0.895, 0.03 0.869, 0.05 0.886, 0.04
M3 (pe) 80.4, 8.5 0.837, 0.08 0.799, 0.09 0.796, 0.09

M1 (lwpe) 93.1, 3.9 0.939, 0.04 0.929, 0.04 0.929, 0.04
M2 (lwpe) 93.8, 4.7 0.945, 0.04 0.934, 0.06 0.931, 0.06
M3 (lwpe) 81.4, 9.1 0.842, 0.08 0.809, 0.10 0.807, 0.10

M1 (lw) 91.5, 6.0 0.920, 0.05 0.902, 0.07 0.903, 0.07
M2 (lw) 59.8, 14.7 0.655, 0.13 0.564, 0.14 0.627, 0.13
M3 (lw) 83.2, 8.3 0.855, 0.07 0.823, 0.09 0.823, 0.09
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Table 8. Class prediction results using first-person environment and K3HI Interaction Dataset.
(bs), (pe), (lwpe), and (lw) are different action selection methods (ref. Section 4, action selection);
classification accuracy is abbreviated as Acc.

Model Acc. Recall Precision F1 Score

M1 (bs) 87.5, 7.1 0.865, 0.08 0.859, 0.08 0.856, 0.08
M2 (bs) 82.7, 3.1 0.817, 0.04 0.806, 0.04 0.804, 0.04
M3 (bs) 80.1, 3.1 0.796, 0.03 0.783, 0.02 0.777, 0.03

M1 (pe) 85.9, 5.2 0.854, 0.07 0.838, 0.06 0.839, 0.06
M2 (pe) 84.9, 3.3 0.836, 0.04 0.835, 0.04 0.831, 0.04
M3 (pe) 76.9, 2.6 0.768, 0.02 0.760, 0.02 0.752, 0.02

M1 (lwpe) 84.9, 3.5 0.850, 0.05 0.818, 0.03 0.818, 0.03
M2 (lwpe) 82.1, 6.3 0.828, 0.07 0.802, 0.07 0.801, 0.06
M3 (lwpe) 75.6, 4.0 0.759, 0.03 0.746, 0.03 0.739, 0.03

M1 (lw) 86.9, 4.3 0.865, 0.05 0.852, 0.05 0.853, 0.05
M2 (lw) 83.7, 3.0 0.840, 0.05 0.824, 0.04 0.822, 0.04
M3 (lw) 76.3, 4.7 0.760, 0.04 0.753, 0.04 0.745, 0.04

Table 9. Class prediction results using third-person environment and SBU Kinect Interaction
Dataset. (bs), (pe), (lwpe), and (lw) are different action selection methods (ref. Section 4, action
selection); classification accuracy is abbreviated as Acc.

Model Acc. Recall Precision F1 Score

M1 (bs) 93.7, 6.1 0.944, 0.05 0.935, 0.05 0.934, 0.06
M2 (bs) 92.1, 3.9 0.923, 0.03 0.920, 0.04 0.914, 0.04
M3 (bs) 82.5, 8.8 0.847, 0.08 0.818, 0.10 0.814, 0.10

M1 (pe) 92.5, 5.5 0.930, 0.05 0.927, 0.05 0.922, 0.05
M2 (pe) 90.1, 6.2 0.909, 0.05 0.879, 0.05 0.894, 0.06
M3 (pe) 79.3, 7.8 0.807, 0.09 0.781, 0.09 0.775, 0.09

M1 (lwpe) 91.3, 7.5 0.915, 0.06 0.907, 0.08 0.906, 0.07
M2 (lwpe) 91.4, 5.5 0.919, 0.05 0.908, 0.05 0.905, 0.06
M3 (lwpe) 81.7, 7.2 0.842, 0.07 0.815, 0.08 0.811, 0.07

M1 (lw) 92.9, 5.8 0.951, 0.03 0.921, 0.05 0.924, 0.05
M2 (lw) 71.3, 6.0 0.773, 0.07 0.694, 0.08 0.738, 0.04
M3 (lw) 82.1, 8.5 0.074, 0.08 0.815, 0.09 0.813, 0.09

Table 10. Class prediction results using third-person environment and K3HI Interaction Dataset.
(bs), (pe), (lwpe), and (lw) are different action selection methods (ref. Section 4, action selection);
classification accuracy is abbreviated as Acc.

Model Acc. Recall Precision F1 Score

M1 (bs) 83.0, 6.6 0.827, 0.07 0.816, 0.08 0.813, 0.08
M2 (bs) 81.1, 3.3 0.796, 0.03 0.783, 0.03 0.780, 0.03
M3 (bs) 80.1, 3.1 0.796, 0.03 0.783, 0.02 0.777, 0.03

M1 (pe) 82.7, 7.3 0.816, 0.08 0.815, 0.08 0.810, 0.08
M2 (pe) 82.4, 3.9 0.825, 0.04 0.804, 0.04 0.805, 0.05
M3 (pe) 75.0, 5.7 0.762, 0.04 0.741, 0.05 0.738, 0.05

M1 (lwpe) 82.1, 4.5 0.809, 0.04 0.800, 0.06 0.796, 0.05
M2 (lwpe) 80.5, 7.8 0.794, 0.08 0.790, 0.10 0.784, 0.09
M3 (lwpe) 72.7, 8.3 0.731, 0.07 0.720, 0.07 0.712, 0.07

M1 (lw) 80.8, 6.3 0.793, 0.07 0.775, 0.08 0.777, 0.08
M2 (lw) 78.3, 6.3 0.803, 0.07 0.766, 0.07 0.764, 0.08
M3 (lw) 75.0, 7.1 0.758, 0.05 0.741, 0.06 0.736, 0.06
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Table 6 compares our most accurate models (for different settings and action selection
methods) with relevant models reported in the literature. Results show that M2 with lwpe for
the SBU dataset and all models and action selection methods for the K3HI dataset achieve
higher classification accuracy than models that operate on raw skeletal data, compared
with our models.

As stated in Section 1, models that perform both generation and recognition of human–
human interactions are scarce. As noted in [11], only two models, [41,42], perform gener-
ation and recognition. However, both of them solve the problem of reaction generation,
while our models (M1 [11], M2, M3) solve the more challenging problem of interaction
generation. Hence, results from [41,42] are not included in any of the comparison tables in
this paper. In [41], classification accuracy is 80% and 46.4% for SBU and K3HI, respectively,
which are much lower than our models (ref. Table 6). In [42], classification accuracy is 79.2%
for aggressive emotions (kick, push, punch) and 39.97% for neutral emotions (hug, shake
hands, exchange objects) for SBU, which are much lower than our models (ref. Table 6).

4.4.4. Analysis of Action Selection

We can visualize the distribution of attention weights assigned to the joints or regions
as a heatmap (see Figures A1–A12 in the Appendix B). For each interaction class, this
distribution over the joints/regions is computed from the sum of all weights Wt (ref.
Equations (6)–(8)) assigned to each joint/region.

The joints, whose movements have high variation over time, are more difficult to
predict and hence are more salient. Thus, the salient regions for punch, exchange objects,
push, handshake, and hug are primarily the hands (e.g., punch in Figures A1c and A4b;
exchange object in Figure A7a,f; push in Figure A7d; shake hands in Figure A10b,f; hug in
Figures A4a,e and A1b,d), while for kicking, they are the legs (ref. Figures A7e and A10f).
This is not observed in some cases, such as kicking in Figure A1d, because the same skeleton
might be the interaction initiator in some videos and the reactor in the others within the
same dataset, thereby having different behaviors for the same interaction class.

We do not observe much variation in the distributions between M1, M2, M3 for the
same action selection method. For any interaction, the weight distributions from lwpe and
lw are similar. The attention weights are not very different for the different interactions.

4.4.5. Evaluation for Efficiency

Efficiency of a model is evaluated by the percentage of the scene observed for predic-
tion. Our experiments show that during the first few sampling instants, both generation
and classification accuracy improves exponentially (see Figures 8–11). The saturation of the
accuracy after that indicates our models do not need to sample a larger percentage of the
data as ground truth for generation.

We compute the average (over all videos for each interaction) of the number of salient
joints sampled by our models at each glimpse (see Tables 11 and 12). We do not observe
much variation in the average percentage for different models for both the datasets and for
first- and third-person environments. On average, for any interaction in the two datasets,
our model samples less than 49% and 48% of the joints in the case of FP and TP, respectively.
For both datasets, the highest sparsity is for kicking. The lowest sparsity is for punching
(FP) and punching/pushing (TP) for the SBU Kinect dataset and approaching/exchange
object (FP) and approaching/departing (TP) for the K3HI dataset.
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(a) SBU Kinect Interaction Dataset (b) K3HI Interaction Dataset

Figure 8. Prediction (AFD) for different percentage of ground truth given as input for first person.
For any percentage p, p% of the actual data is given as input and the prediction is considered as input
for the rest of the time steps.

(a) SBU Kinect Interaction Dataset (b) K3HI Interaction Dataset

Figure 9. Prediction (AFD) for different percentage of ground truth given as input for third person.
For any percentage p, p% of the actual data is given as input and the prediction is considered as input
for the rest of the time steps.

Table 11. Percentage of salient joints (mean, std dev) sampled by different variants of our models from
the ground truth using first-person environment shown for (pe); (bs), (lwpe), and (lw) do not have sparsity.
Interactions of shake hands and exchange object are abbreviated as Sh. Hands and Exc. obj., respectively.

Dataset Model Approach Depart Kick Push Sh. Hands Exc. Obj. Punch Hug Avg.

SBU
M1 [11] 48.9, 4.2 48.7, 3.9 46.6, 2.8 49.3, 2.1 49.8, 2.3 48.9, 2.2 49.9, 3.2 48.3, 3.0 48.8, 1.0

M2 48.3, 3.5 48.4, 4.3 46.7, 3.3 49.2, 2.4 49.8, 2.7 48.4, 2.5 49.3, 2.5 47.4, 2.6 48.4, 1.0
M3 48.5, 3.7 47.8, 4.4 46.3, 2.6 49.2, 2.2 48.7, 2.4 48.0, 1.9 49.3, 3.4 48.4, 2.3 48.3, 1.0

Approach Depart Exc. obj. Kick Point Punch Push Sh. Hands Avg.

K3HI
M1 [11] 47.9, 3.0 47.6, 2.4 47.8, 3.0 45.8, 2.6 46.8, 4.4 47.4, 2.4 47.6, 2.0 46.3, 2.9 47.2, 1.0

M2 48.4, 2.4 48.4, 2.1 48.3, 3.9 44.5, 2.5 44.8, 4.1 47.3, 2.7 47.9, 3.2 47.7, 4.2 47.1, 1.6
M3 48.0, 2.2 47.9, 2.2 48.2, 3.2 44.6, 2.6 45.9, 4.4 47.5, 2.7 48.0, 3.3 47.0, 3.9 47.1, 1.3
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Table 12. Percentage of salient joints (mean, std dev) sampled by different variants of our models
from the ground truth using third-person environment shown for (pe); (bs), (lwpe), and (lw) do not
have sparsity. Interactions of shake hands and exchange object are abbreviated as sh. hands and exc.
obj., respectively.

Dataset Model Approach Depart Kick Push Sh. Hands Exc. Obj. Punch Hug Avg.

SBU
M1 [11] 47.5, 3.8 45.8, 4.6 45.1, 3.2 48.4, 2.7 47.7, 3.2 47.6, 2.8 48.7, 3.8 47.4, 2.9 47.3, 1.2

M2 47.8, 4.5 45.6, 4.4 44.4, 3.0 48.6, 3.6 47.7, 3.8 47.5, 3.2 48.0, 3.9 47.1, 3.4 47.1, 1.4
M3 46.7, 3.4 46.2, 4.4 44.6, 3.0 48.9, 3.1 47.9, 4.0 47.4, 2.5 47.7, 5.3 47.8, 3.4 47.1, 1.3

Approach Depart Exc. Kick Point Punch Push Sh. Hands Avg.

K3HI
M1 [11] 47.2, 2.9 47.9, 3.0 46.9, 2.9 41.1, 3.5 39.9, 7.2 45.5, 3.1 45.8, 3.7 46.8, 5.5 45.1, 3.0

M2 48.0, 3.6 48.6, 2.7 47.1, 2.6 41.0, 3.1 37.7, 6.4 44.6, 3.8 45.5, 3.1 45.9, 4.3 44.8, 3.7
M3 47.2, 4.3 47.1, 3.0 45.9, 3.4 41.2, 3.7 40.4, 6.9 45.0, 2.5 44.3, 3.4 45.4, 4.4 44.6, 2.5

(a) SBU Kinect Interaction Dataset (b) K3HI Interaction Dataset

Figure 10. Classification accuracy for different percentage of ground truth given as input for first
person. For any percentage p, p% of the actual data is given as input and the prediction is considered
as input for the rest of the time steps.

(a) SBU Kinect Interaction Dataset (b) K3HI Interaction Dataset

Figure 11. Classification accuracy for different percentage of ground truth given as input for third
person. For any percentage p, p% of the actual data is given as input and the prediction is considered
as input for the rest of the time steps.
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4.5. Design Evaluation for Different Models
4.5.1. Handling Missing Class Labels

The three models (M1 [11], M2, M3) require true class labels to train for classification.
A subset of parameters in each model is shared between the classification and generation
pathways, albeit in unique ways (see Figure 2). In M1, the generation (completed pattern)
and class label are independent outputs. In M2, the class label is an input to the generative
pathway; hence, classification accuracy directly influences generation accuracy. In M3,
the completed pattern is the input to the classification model; hence, generation accuracy
directly influences classification accuracy.

When class labels are missing, the generative parameters, including the shared param-
eters, are trained to minimize the generative loss only. All three models continue to infer
irrespective of whether labels are present, noisy, or missing, which makes them practical for
real-world applications. A drawback of M2 is that the generation depends on the predicted
class label; hence, the generation will be poor if the classification pathway is not well trained.
An advantage of M1 and M3 is that because the generation and classification pathways share
parameters, even if the class labels are missing, the shared parameters will be updated by
minimizing the generative error only, which might improve the classification accuracy.

4.5.2. Number of Trainable Parameters

The number of trainable parameters for the three models is shown in Table 5. Third-
person models have fewer trainable parameters. M1 has the most and M3 has the fewest
trainable parameters. lwpe and lw have more trainable parameters than pe or bs.

4.5.3. Training Time

The three models (M1 [11], M2, M3) are implemented using the TensorFlow 1.3 frame-
work in Python 3.5.4. All experiments are carried out in a high-performance computing
(HPC) facility using PowerEdge R740 GPU nodes equipped with Tesla V100-PCIE-16GB.

Training time is the time required to train a model on the training set until the error
converges. The training time for our models is shown in Table 13, where we report the
average (over n-fold cross validation) convergence time in hours and the average number of
iterations. In order to identify offline the iteration at which convergence occurs, we smooth
the classification accuracy and the generation error curves by calculating the moving
average with a 50-iteration window. For classification, we assume convergence is reached
at the iteration when the average accuracy exceeds 90% of the highest accuracy for M1, M2,
and M3. When pretraining M3’s generative model, convergence is reached at the iteration
when the average error falls below 10% of the highest error.

Table 13. Training time required (hours, iterations).

Model
SBU K3HI

First Person Third Person First Person Third Person

M1 (bs) 1.0, 7368 0.4, 4364 1.6, 5388 0.7, 2452
M2 (bs) 1.5, 9201 0.9, 8720 2.2, 5862 4.4, 17,499
M3 (bs) 0.4, 8250 0.3, 8018 0.7, 3459 0.5, 3310

M1 (pe) 1.8, 7146 0.5, 4166 5.2, 9154 1.8, 7199
M2 (pe) 2.7, 10,627 1.0, 8282 3.8, 6673 5.6, 17,430
M3 (pe) 0.6, 8207 0.3, 8105 1.0, 3255 0.4, 2926

M1 (lwpe) 1.2, 5512 0.5, 2844 2.7, 5421 2.5, 5832
M2 (lwpe) 3.4, 12,169 2.6, 13,030 6.5, 10,350 8.7, 17,499
M3 (lwpe) 0.5, 7727 0.4, 7586 0.8, 2887 0.6, 2685

M1 (lw) 1.4, 5203 1.3, 6889 4.6, 10,519 2.0, 3350
M2 (lw) 4.0, 17,999 3.4, 17,999 7.0, 12,352 8.2, 17,499
M3 (lw) 0.6, 8857 0.5, 8541 0.8, 2715 1.0, 3491

For the SBU Kinect dataset and both first-person and third-person environments, M3
and M2 require the least and highest training times for all action selection methods. For the
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K3HI dataset, M3 requires the least training time for all action selection methods for both
environments, and M2 requires the highest training time for all action selection methods
except M1 (pe) for first person.

M3 is trained separately for generation and classification, while M1 and M2 are trained
for generation and classification jointly. Thus, the model trained for a single task converges
faster than the models trained jointly for multiple tasks.

4.5.4. End-to-End Training

End-to-end training allows an entire model to be optimized for a given task(s) and
dataset. However, the challenge is to search for the optimal set of parameter values in a
very large space. This is often circumvented by pretraining selected components (layers,
blocks, functions) in isolation for a number of iterations to initialize their parameters in a
suboptimal space. Then the entire model is trained end-to-end. In this paper, models M1
and M2 are trained end-to-end without any pretraining, while M3 is not end-to-end.

5. Discussion

This section discusses the limitations of the proposed approach for human–human
interaction recognition via generation and also discusses future work.

5.1. Limitations of the Proposed Approach

The limitations stated below apply to the proposed approach and to almost all
related works.

5.1.1. Limited Interaction Context

The physical interaction between two humans can be influenced by a wide range of
variables such as age, gender, culture, personality, style, mood, relationship, context (e.g.,
formal vs. informal setting), difference in socioeconomic status, health, disability, past
experiences (especially traumatic ones), social norms, and state of physical environment
(e.g., crowded vs. open). Accounting for these variables is essential for understanding
human–human interactions and developing interactive systems that can perform effectively
across diverse scenarios. These variables have not been explicitly considered in the proposed
approach and related works. However, the approaches that learn by imitation, such as ours,
do implicitly consider some of these variables if they are captured in the training data.

5.1.2. Limited Interaction Modalities

Humans interact by the simultaneous use of multiple modalities such as text, speech,
nonspeech vocalizations (e.g., sigh, laughter, murmur), facial expressions, gaze and eye
contact, body movements for gestures and touch, proxemics, and olfactory cues, which
convey emotions and intentions. The proposed approach and related works have largely
concentrated only on body movements to infer intent.

5.1.3. Need for Labeled Training Data

The proposed approach and related works on interaction recognition are trained using
data labeled with class labels. Given that labeled data are scarce and unlabeled data are
abundant, it is imperative to develop models that can learn from unlabeled data.

5.2. Future Work

Our future work is to address the limitations of the proposed approach stated above
and to make the approach more accurate and versatile.

5.2.1. Incorporate More Interaction Context

Incorporating interaction context in an AI model requires data about the context. Such
data are scarce, primarily due to restrictions on usage of soft and hard sensors to collect data
due to risk of confidentiality breach and privacy invasion. An alternative is to generate data
using a combination of physics-based and generative AI models (see [61], for example).
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5.2.2. Incorporate Multiple Interaction Modalities

Incorporating multiple interaction modalities would lead to more robust inference
of the interacting human’s intentions and emotions, which would help to generate more
effective reactions. The proposed model is inherently multimodal. It combines multiple
modalities using PoE, which is a scalable approach as the number of parameters increases
linearly with the number of modalities m. All multimodal models are not linearly scal-
able. For example, the Multimodal Transformer (MulT) [62] learns a mapping from each
modality to another, thereby learning O(m2) mappings. As a result, the number of parame-
ters increases quadratically with the number of modalities. The proposed model can be
extended to incorporate multiple modalities in a relatively simple manner and has already
been tested on different kinds of signals, such as body/skeletal motion [11,15] (and this
current article), images and videos [12–14], and speech [16].

5.2.3. Alleviate the Need for Labeled Training Data

There are multiple ways to train a classifier with data not labeled with class labels. These
include unsupervised learning methods (e.g., clustering, anomaly detection, non-negative
matrix factorization, autoencoder), semisupervised learning methods (utilize a small amount
of labeled data along with a large amount of unlabeled data), and self-supervised learning
methods (learn representations from the unlabeled data by solving a pretext task, such as
predicting the next word in a sequence or reconstructing the input, followed by fine-tuning
on a small amount of labeled data for the target classification task). The proposed model can
be easily trained using semi-supervised or self-supervised methods.

5.2.4. Experiment with Other Models

In our earlier works [63,64], a general-purpose predictive agent was proposed that
interacts with its environment by relentlessly executing four functions cyclically: Surprise
(compute prediction error), Explain (infer causes of surprise), Learn (update internal model
using the surprise and inferred causes), and Predict the next observation (see Figure 12). In
order to Explain, the agent can act, which includes interaction and communication with its
own body (sensed via proprioception) and with its environment and other agents (sensed
via perception). The proposed agent architecture (ref. Figure 1) is an implementation of the
SELP cycle, which is modular and allows experimentation with different generative models
in place of VAE or VRNN, and different fusion methods in place of PoE. It is interesting to
note that our earlier works [65,66] proposed an agent model that decide when and with
whom to communicate/interact, while the agent model proposed in this current work
(and [11]) propose how to interact, all following the SELP cycle.

Figure 12. Block diagram of the SELP cycle [63,64], which forms the basis of the proposed agent
model and related agent models [11,13–16,65–68].
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6. Conclusions

Two agent models are proposed that sequentially sample and interact with their en-
vironment, which is constituted by 3D skeletons. At each instant, they sample a subset
of skeleton joints to jointly minimize their classification and sensory prediction (or gen-
eration) errors in a greedy manner. The agents operate as closed-loop systems involving
perceptual (“what”) and proprioceptive (“where”) pathways. One of the proposed agent
models is learned end-to-end, while the other is not. Extensive experiments on interaction
classification and generation on benchmark datasets in comparison with a state-of-the-art
model reveal that one of the proposed models is more size-efficient but still yields classi-
fication and generation accuracy comparable to the state of the art. Interesting insights
drawn from the design of these models will be useful for designing efficient generative AI
(GenAI) systems. The future of AI is agents. Our agent models consisting of perceptual
and proprioceptive pathways in a multimodal setting contribute a unique idea towards the
development of AI agents.
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Appendix A. Loss Function Derivation

Appendix A.1. Model M1

Following [11], we derive the objective function in Equation (9) from the objectives of
multimodal VAE [51], variational RNN [50], and VAE for classification [49]. The generative
and recognition models are factorized as

pθ(X≤T , y≤T , z≤T |x≤T)

=
T

∏
t=1

pθ(Xt, yt|z≤t, x<t)pθ(zt|x<t, z<t)qϕ(z≤T |x≤T)

=
T

∏
t=1

qϕ(zt|x≤t, z<t)

The variational lower bound (ELBO) on the joint log-likelihood of the generated data,
log pθ(X≤T , y≤T |x≤T), is derived as

Eqϕ(z≤T |x≤T)

[
log pθ(X≤T , y≤T |x≤T)

qϕ(z≤T |x≤T)

qϕ(z≤T |x≤T)

]
= Eqϕ(z≤T |x≤T)

[
log

pθ(X≤T , y≤T , z≤T |x≤T)

pθ(z≤T |x≤T)

qϕ(z≤T |x≤T)

qϕ(z≤T |x≤T)

]
= Eqϕ(z≤T |x≤T)

[ T

∑
t=1

log
pθ(Xt, yt|z≤t, x<t)pθ(zt|x<t, z<t)

pθ(zt|x<t, z<t)

qϕ(zt|x≤t, z<t)

qϕ(zt|x≤t, z<t)

]
= Eqϕ(z≤T |x≤T)

[ T

∑
t=1

[
log pθ(Xt, yt|z≤t, x<t)− log

qϕ(zt|x≤t, z<t)

pθ(zt|x<t, z<t)
+ log

qϕ(zt|x≤t, z<t)

pθ(zt|x<t, z<t)

]]
≥ Eqϕ(z≤T |x≤T)

[ T

∑
t=1

log pθ(Xt, yt|z≤t, x<t)
]
−

T

∑
t=1

DKL
(
qϕ(zt|x≤t, z<t), pθ(zt|x<t, z<t)

)
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We assume that the modalities are conditionally independent given the common latent
variables [51] and all observations till the current time. Therefore,

log pθ(Xt, yt|z≤t, x≤t) =
2

∑
i=1

log pθ(X(i)
t |z≤t, x<t) + log pθ(yt|z≤t, x<t)

Thus,

log pθ(X≤T , y≤T |x≤T)

≥ Eqϕ(z≤T |x≤T)

[ T

∑
t=1

2

∑
i=1

log pθ(X(i)
t |z≤t, x<t) + log pθ(yt|z≤t, x<t)

]
−

T

∑
t=1

DKL
(
qϕ(zt|x≤t, z<t), pθ(zt|x<t, z<t)

)
≥ Eqϕ(z≤T |x≤T)

[ T

∑
t=1

2

∑
i=1

λi log pθ(X(i)
t |z≤t, x<t) + λ3 log pθ(yt|z≤t, x<t)

]
− β

T

∑
t=1

DKL
(
qϕ(zt|x≤t, z<t), pθ(zt|x<t, z<t)

)
where λ1, λ2, λ3, β are the weights balancing the terms. Assuming the class label does not
change over time, we simplify the above expression as

Eqϕ(z≤T |x≤T)

[ T

∑
t=1

2

∑
i=1

λi log pθ(X(i)
t |z≤t, x<t) + λ3 log pθ(y|z≤T , x<T)

]
− β

T

∑
t=1

DKL
(
qϕ(zt|x≤t, z<t), pθ(zt|x<t, z<t)

)
The pseudocodes are shown in Algorithms 1 and 2.

Appendix A.2. Model M2

Here we derive the objective function in Equation (10). The generative and recognition
models are factorized as

pθ(X≤T , y≤T , z≤T |x≤T)

=
T

∏
t=1

pθ(Xt, yt|z≤t, x<t)pθ(zt|x<t, z<t)qϕ(z≤T |x≤T , y≤T)

=
T

∏
t=1

qϕ(zt|x≤t, z<t, yt)

The variational lower bound (ELBO) on the joint log-likelihood of the generated data,
log pθ(X≤T , y≤T |x≤T), when the true label is given is derived as

Eqϕ(z≤T |x≤T ,y≤T)

[
log pθ(X≤T , y≤T |x≤T)

qϕ(z≤T |x≤T , y≤T)

qϕ(z≤T |x≤T , y≤T)

]
= Eqϕ(z≤T |x≤T ,y≤T)

[
log

pθ(X≤T , z≤T , y≤T |x≤T)

pθ(z≤T |x≤T , y≤T)

qϕ(z≤T |x≤T , y≤T)

qϕ(z≤T |x≤T , y≤T)

]
= Eqϕ(z≤T |x≤T ,y≤T)

[ T

∑
t=1

log
pθ(Xt|z≤t, x<t)pθ(zt|x<t, z<t, yt)pθ(yt)

pθ(zt|x<t, z<t, yt)

qϕ(zt|x≤t, z<t, yt)

qϕ(zt|x≤t, z<t, yt)

]
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= Eqϕ(z≤T |x≤T ,y≤T)

[ T

∑
t=1

[
log pθ(Xt|z≤t, x<t) + log pθ(yt)

− log
qϕ(zt|x≤t, z<t, yt)

pθ(zt|x<t, z<t, yt)
+ log

qϕ(zt|x≤t, z<t, yt)

pθ(zt|x<t, z<t, yt)

]]
≥ Eqϕ(z≤T |x≤T ,y≤T)

[ T

∑
t=1

log pθ(Xt|z≤t, x<t) + log pθ(yt)
]

−
T

∑
t=1

DKL
(
qϕ(zt|x≤t, z<t, yt), pθ(zt|x<t, z<t, yt)

)
≥ Eqϕ(z≤T |x≤T ,y≤T)

[ T

∑
t=1

2

∑
i=1

log pθ(X(i)
t |z≤t, x<t) + log pθ(yt)

]
−

T

∑
t=1

DKL
(
qϕ(zt|x≤t, z<t, yt), pθ(zt|x<t, z<t, yt)

)
After adding the classification loss, the final objective function can be written as

Eqϕ(z≤T |x≤T ,y≤T)

[ T

∑
t=1

2

∑
i=1

λi log pθ(X(i)
t |z≤t, x<t)

]
+ log pθ(yt)

− β
T

∑
t=1

DKL
(
qϕ(zt|x≤t, z<t, yt), pθ(zt|x<t, z<t, yt)

)
+ α

T

∑
t=1

log qϕ(yt|x≤t)

where α controls the relative weight between generative and purely discriminative learning.
Assuming the class label does not change over time, we simplify the above expression as

Eqϕ(z≤T |x≤T ,y≤T)

[ T

∑
t=1

2

∑
i=1

λi log pθ(X(i)
t |z≤t, x<t)

]
+ log pθ(y)

− β
T

∑
t=1

DKL
(
qϕ(zt|x≤t, z<t, yt), pθ(zt|x<t, z<t, yt)

)
+ α log qϕ(y|x≤T)

The pseudocode is shown in Algorithm 3.

Appendix A.3. Model M3

Here we derive the objective function in Equation (11). The generative and recognition
models are factorized as

pθ(X≤T , z≤T |x≤T) =
T

∏
t=1

pθ(Xt|z≤t, x<t)pθ(zt|x<t, z<t)

qϕ(z≤T |x≤T) =
T

∏
t=1

qϕ(zt|x≤t, z<t)

The variational lower bound (ELBO) on the log-likelihood of the generated data,
log pθ(X≤T |x≤T), is derived as

Eqϕ(z≤T |x≤T)

[
log pθ(X≤T |x≤T)

qϕ(z≤T |x≤T)

qϕ(z≤T |x≤T)

]
= Eqϕ(z≤T |x≤T)

[
log

pθ(X≤T , z≤T |x≤T)

pθ(z≤T |x≤T)

qϕ(z≤T |x≤T)

qϕ(z≤T |x≤T)

]
= Eqϕ(z≤T |x≤T)

[ T

∑
t=1

log
pθ(Xt|z≤t, x<t)pθ(zt|x<t, z<t)

pθ(zt|x<t, z<t)

qϕ(zt|x≤t, z<t)

qϕ(zt|x≤t, z<t)

]
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= Eqϕ(z≤T |x≤T)

[ T

∑
t=1

(
log pθ(Xt|z≤t, x<t)− log

qϕ(zt|x≤t, z<t)

pθ(zt|x<t, z<t)
+ log

qϕ(zt|x≤t, z<t)

pθ(zt|x<t, z<t)

)]
≥ Eqϕ(z≤T |x≤T)

[ T

∑
t=1

log pθ(Xt|z≤t, x<t)
]
−

T

∑
t=1

DKL
(
qϕ(zt|x≤t, z<t), pθ(zt|x<t, z<t)

)
≥ Eqϕ(z≤T |x≤T)

[ T

∑
t=1

2

∑
i=1

log pθ(X(i)
t |z≤t, x<t)

]
−

T

∑
t=1

DKL
(
qϕ(zt|x≤t, z<t), pθ(zt|x<t, z<t)

)
≥ Eqϕ(z≤T |x≤T)

[ T

∑
t=1

2

∑
i=1

λi log pθ(X(i)
t |z≤t, x<t)

]
− β

T

∑
t=1

DKL
(
qϕ(zt|x≤t, z<t), pθ(zt|x<t, z<t)

)
where λ1, λ2, β are the weights balancing the terms.

After adding the classification loss, the final objective function can be written as

Eqϕ(z≤T |x≤T)

[ T

∑
t=1

2

∑
i=1

λi log pθ(X(i)
t |z≤t, x<t)

]
− β

T

∑
t=1

DKL
(
qϕ(zt|x≤t), pθ(zt)

)
+ log qπ(y|X1:T)

where qπ(y|X1:T) is the classification model.

Appendix B. Experimental Results (Details)

Details of our experimental results from the efficiency evaluation are provided here.

Appendix B.1. Efficiency evaluation

Percentage of salient joints sampled by each of our model variants from the ground
truth are shown in Tables 11 and 12. The distribution of salient regions for all interaction
classes for each skeleton are shown in Figures A1–A12. In both sets of tables and figures,
results from first-person and third-person environments for the SBU Kinect and K3HI
datasets are shown. The figures show a sparse saliency distribution in most cases.

(a) M1 skeleton 1 (b) M2 skeleton 1 (c) M3 skeleton 1

(d) M1 skeleton 2 (e) M2 skeleton 2 (f) M3 skeleton 2

Figure A1. Salient region distribution (dist.) over all interactions shown for skeleton 1 in (a–c) and
the other skeleton in (d–f) for first person, (pe) environment using SBU Kinect interaction data.
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(a) M1 skeleton 1 (b) M2 skeleton 1 (c) M3 skeleton 1

(d) M1 skeleton 2 (e) M2 skeleton 2 (f) M3 skeleton 2

Figure A2. Salient joint distribution (dist.) over all interactions shown for skeleton 1 in (a–c) and the
other skeleton in (d–f) for first person, (lwpe) environment using SBU Kinect interaction data.

(a) M1 skeleton 1 (b) M2 skeleton 1 (c) M3 skeleton 1

(d) M1 skeleton 2 (e) M2 skeleton 2 (f) M3 skeleton 2

Figure A3. Salient joint distribution (dist.) over all interactions shown for skeleton 1 in (a–c) and the
other skeleton in (d–f) for first person, (lw) environment using SBU Kinect interaction data.

(a) M1 skeleton 1 (b) M2 skeleton 1 (c) M3 skeleton 1

(d) M1 skeleton 2 (e) M2 skeleton 2 (f) M3 skeleton 2

Figure A4. Salient region distribution (dist.) over all interactions shown for skeleton 1 in (a–c) and
the other skeleton in (d–f) for third person, (pe) environment using SBU Kinect interaction data.
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(a) M1 skeleton1 (b) M2 skeleton 1 (c) M3 skeleton 1

(d) M1 skeleton 2 (e) M2 skeleton 2 (f) M3 skeleton 2

Figure A5. Salient joint distribution (dist.) over all interactions shown for skeleton 1 in (a–c) and the
other skeleton in (d–f) for third person, (lwpe) environment using SBU Kinect interaction data.

(a) M1 skeleton1 (b) M2 skeleton 1 (c) M3 skeleton 1

(d) M1 skeleton 2 (e) M2 skeleton 2 (f) M3 skeleton 2

Figure A6. Salient joint distribution (dist.) over all interactions shown for skeleton 1 in (a–c) and the
other skeleton in (d–f) for third person, (lw) environment using SBU Kinect interaction data.

(a) M1 skeleton 1 (b) M2 skeleton 1 (c) M3 skeleton 1

(d) M1 skeleton 2 (e) M2 skeleton 2 (f) M3 skeleton 2

Figure A7. Salient region distribution (dist.) over all interactions shown for skeleton 1 in (a–c) and
the other skeleton in (d–f) for first person, (pe) environment using K3HI interaction data.
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(a) M1 skeleton 1 (b) M2 skeleton 1 (c) M3 skeleton 1

(d) M1 skeleton 2 (e) M2 skeleton 2 (f) M3 skeleton 2

Figure A8. Salient joint distribution (dist.) over all interactions shown for skeleton 1 in (a–c) and the
other skeleton in (d–f) for first person, (lwpe) environment using K3HI interaction data.

(a) M1 skeleton 1 (b) M2 skeleton 1 (c) M3 skeleton 1

(d) M1 skeleton 2 (e) M2 skeleton 2 (f) M3 skeleton 2

Figure A9. Salient joint distribution (dist.) over all interactions shown for skeleton 1 in (a–c) and the
other skeleton in (d–f) for first person, (lw) environment using K3HI interaction data.

(a) M1 skeleton 1 (b) M2 skeleton 1 (c) M3 skeleton 1

(d) M1 skeleton 2 (e) M2 skeleton 2 (f) M3 skeleton 2

Figure A10. Salient region distribution (dist.) over all interactions shown for skeleton 1 in (a–c) and
the other skeleton in (d–f) for third person, (pe) environment using K3HI interaction data.
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(a) M1 skeleton 1 (b) M2 skeleton 1 (c) M3 skeleton 1

(d) M1 skeleton 2 (e) M2 skeleton 2 (f) M3 skeleton 2

Figure A11. Salient joint distribution (dist.) over all interactions shown for skeleton 1 in (a–c) and the
other skeleton in (d–f) for third person, (lwpe) environment using K3HI interaction data.

(a) M1 skeleton 1 (b) M2 skeleton 1 (c) M3 skeleton 1

(d) M1 skeleton 2 (e) M2 skeleton 2 (f) M3 skeleton 2

Figure A12. Salient joint distribution (dist.) over all interactions shown for skeleton 1 in (a–c) and the
other skeleton in (d–f) for third person, (lw) environment using K3HI interaction data.
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